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ABSTRACT 
 
 
 
 
 

Radiosensitive glasses of lithium potassium borate (LKB) co-doped with 
CuO-MgO then with TiO2-MgO were prepared using melt-quenching technique. 
Present studies were carried out, seeking to improve upon the thermoluminescence 
(TL) signal of such glass systems. The overall aim of this thesis was to develop a 
radiosensitive glass that is suitable for thermoluminescence dosimetry (TLD). A 
glow curve with single prominent peak was produced at ~220 

oC as a result of 
dopant activation (CuO/TiO2). An enhancement of about three times was shown as 
a result of adding MgO as a co-dopant activator (LKB: 0.1Cu, 0.1Mg and        
LKB: 0.5Ti, 0.25Mg- mol%). This enhancement was attributed to the ability of 
magnesium to create extra traps and consequently energy transfer to monovalent 
Cu+ and Ti3+ ions. A charge imbalance was predicted in the glass host by the 
addition of alkaline (Mg2+). Both LKB:Cu,Mg and LKB:Ti,Mg have low Z material 
(Zeff = 8.55 and 8.89, respectively), good reproducibility and low fading. The 
prepared glass showed 15 times less sensitive than that of LiF:Mg,Ti (TLD-100), 
but a promising dose response linearity was achieved over a long span of 
irradiation doses (up to 103 Gy). The trap parameters, including the order of 
kinetics (b), activation energy (E) and frequency factor (s) associated with 
LKB:Cu,Mg were also determined. Furthermore, a TolAnal software was used for 
glow curve deconvolution and analysis for the created peaks. The 
photoluminescence spectra (emission and excitation) for the prepared samples were 
studied. As new mixtures, a series of glass characterization and physical properties 
were discussed.  The achieved results promise the use of these compositions in 
different dosimetric applications, particularly in medical dosimetry and high dose 
monitoring. 
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ABSTRAK 
 
 
 
 
 

Kaca radiosensitif Litium Kalium Borat (LKB) dikodop dengan CuO-MgO, 
kemudian dengan TiO2-MgO disediakan menggunakan teknik sepuh lindap. Kajian 
ini telah dijalankan untuk menambahbaik isyarat luminesens terma sistem kaca. 
Matlamat keseluruhan tesis ini ialah untuk menghasilkan kaca radiosensitif yang 
sesuai dalam dosimetri luminesens terma (TLD). Satu lengkung berbara puncak 
tunggal telah terhasil pada suhu ~220 

oC, kesan daripada pengaktifan dopan 
(CuO/TiO2). Peninggian hampir tiga kali ganda turut diperoleh kesan          
daripada penambahan MgO sebagai pengaktif kodopan (LKB: 0.1Cu, 0.1Mg dan           
LKB: 0.5Ti, 0.25Mg- mol%). Peninggian ini mungkin disebabkan sifat magnesium 
yang mempunyai kebolehan untuk menghasilkan perangkap tambahan dan 
akhirnya berlaku pemindahan tenaga ke ion monovalen Cu+ dan Ti3+. 
Ketakseimbangan cas turut diramalkan dalam kaca induk dengan penambahan 
alkali (Mg2+).  Kedua-dua LKB:Cu,Mg dan LKB:Ti,Mg mempunyai nombor atom 
rendah bahan Z (masing-masing Zeff = 8.55 dan Zeff = 8.89), kebolehulangan yang 
baik dan kepudaran yang rendah. Kaca yang disediakan ini menunjukkan kepekaan 
15 kali lebih rendah berbanding LiF:Mg,Ti (TLD-100), tetapi sambutan dos yang 
linear telah diperoleh untuk penyinaran dalam tempoh yang lama (sehingga 103 
Gy). Parameter perangkap, termasuk aturan kinetik (b), tenaga pengaktifan (E) dan 
faktor frekuensi (s) yang berkait dengan LKB:Cu,Mg turut ditentukan. Tambahan 
lagi, perisian TolAnal digunakan untuk mendapatkan dekonvolusi lengkung berbara 
dan analisis untuk puncak yang dihasilkan. Spektrum luminesens cahaya 
(pemancaran dan pengujaan) untuk sampel yang disediakan turut dikaji. Sebagai 
satu campuran baharu, satu siri pencirian kaca dan sifat fizikal telah dibincangkan. 
Dapatan yang dicapai menjanjikan penggunaan komposisi kaca ini dalam pelbagai 
aplikasi dosimetri, khasnya dalam bidang dosimetri perubatan dan pemantauan dos 
berjulat tinggi. 
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CHAPTER 1 

INTRODUCTION 

1.1   Overview 

Little over a century ago, in November 1895, Wilhelm Conrad Roentgen 

discovered the X-ray. A few months later, in March 1896, Henri Becquerel 

described the radioactivity. The use of ionizing radiation has become increasingly 

frequent and diverse in the later decades. Today the radiation is used in many 

sectors of medical, industrial, military and research. Ionizing radiation is a type of 

radiation characterized by its short wavelength and high frequency, and its ability 

to produce free radicals (ions) when it interacts with matter. It can remove the 

tightly bound electrons from the shell of the exposed atom, causing the atom to 

become charged or ionized. This radiation consists of particles (e.g. alpha, beta and 

neutron) or electromagnetic waves (X-ray and gamma ray) that are energetic 

enough to cause ionization and severe biological damage when it absorbed by 

human tissues. Indeed, the high doses of ionizing radiation can cause mutation, 

cancer, radiation sickness, and death (Eric and Amato, 2006). 

 Whatever the type of application, it is often necessary to measure the 

energy deposited per unit mass during the interaction of radiation with the target. 

The physical quantity characterizing this concept is called the absorbed dose and is 

expressed in Gray (Gy). The absorbed dose determination is one of the main 

objectives of all radiation-related studies.  
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The dosimeter is a device that plays an important role in the mission of 

radiation protection and radiation therapy treatment. It measures the risk associated 

with the use of ionizing radiation directly or indirectly in terms of quantities such 

as the dose equivalent or effective dose. The radiation dosimeters measure or help 

to evaluate directly or indirectly, the exposure quantities, Kinetic Energy Released 

in Matter (Kerma), absorbed dose, equivalent dose, and other quantities related to 

the ionizing radiation. The dose ranges of interest according to the International 

Commission of Radiation Units (ICRU) recommendations rely on the energy 

source; for example, nearly (0.01 to 1) mSv for personal dosimeter, (0.1 to 100) 

mSv for X-ray diagnosis and up to 5 Sv for radiotherapy doses (ICRU, 1998). 

Nowadays, different types of radiation detectors are available for medical and 

environmental applications as summarized in Figure 1.1.  In the medical field, to 

obtain a high-performance treatment for tumour cells and more safety for the 

normal adjacent tissues, the accuracy of the dose delivered to the tumour cells 

should be within ± 5% (ICRU, 1976).  
 

 

 
 

Figure 1.1 The most popular dosimeters for Ionizing Radiation Measurement. 
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Figure 1.1 illustrates the different types of radiation detectors and 

measuring used in medical and environmental fields (MOSFET: metal-oxide 

semiconductor field effect transistor and diamond detectors). Passive dosimetery 

systems include the dosimeter and readout device. Hence, there will be a delay in 

obtaining the information. An active dosimeter is the process of direct detection of 

ionizing radiation for personal and environmental monitoring; i.e., this dosimeter 

can provide the results immediately i.e. dose and dose rate (Khan, 1994).  

 

1.2   Thermoluminescence Materials 

Different types of material with modifiers and dopants can be used in 

radiation detection. These materials are specified as dosimeters and classified based 

on its physical and chemical properties to detect the different range of energies. 

These energies vary, corresponding to the field intended to examine. The TL 

materials are available in different forms such as hot pressed chips, pellets, powder, 

impregnated teflon disks. The different shapes of thermoluminescence dosimeter 

(TLD) can be used in different areas and in particular at critical places.  

Furthermore, several admixtures are checked corresponding to the 

properties of appropriate dosimeters. These dosimeters are considered the most 

common applied dosimeter particularly in the environmental and medical field. 

Table 1.1 shows the chemical composition and applications of the TL phosphors.   
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Table 1.1: The most common TLD used in medical and environmental 

applications 

[ 

  1.3   The Energy Transfer 

The energy transfer is the physical phenomenon observed when a 

luminescent molecule in the excited state gives a portion of its excess energy to an 

acceptor fluorescent molecule. This process is accompanied with emitting of a 

fluorescence photon. The energy transfer from a donor to an acceptor can be 

radiative or not. In the case of a non-radiative emission, the energy transfer can also 

be conducted electronically by phonon vibration or by the collision energy of 

transferring resonance. These phenomena require the collection of the orbital 

electrons. Three kinds of thermoluminescence phenomena may occur after the 

process of heating: radiationless recombination, re-trapping of electron and/or 

luminescent recombination. The latter can produce a light signal useful for the TLD 

reader (Yusoff, 2005).  The intensity of the emitted light signals is proportional to 

four main factors depth of trapped electrons, heating used for electron release, 

chemical tuning between element bonds and types of dopant used. 

 

Material Chemical 
formula Area of interest  Reason for 

choice 

Lithium  
LiF:Mg 

Mg:Ti/Mg,Cu,P 
Personal Dosimetery Tissue-equivalent 

Calcium  CaF2:Dy, 
CaSO4:Dy 

Environmental 
monitoring High sensitivity 

Lithium borate  Li2B4O7:Mn High dose range 
dosimetery High stability 

Aluminum Al2O3:C Medical applications Simple Peak   
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1.4   Glass and Thermoluminescence  

All literature studies confirmed the efficiency of glass in the field of 

radiation detection and thermoluminescence theory. Several materials can be used 

in order to synthesize pure glasses such as silicon glass (SiO2), boron glass (B2O3), 

phosphorus glass (P2O5) and germanium glass (GeO2). The present study focuses 

on the glass formation by using the boron oxide as a host. Schulman, Kirk, and 

West’s were the first whom prepared the glass by melting a mixture of lithium 

carbonate (Li2CO3) and boric acid (H3BO3) then cooled to the room temperature. 

This method is known as the conventional chemical quenching technique. The 

Li2CO3 and H3BO3 are mixed with a few amount of SiO3 or MnCl2 under the 

melting point of borate, and then annealed for three hours under the transition 

temperature of the host. Finally, the mixture was dried for 12 hours at room 

temperature (Schulman et al., 1965).  

1.5   Lithium Borate 

The phosphor dosimeter is the most widely used and sensitive dosimeter 

used in medical and environmental applications. This is attributed to many 

promising reasons, i.e. the effective atomic number (close to human tissue), 

sensitivity to a wide range of energy, energy response (stability and consistency), 

dose dependence linearity and low fading. Many TLDs are commercially available, 

but the most common types are LiF doped with Mg,Ti and LiF doped with Mg,Cu, 

or P. Besides, these attractive properties, there are several drawbacks on these 

dosimeters. For instance, hygroscopic defect and poor spatial resolution up to a few 

millimeters per spot are the common weakness (McKeever and Moscovitch, 2003). 

Due to these obstacles, numerous researches have been carried to overcome these 

drawbacks and to improve the TL properties. Lithium borate dosimeters 

(tetraborate Li2B4O7 and triborate LiB3O5) show promising TL properties that 

passed the disturbance of phosphors and give opulence applications in both medical 

and environmental fields. Because of its close human tissue absorption coefficient, 
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borate glasses are widely used as a thermoluminescence dosimeter in medical 

applications and personal monitoring. In addition, its high availability and low 

manufacturing cost gave this dosimeter the preferences over the other phosphors 

(Depci et al., 2008 and Pekpak et al., 2010).  

The attractive chemical, physical and optical properties of lithium borates 

open the gates to enhancing the TLD efficiency. Lithium borate is used as a surface 

acoustic wave to improve the electrical circuits (Bui et al., 2009). As well as, the 

utilizing of lithium borate as a piezoelectric and pressure probe gave high 

promising results (Bui et al., 2009). Lithium tetraborate (Li2B4O7) doped with 

manganese was the first lithium borate dosimeter; this older effort showed a low 

TL sensitivity. This drawback is attributed to the incompatibility between the 

region of trapped electron emission (600 nm) and the photomultiplier tube 

sensitivity of the TLD reader (Prokie, 2002). 

According to Takenaga et al., (1980) and Soramasu et al., (1996), the TL 

emission of lithium borate was reduced to 360 nm by replacing the manganese with 

copper activator. This shifting makes the wavelength of the emitted light 

compatible with the photomultiplier tube (PMT) of the TLD-reader. A recent study 

showed the possibility of using lithium borate to convert the ultraviolet frequency 

to laser (Eggins, 2003). Countless studies confirmed the efficiency of lithium 

borate as ionizing radiation detector. The results illustrate a variation showing the 

dosimetric properties (sensitivity, dose dependence, energy response, fading and 

reproducibility) to corresponding to the type of dopant and modifier materials 

added to the borate host. According to Furetta et al., (2001a), the lithium borate 

glow curve shows two different separated glow peaks. Figure 1.2 demonstrates the 

glow curve that forms a schematic spectrum to identify the relation between the 

heat treatment (with electrons trapped in the space between the valence and 

conducting area) and the intensity of TLD signals.  
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Figure 1.2 The two peaks produce in the TLD reader as a result of thermal 

induction of Lithium Borate (Furetta, 2001a).  

 

According to Figure 1.2, the lithium borate creates two separated peaks; the 

first peak appeared at 125oC and the second peak at 200 oC. The first peak fades 

(disappeared) after 24 hours of irradiation. The supersaturating state occurred at 1 

Gy and 103 Gy for the first and second peak, respectively (Furetta et al., 2001a). 

Attractive results were obtained after the activation of lithium bromide lattice with 

copper (Cu) and indium (In) co-dopant. The main achievement is enhancing of the 

dose linearity up to 103 Gy, and reduce annealing time and temperature to half 

compared with that applied in the case of lithium fluoride dosimeter (LiF: Mg, Ti). 

The same study indicated the importance of adding silicon dioxide to overcome the 

humidity defect and enhance the sensitivity of the TL dosimeter (Furetta, 2001b).  

The results of the Park’s experiment displayed another aspect related to the 

dopants effect on the linearity and superlinearity response of Lithium Borate (Park 

et al., 2002). Three dopants manganese, copper and magnesium were used to 
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activate lithium tetraborate. Copper dopant exhibited superlinearity up to 100 Gy 

and 10 Gy for manganese dopant (Park et al., 2002). Based on the work of Gorelik 

and his colleagues, three stable mixtures of Lithium (Li2O) with borate (B2O3) can 

be used as TLD: lithium tetraborate (Li2B4O7), lithium triborate (Li2B3O5) and 

lithium meta-borate (LiBO2) (Gorelik et al., 2003). In more details, the basic 

compounds in the form of borate crystals are:  simple trigonal (BO3)-3, tetrahedral 

(BO4)-5 groups, bitrigonal (B2O5)-4 and ditetrahedral (B2O7)-8 groups, groups with 

circular 6-membered mixed coordination (B3O6)-3, (B3O7)-5, (B3O8)-7, and (B3O9)-9 

and coupled double 6-membered rings (B5O10)-5 (Gorelik et al., 2003). Three main 

stable compounds in the Li2O-B2O3 system can be generated in the form of crystal, 

sintered pellets and glass. As a crystal and glass form, they can be divided into 

lithium meta-borate (LiBO2), lithium tetraborate (Li2B4O7), and lithium triborate 

(LiB3O5) as shown in Table 1.2. 

 

Table 1.2:  The main chemical properties of Lithium-Borate (Pekpak et al., 2009) 

 

 
Lithium 
Metaborate 

Lithium 
Triborate 

Lithium 
Tetraborate 

Chemical Formula LiBO2 Li2B3O5 Li2B4O7 

Molecular weight 49.751 g mol-1 119.372 g mol-1 169.123 g mol-1 

Phase Solid Solid Solid 

Melting Point 845 °C 834 °C 820 °C 

Density 2.223 g cm–3 2.747 g cm–3 0.251 g cm–3 

Solubility Soluble in water Soluble in water Soluble in water 
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1.6   Optical Properties 

The physical and optical properties of borate glasses and crystals have 

attracted great interest among the researches. The lithium borate glass has 

numerous applications in the optical field, particularly on the nonlinear optical 

phenomena. The interest in lithium borate glass is attributed to its high 

transparency, thermal stability, ease preparation and good hosting for dopants.   

Recently, many studies have been done to explore the behavior of lithium borate, 

either pure or doped with different transition metals or rare-earth elements 

(Lakshminarayana and Buddhudu, 2006; Elfayoumi et al., 2010 and Padlyak et al., 

2010a).  

The incorporation of lithium borate in the optical fields has paved the way 

in ultraviolet and visible laser applications. It has been remarked that the position 

and intensity of absorption and emission transition bands are highly affected by the 

type of dopant and its concentrations. Furthermore, lithium borate glasses have 

shown high stability. This stability improves the laser properties which have 

different applications in the computing and telecommunication system.     

1.7   Problem Statement 

This study encompasses investigation of the performance of a TLD detector 

named LKB co-doped with CuO/MgO and TiO2/MgO. In general, this study will 

investigate these dosimeters in terms of their preparation, characterization, optical 

and thermoluminescence properties.  
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The luminescence studies of undoped and doped borate dosimeters are 

started in 1965 by Schulman (Schulman et al., 1965). The dosimeter was in the 

form of crystal and doped with manganese (Li2B4O7:Mn). Although the desired 

properties were achieved, particularly its effective atomic number but it has low 

radiation sensitivity. This drawback was attributed to the incompatibility between 

the wavelength of the emitted light (600 nm) and the photomultiplier tube response 

region of the TLD’s reader. The sensitivity was improved using copper as an 

activator instead of manganese, which shifted the red-light emission (600 nm) to 

the blue-light emission (Takenaga et al., 1980). Indeed, the emitted light with 360 

nm wavelength (blue emission spectra) enhanced the sensitivity more than ten 

times, and overcome the sensitivity drawback (Takenaga et al., 1980). Since then, 

numerous studies were carried to improve the borate glass features, in terms of its 

preparation, modifier and activator modifications.  

According to the literature studies, the preparation modifications were 

conducted around three types; the single crystal (Park et al., 2003; Rojas et al., 

2006;  Xiong et al., 2011), the polycrystalline (Prokic, 2001, Prokic, 2002; 

Sangeeta et al., 2004 and Pagonis et al., 2006) and the glass system (Pontuschka et 

al., 2001; Venkateswara et al., 2002; Rojas et al., 2006). For modifiers, several 

alkali/alkaline metals were used as modifiers to strengthen the relative stability of 

borate glass (Srivastava and Supe, 1989; Martini et al., 1995; Rey, 2003; Manam 

and Sharma, 2004; Rojas et al., 2006). Regarding to the activators, a variety of 

dopants and co-dopants either transition metals (Prokic, 2002; Xiong et al., 2011, 

Elkholy, 2010) or rare earths (Prokic, 2001; Li et al., 2005 and Madhukumar et al., 

2007) were added to the host in order to enhance the luminescence. This 

enhancement based on the consideration of amendments the electron’s transition 

and/or increasing the traps centre. However, the continuous increase of copper and 

titanium oxide has led to an adverse effect on the TL response (the quenching 

state). One of the ways is to increase the response by the addition of another 

impurity (co-dopant), which acts as a charge compensator like P or Mg on either Li 

or K sites. Therefore, the present research aims are to evaluate the 

thermoluminescent properties of LKB doped with CuO and TiO2, and the 

efficiency of MgO as co-dopant on the optical and thermal stimulation properties.  
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In the current study, a new glass dosimeter based on borate host will be 

prepared. The host is strengthened by two alkali modifiers (lithium and potassium), 

and its luminescence effects will be enhanced by the presence of co-dopant (CuO 

with MgO and TiO2 with MgO). The optical and thermoluminescent properties of 

these samples will be reported for the first time. 

1.8   Objectives of the Study 

 
The objectives of this study are: 

 

1. To examine the optical properties (i.e., Photoluminescence, Absorption, 

Reflection and Refractive index etc) of the new TL glass dosimeters 

(LKB:CuO,Mg and LKB:TiO2,Mg). 
 

2. To describe the fundamental dosimetric properties of the new TL glass 

dosimeters (i.e., reproducibility, dose linearity, sensitivity, minimum 

detectable dose, fading and effective atomic number etc). 
 

3. To determine the luminescence dependency of borate glass with the 

presence of modifiers, dopant and co-dopant.  

 

4. To compare the performances of the glass dosimeters (LKB:CuO-MgO 

and LKB:TiO2-MgO) with different co-dopant concentrations. 
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Schematic representation of the Problem Statement of the current study: 

Figure 1.3 Schematic representations for the problem statement of the current 

study. 
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1.9    Scope of the Thesis 

In regard to this doctoral thesis, the thesis is organised to five chapters. 

Chapter 1 presents the background, problem statement, objectives and 

contributions of the research. In addition, this chapter summarizes the importance 

of choosing the new glass dosimeters.  

Literature review is presented in Chapter 2. It provides a brief description 

on the basis of the general information about borate compounds and glass 

formations, and full overview of optical properties, thermoluminescence 

phenomena and TL parameters. In addition, the theoretical equation needs to be 

used in order to obtain more information based on the glow curve (kinetic energy 

parameters: activation energy, frequency factor and degree of binding energy). This 

chapter also involves the physical and chemical concepts related to the dosimetric 

properties. For instance, dose rate effect, annealing condition, energy dependence, 

glow curve parameters, relative energy response and reproducibility. 

Chapter 3 describes the instrumentations and methods used during the 

research to get the results and to accomplish the project. These instruments are 

divided into characterization analysis (XRD, FTIR, FESEM, and DTA), optical 

properties (PL and UV-VIS-NIR spectrophotometer) and thermoluminescence 

studies (Ionizing radiation sources and TLD-reader) machines. 

Chapter 4 provides the results obtained from the glass composition. This 

chapter is divided into three sections; the first part describes the characterization of 

the new prepared samples. The later explain the optical and the 

thermoluminescence properties of the new compositions. In more details, the 

results obtained are discussed in depth and the comparison being made. 

 Finally, Chapter 5 summarizes the main findings achieved through this 

research, and suggests several recommendations for future studies.  
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