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ABSTRACT

Two series of new porous photocatalysts of vanadium oxides (1 - 5 wt%) doped
porous TiO; using tetrabutyl titanate (TBT) and titanium tetraisopropoxide (TTIP) as
Ti precursor were successfully synthesized. The photocatalysts were synthesized via
sol-gel method using cetyltrimethylammonium bromide (CTAB) as template. X-ray
diffraction analysis showed that all the photocatalysts crystallined in anatase phase.
There was no CTAB residue in the photocatalyst synthesized after calcination at 773
K. According to diffused reflectance UV-visible spectroscopy analysis, the band gap
energy reduced from 3.02 (in TBT-TiOy) to 2.72 eV (in 5V-TBT-p-TiOy) for TiO:
synthesized using TBT as Ti precursor. Similarly, reduction in band gap energy from
3.11 (in TTIP-TiO2) to 2.66 eV (in SV-TTIP-p-TiO2) for TiO2 synthesized using TTIP
as Ti precursor. The nitrogen adsorption-desorption analysis revealed that the surface
area of both series increased with the amount of dopant. These materials contained of
disorder mesopores with particle size range of 5 — 56 nm. The photocatalytic testing
results showed that samples 4V-TBT-p-TiO2 and 4V-TTIP-p-TiOz recorded the highest
percentage of phenol degradation under visible light irradiation in their respective
series. Sample 4V-TBT-p-TiO; photodegraded 62.2% phenol, while 4V-TTIP-p-TiO»
photodegraded 62.8% phenol after 7 h reaction time. There was no significant
difference between the photodegradation performances of two series of vanadium

oxide doped TiO».
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ABSTRAK

Dua siri TiO; fotomangkin didopkan vanadium oksida telah berjaya dihasilkan
dengan menggunakan tetrabutil titanat (TBT) dan titanium tetraisopropoxida (TTIP)
sebagai sumber Ti. Kaedah sol-gel telah digunakan untuk menghasilkan semua
fotomangkin dan cetiltrimetilammonium bromida (CTAB) digunakan sebagai templat.
Analisis pembelauan sinar-X menunjukkan semua fotomangkin dalam kristal bentuk
fasa anatas. Tiada sisa CTAB tertinggal dalam sampel selepas pengkalsinan pada 773
K. Menurut analisis spektroskopi UV-Vis resapan pantulan, jurang tenaga dikurangkan
daripada 3.02 (dalam TBT-TiO2) ke 2.72 eV (dalam 5V-TBT-p-TiOz) untuk TiO> yang
dihasilkan dengan TBT sebagai sumber Ti. Manakala, penurunan jurang tenaga
daripada 3.11 (dalam TTIP-TiO2) ke 2.66 eV (dalam 5V-TTIP-p-TiO) juga dikesan
untuk TiO> yang dihasilkan dengan TTIP sebagai sumber Ti. Analisis penjerapan dan
pembebasan nitrogen mendedahkan bahawa luas permukaan kedua-dua siri
fotomangkin telah meningkat dengan pertambahan jumlah pendopan. Bahan-bahan itu
mempunyai mesoliang yang tidak serata dengan saiz zarah berjulat 5 - 56 nm.
Keputusan ujikaji pemfotomangkinan telah menunjukkan sampel 4V-TBT-p-TiO> dan
4V-TTIP-p-TiO, mencatatkan dalam siri masing-masing peratusan fotodegradasi fenol
tertinggi di bawah sinaran cahaya nampak. Sampel 4V-TBT-p-TiO> memfotodegradasi
62.2% fenol, manakala 4V-TTIP-p-TiO2 memfotodegradasi 62.8% fenol selepas 7 jam
tempoh tindak balas. Aktiviti fotodegradasi fenol antara dua siri TiO> didopkan

vanadium oksida tidak menunjukkan perbezaan yang ketara.
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CHAPTER 1

INTRODUCTION

1.1 Background

Phenol is an organic pollutant which is widely found in many industries
wastewater including resins, paint, oil refineries, herbicides, textile, food, flavoring
agent, petrochemical, antioxidants and photographic chemicals [1]. The presence of
phenol in wastewater cause several environmental problems and harmful to human
being. Phenolic compounds are the major component of water pollutant. These
compounds react with chlorine to form toxic polychlorinated phenolic compounds [2].
Therefore, a huge conventional biological system is always needed to treat the
phenolic wastewater [3]. Traditional or conventional wastewater treatment usually
involves usage of activated carbon, specific chemical or solvent to remove the phenolic
compounds. However, these methods have resulted higher cost for further treatment

of byproducts [4].

Phenol is categorized as refractory organic compound which consists of
toxicity of carcinogenesis, mutagenicity and teratogenesis [5]. The water treatment of
phenol-containing wastewater has drawn attention of many researchers. Since the
traditional phenolic wastewater treatment methods are not able to function effectively,
an alternative way with a low cost and high efficient wastewater treatment method is

highly desired to solve the problem.



Several new technologies in photocatalytic degradation of organic pollutant,
called Advanced Oxidation Processes (AOP), have been developed. AOP provide a
route to degrade organic pollutant into carbon dioxide, water and inorganic ions which
are environmentally friendly [6-8]. Among AOP, titania-based photocatalytic
oxidation has been recognized as an effective method especially in mineralization of
many toxic and non-degradable organic pollutants in wastewater treatment [9,10].
Ti0; is a good heterogeneous photocatalyst because it has high chemical stability, and
low cost. Moreover, sunlight can be used as a light source for TiO, photocatalyst

activity [11].

When the electron in the valance band of TiO; absorbs enough light energy,
it can be excited to conduction band. This phenomenon will cause a positive vacancy
or hole in the valance band. On the surface of catalyst, there are photo-generated
electrons and holes which function to convert the water molecule to hydroxide radical.
The radicals will then react with organic pollutants. However, the electron and hole
pair may also recombine. Thus, the recombination of electrons and holes should be

reduced in order to enhance the photoactivity of TiO> photocatalysts.

Ti0; is still not a perfect photocatalyst. The anatase phase of TiO2 possess
3.2 eV band gap which is too large and causes titania unable to use visible light as
irradiation source. Moreover, the fast electron and hole recombinationhas limited the
photodegradation activity of TiO,. Many modifications have been done on TiO; such
as metal oxides doping [12], dye sensitizer [13] and metal coupling [14] in order to
improve the photoactivity of TiO,. Among the modification methods, metal oxide
doping has achieved the best result. Doping of vanadium oxide into TiO> is able to
delay the recombination of hole and electron pairs [15,16] and boost the adsorption
activity [17]. Besides, non-porous TiO; also related with the issue of low mass
transport rates between the organic pollutant and the active centres of TiO; [18]. In

order to further enhance the photocatalytic activity of TiOz, porous TiO, was



synthesized. Increasing the porosity of TiO> could provide a larger surface area which
increased the accessibility of organic pollutant to the active sites on the TiOz. Thus,

photodegradation of organic pollutant would be enhanced.

1.2 Statement of Problem

Phenolic compounds are one of the common organic pollutants found in the
industrial wastewater. It pollutes our environmental and it is harmful to human.
Compare to the traditional method, AOP have been studied intensively as particularly
efficient method to degrade phenolic compounds in the wastewater [19]. Although
Ti0; offers high chemical stability and good particle size distribution properties, it is
not yet an effective photocatalyst. There are many reports on the effect of transition
metals doping into TiO» using sol-gel method. However, there are contradict
statements for photocatalytic performance of metal oxide doped TiO2. Some
researchers commented that presence of metal oxide could boost the photoactivity of
TiO2 photocatalyst, but some other researchers denied it. Besides, the problem of low
mass transport rate of organic pollutants to the active centres of TiO> photocatalyst
also always being discussed and related with the porosity of TiO. Effect of Ti
precursors on the properties and photocatalytic performance of transition metal oxide

doped TiO2 is yet to be explored.



1.3 Research Objectives

The objectives of this research were:
a) To synthesize vanadium oxide doped porous TiO; photocatalysts using two
different precursors of tetrabutyl titanate and titanium tetraisopropoxide.
b) To characterize the TiO» and vanadium oxide doped porous TiO>
photocatalysts
c¢) To investigate the effect of Ti precursors and vanadium oxides in TiO, and

vanadium oxide doped porous TiO: for phenol photodegradation.

14 Scope of Study

Porous TiO2 and vanadium oxide doped porous TiO; were synthesized via
sol-gel method. Titanium tetraisopropoxide and tetrabutyl titanate were utilized as Ti
precursors. The synthesized materials were characterized using X-ray diffraction
(XRD), diffused reflectance ultraviolet-visible (DRUV-VIS) spectroscopy, nitrogen
adsorption-desorption analysis, fourier transform infrared spectroscopy (FTIR), field
emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX)
analysis. The photocatalytic activity of vanadium oxide doped porous TiO; in
photodegradation of phenol was evaluated. The effects of weight percentage of
transition metal oxide doped (1 — 5 wt%) and precursor type on the properties and

photodegradation of phenol were explored.



1.5 Significance of study

The resulted materials of vanadium oxides doped porous TiO: could be
potential catalysts to photodegrade the phenol and other organic pollutants. The
research findings could contribute to the development of excellent catalyst which is
applicable in various fields of water treatment including the petrochemical, textile,
dyes, agricultural, plastic, production process of pesticides and paint. Moreover, the
resulted photocatalysts could function to protect water resources such as surface and
ground water. Besides, they could help to maintain the balance of ecosystem as it help
to remove the phenolic pollutant which is toxic to aquatic organisms. In addition, the
synthesized photocatalysts help to save cost for water treatment as they utilize sunlight

radiation to remove organic pollutants.
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