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ABSTRACT 

Detection of concentration of the gas/liquid mixture inside the pipe with 

Ultrasonic Tomography (UT) has been investigated seriously with various 

researchers in the recent decade. To date, most of the researches of ut focus on 

Acrylic or PVC as pipe material. This research investigates the usage of metal pipe 

for ut application. The attenuation problem of metal pipe is due to high acoustic 

impedance mismatch between liquid and metal pipe. Based on the problems of metal 

pipe for application in the UT system, various alternatives are presented in this 

research. Modelling of the UT using COMSOL software is studied to visualize the 

real UT system. Various frequencies are tested to determine the optimum frequency 

of the UT system. The hardware of UT system is developed after selection of the 

suitable transceiver. The structures of the transmitter and receiver circuits are 

developed in order to improve the Signal to Noise Ratio (SNR) and functionality of 

circuits. The sampled signals are preceded to the computer via Data Acquisition 

(DAQ) system. Various algorithms are investigated to produce the best image 

reconstruction of the UT system. As the basic and convenient algorithm, Linear 

Back Projection (LBP) is used for reconstructing the primary image.  Median Filter 

Back Projection (MFBP) and Disk Filter Back Projection (DFBP) are applied to 

improve the image quality of LBP algorithm. Additionally, the Circular 

Thresholding Segmentation (CTS) algorithm is applied to produce the segmented 

thresholding images. Based on the simulation results, 40 kHz is determined as the 

optimum frequency of UT system. The designed UT system for the metal pipe is 

experimentally tested and cross-sectional images are extracted from metal pipe. 

Additionally, this thesis presents the static and dynamic results of UT system from 

metal pipe. Based on the comparison between the performances of applied 

algorithms, the CTS algorithm has the best results due the minimum errors between 

original images and reconstructed images. The obtained results corroborate the 
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ABSTRAK 

 Pengesanan kepekatan campuran gas / cecair di dalam paip dengan 

tomografi ultrasonik (UT) telah dikaji secara serius oleh pelbagai penyelidik dalam 

dekad baru-baru ini. Setakat ini, kebanyakan kajian ut tertumpu kepada akrilik atau 

PVC sebagai bahan paip. Kajian ini mengkaji penggunaan paip logam untuk aplikasi 

UT. Masalah pengecilan paip logam terjadi disebabkan impedans akustik yang tinggi 

tidak berpadanan antara cecair dan paip logam. Berdasarkan kepada masalah paip 

logam untuk diaplikasikan dalam sistem UT, pelbagai alternatif dibentangkan di 

dalam kajian ini. Permodelan UT dengan menggunakan perisian COMSOL dikaji 

bagi menggambarkan sistem UT yang sebenar. Pelbagai frekuensi telah diuji untuk 

menentukan frekuensi yang optimum bagi sistem UT itu. Perkakasan sistem UT 

dibangunkan selepas pemilihan peralatan pemancar penerima yang sesuai. Struktur 

pemancar dan penerima litar dibangunkan bagi meningkatkan isyarat kepada nisbah 

bunyi (SNR) dan fungsi litar. Isyarat sampel didahului ke komputer melalui Sistem 

Perolehan Data (DAQ). Pelbagai algoritma dikaji untuk menghasilkan pembinaan 

semula imej terbaik bagi sistem UT itu. Sebagai algoritma asas dan mudah, Unjuran 

Belakang Linear (LBP) digunakan untuk membina semula imej utama. Penapis 

Median (MFBP) dan Penapis Cakera (DFBP) digunakan untuk meningkatkan 

perbezaan kesan kabur LBP. Selain itu, algoritma Segmentasi Ambang Bulat (CTS) 

digunakan untuk menghasilkan imej ambang bersegmen. Berdasarkan kepada 

keputusan simulasi, 40 kHz ditentukan sebagai frekuensi optimum bagi sistem UT. 

Sistem UT yang dibangunkan untuk paip logam diuji dan imej seksyen silang 

dikeluarkan dari paip logam. Selain itu, tesis ini mempersembahkan hasil statik dan 

dinamik bagi sistem UT daripada paip logam. Berdasarkan perbandingan antara 

prestasi algoritma yang diguna, algoritma CTS  mempunyai keputusan yang terbaik 

kerana mempunyai kesilapan yang minimum antara imej asal dan imej yang dibina 

semula. Keputusan yang diperolehi menyokong kebolehgunaan sistem UT yang  
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

The root of tomography word belongs to the Greek language. It consists of  

“Tomov” and “Graph” which mean “to slice” and “picture”. The concept of “to 

slice” relates to the cross section of any object. In other word, the definition of  

tomography word can be stated as a process for obtaining the cross sectional images 

from an object [1].  

 

For the first time in 1950’s, the development of process tomography started 

and has a wide application in medicine especially for body scanning in that time. 

However, it still is used as the efficient instrument in medicine for scanning 

application in various proposes [1]. Evaluation of process tomography carried out 

during the mid-1980. Various imaging equipments for tomography processes was 

presented in the 1970’s, but it involved using ionization in x-rays, etc. The present 

progress on process tomography systems are achieved due to the accomplished 

researches in mid- 1980’s. Generally, process tomography is a technique used to 

determine the internal behaviours of flowing materials in a pipeline [2]. It used to 

demonstrate the internal composition of pipes or mixing vessels in the images form. 

There are many different types of tomographic methods which are used to obtain 

different kinds of readings. For example, the significant part of the tomography 

system which leads to the creation the different types of tomography system would 

be the applied sensors. The applied sensors mount around a cylindrical vessel or
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 object for obtaining different measurement readings through the device under test 

[2]. 

 

            According to the potentiality of process tomography for improvement of 

efficiency and safety in process industries with changing the material of the 

container of fluid, it is still investigated by the researchers which results to the design 

of new circuit structure for transmitting and receiving signals or new reconstruction 

algorithms to improve the quality of images. Both qualitative and quantitative data 

needed in modelling a multi-phase flow system can be achieved by use of this 

system. In tomography, multiple projections with the use of various sensors are used 

to obtain sets of data from various views across the process vessel. These data are 

used to provide tomographic cross sectional images representing the contents of the 

pipeline or vessel. The plane image of objects provides an opportunity to reveal the 

complexities of structure without invading the object [3].  

 

The efficiency of tomography systems increases with an increment of the 

quantity and quality of data due to many earlier measurement techniques [4]. In this 

research ultrasonic sensor array is selected to mount on the periphery of the pipe for 

collecting the data from inside the pipe. According to designed and manufactured 

tomography systems to date, most of the systems have been implemented on acrylic 

pipes or polyvinyl chloride (PVC) pipes but metal pipes are not used for the 

container of multi fluid flow. It is because of the various difficulties in ultrasonic 

wave propagation and the point is that longitudinal mode of wave propagation is our 

desired mode and the other modes of propagation make problems in sensing process. 

Additionally, due to the large difference between acoustic impedance of metal layer 

and liquid layer, a few percentage of ultrasonic energy can penetrate on the inside of 

the pipe and consequently the received energy by the receiver sensors is very low 

percentage of transmitted energy. In this research ultrasonic sensor array will be 

mounted on the surface of metal pipe.  

 

The first non-invasive of ultrasonic tomography (UT) fabrication technique 

was introduced by Gai [5]. Improvement on the mentioned research work is not 

longer investigated. Development on UT has focused more to liquid/gas two-phase 

flow [6 and 7] where the Perspex pipe has been used as conveyor. However, the 
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latter system has been implemented in the invasive mode which is not supported 

mostly by the industries. Three transmitters have been implemented in non-invasive 

system and for exciting the mentioned transmitters; a signal with 200V amplitude 

was applied to the transmitters [7].  

1.2 Problem Statement  

Various investigations on process tomography with different kinds of sensors 

are carried out. For instance, adopting ultrasonic sensors in process tomography was 

introduced by Gai [5] when they presented their research on the non-invasive UT 

fabrication technique. The history of UT pursuit with the carried out developments 

on measurement of liquid/gas flow [6 and 7]. The latter system which implements 

invasive technique of sensing is mostly not favored by the industries. Additionally, 

the proposed technique by Xu et al. [7] utilized high excitation voltage (around 

200V) for the excitation of ultrasonic transmitters. This is however troublesome and 

the electrocution danger or technical breakdown would be dangerous if any fault 

accidentally appeared to be in the system. Nevertheless, the high excitation voltage 

has put a restriction on the system and also the application [8]. 

 

The latest development on UT by Rahiman [8] however have solved the 

earlier problems described. The implemented system have successfully developed an 

UT system using low operating voltage transducers (20V) which has been proved to 

be sufficient for liquid/gas flow imaging as long as the acoustic energy could pass 

through the process vessel [8]. More importantly, the developed system has 

successfully implement 16-pairs of ultrasonic transducers for non-invasive ultrasonic 

measurement system. The non-invasive transducer fabrication techniques were 

realised by using silicon grease as the acoustic coupling to ensure ultrasonic waves 

to be able to penetrate the process vessel. 

 

In the pursuit of continuing the previous research done specifically in UT, 

this research is motivated by the opportunity to increase the capability of an UT 

system and widen the range of application where it can be utilized. Compared to 
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conventional measurement techniques, process tomography measurement technique 

is essential to give an insight into phase interactions and help in providing better 

understanding of the operation process, which such information is useful for system 

design and control. 

 

In light of this issue, the main limitations of the previous development on UT 

systems are as:  

 

i. Application of metal pipe in UT system. To date majority of 

investigations in UT system are restricted to the pipes with material of 

Acrylic or PVC [9-25]. 

 

ii. Improving the spatial resolution of generated images with UT system. 

It is still a challenge between researchers to develop a new image 

reconstruction algorithm in order to increase the spatial resolution of 

images [13, 23, 26-40].    

 

These limitations are considered in this study. Awareness on some of the 

deficiency or opportunity for enhancing the advantage of such system for industrial 

environment where metal pipes apply for the transfer of the materials, new design 

and more others can be implemented and exploited which is discussed in upcoming 

chapters.  

1.3 Research Objectives 

The main objective of this research is generating cross-sectional images from 

metal pipe with UT system. Based on the main objective, other objectives of this 

research are listed as follow: 

 

1. To simulate and model the tomography system to find the optimum sensor 

for metal pipe. 
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2. To implement ultrasonic transducers non-invasively on the periphery of the 

metal pipe and designing the suitable electronic circuit as the transmitter and 

receiver circuit for supporting the 16 applied ultrasonic sensors. 

3. To implement suitable algorithm for the image reconstruction. 

1.4 Research Methodology  

The approach that will be used in this research is a non-invasive technique 

where 16 ultrasonic transceivers will be mounted on the surface of a metal pipe. By 

the considering the method of non-invasive technique and developing the systems 

for an industrial applications [31] cause to arise the ideas which listed as follows: 

 

i. Acoustic impedance plays a main role in transmitting the ultrasonic energy 

from one layer to another layer. Due to the impedance mismatch between air 

and the surface of the pipe so using the ultrasonic method in air is very 

inefficient and large amount of ultrasonic energy is attenuated [31]. When 

ultrasonic transducers mount on the surface of the pipe, air gap may be 

trapped between the surface of the transducer and surface of the pipe that it 

cause to large amount of ultrasonic energy is reflected and cannot transmit 

on the wall of the pipe. To solve of the mentioned problem, an acoustic 

coupling should be equipped between the sensors and the outer pipe surface 

so that the ultrasonic wave could transmit on the pipe. 

  

ii. The high difference of acoustic impedance between metal pipe and liquid 

inside the pipe results to the high value reflection of ultrasonic wave at the 

interface of liquid and metal pipe. Due to the high reflection property of 

metal pipe for the ultrasonic wave, low amount of ultrasonic energy can 

penetrate inside the metal pipe. In order to solve this problem, high 

amplitude of ultrasonic wave should be applied on the metal pipe.      

 

iii. Ultrasonic transducers must be suitable to the application design where the 

transducers projection should be in a wide angle and they can support high 
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amplitude voltages. Wide beam angle is because of the straight-line 

propagation of ultrasonic waves has been used in this system. High 

amplitude voltage supporting of sensors is because of the high attenuation of 

ultrasonic wave along the transmission path from transmitter to receiver.      

  

iv. Since the metal pipe has been applied as the conveyor of tomography 

system, the manner of ultrasonic wave propagation is notable. In this 

tomography system straight line propagation of wave (longitudinal mode) is 

our favorite mode. When ultrasonic wave transmitted on the wall of metal 

pipe, other modes of propagation such as shear mode, surface mode and 

lamb wave are also resulted. Lamb wave propagation on the wall of the pipe 

is parallel with shear wave and it can make a problem in sensing procedure. 

Lamb wave is proportional with the ultrasonic frequency so it is important 

an optimum frequency is determined for the exciting frequency of ultrasonic 

transducers.    

  

v. Two types of signal can be used as the exciting signal of transducer: 

Continues and pulse signals. Since continues signals make the standing 

waves so pulse signal is generated.  The pulse signal should ideally be 

software controlled so that the timing of the pulses can be easily varied and 

the synchronization is ensured. Additionally, the pulse signal should be long 

enough for the transient response and it is short enough to avoid multiple 

reflection and overlapping receiver signals. The mentioned terms achieve   

by the use of microcontroller. 

 

vi. At the receiving part of the system, very low percentage of transmitting 

energy can be achieved at the other side of the pipe and due to the lamb 

wave problem that it is assumed as a noise of system cause to disappear the 

low voltage signal which is transmitted in straight line. A low-noise signal 

conditioning circuit is required to increase signal to noise ratio and amplify 

the ultrasound receiving signal. 
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1.5 Research Scope and Limitations  

The research scopes are divided into six main parts. They are the designing 

of transducer fixture, suitable ultrasonic transducer and coupling material, suitable 

frequency for the resonance frequency of transducers, the electronic transmitter 

circuit, the electronic measurement circuit, the digital controller and the data 

acquisition system. The details are explained as following: 

 

i. Designing of transducer fixture 

The design of fixture of holding the ultrasonic transducers includes the 

mechanical structure of the fixture, the geometry of the transducers, the angle of 

transducer’s projection beam, and the cost effective to the design. 

 

ii. Suitable ultrasonic transducer and coupling material 

The design includes the selection of suitable ultrasonic transducer that it 

can support the high voltage amplitude and it has wide angle beam projection 

profile. The couplant is also should be suitable with the experimental 

environment and the handling feasibility. 

 

iii. Suitable frequency for the resonance frequency of transducers 

The selection of a proper frequency as an exciting frequency includes the 

consideration of the straight line propagation of wave and decrease the length 

propagation of the lamb wave. Lamb wave has the noise role in this kind of 

measuring and it makes a problem due to the time of flight Lamb wave is more 

quick than straight line wave and due to the low amplitude of the received 

straight line signal, Lamb wave cause to disappear the affection of straight line 

signal and it can be control by the exciting frequency.    

 

iv. The electronic transmitter circuit 

The design includes the ultrasound signal generator, designing a 

switching high power amplifier, isolator for isolating the high power part from 
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low power, transformer for impedance matching of the system. Finally they are 

implemented in printed circuit board (PCB) for reduce the noise affection.  

 

v. The electronic measurement circuit 

The design of the measuring circuit in receiving part of the system 

include the selection of effective low noise amplifier integrated circuit (IC) and 

using an appropriate amplifying technique, the signal processing circuit using the 

sample and hold technique to convert the analog signal to digital. The printed 

circuit board (PCB) layout and implementing the components properly is needed 

to reduce the noise within the circuits. 

 

vi. The digital controller and the data acquisition system 

The design includes the microcontroller programming, the ultrasound 

projection sequence, delay estimation between pulses for preventing the 

overlapping problem, the determination of observation time (ts) for estimation of 

the time of flight of each sensor, the sample and hold triggering signal to convert 

the analog signal to digital and finally the synchronization of data acquisition by 

implying the controlling pulse signal to start and stop the operation.  

 

The limitations of UT system due to the physical property of ultrasonic wave 

are as follow:  

 

i. The main affection of ultrasound wave frequency is the sizes of the 

particles or bubbles being comparable with the wavelength of the 

ultrasound, therefore in practice unpredictable scattering, reflection 

and mode changing can be occurred in real work. The size of gas 

bubbles in the sensing zone should be greater than at least half 

wavelength of the ultrasonic wave in order to block the ultrasonic 

wave from reaching to the receiver sensors during the measurement 

process [41 and 42]. Due to the application of the 40 kHz ultrasonic 

sensors in this system, the minimum detectable size of bubbles is 19 

mm.   
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ii. Since ultrasound travels too slowly, so it is not proper to give high-

resolution images of fast moving flows in large pipes. The speed of 

ultrasound in water is about 1500 m/s or 1.5 mm/μs [43]. Based on 

the configuration of hardware of UT system, the total time for 

generating the cross-sectional image due to the one complete scan of 

metal pipe is equal to 1.4 seconds.  

 

iii. The presented UT system in this research can only be used in the 

sparse bubbly flows. When so many gas bubbles exists inside the pipe 

in the sensing area, and the distribution area of the gas bubbles in the 

cross section of the pipe is larger than the axial aperture of the used 

pipe; then ultrasonic wave cannot pass through and reach the receiver 

sensor along a straight line [3]. Only 20% of total holdups such as gas 

bubbles or solid particles would be reliable limit for the monitoring of 

the flow with UT systems. 

1.6  Thesis Organization  

 Chapter 1 as have been gone through describes the definition of tomography 

and its brief history, along with an overview of this research. This chapter also states 

the research’s background problems, the problem statements, and the importance of 

the study, the research methodology, the research's principal aims and objectives 

which is believed to benefit wide range of differential applications. Additionally, the 

limitations of current UT system are presented.   

 

Chapter 2 presents an introduction to the process tomography, including the 

lists of the most common tomography techniques summarizing their working 

principles, advantages and disadvantages. Fundamentals on the use of ultrasonic 

sensing for imaging instrument are compiled specifically for understanding the key 

aspects.  
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Chapter 3 is about the basic and fundamental governed theories in UT 

systems. Due to the complex behaviour of ultrasonic wave when propagate within 

the metal pipe, theory of ultrasonic wave is utilized for estimating the ultrasonic 

wave behaviour in metal pipes. In this chapter, the essential theory of the simulation 

with COMSOL software will be presented. In this research COMSOL software is 

used in order to determine the suitable sensor for the UT system with metal pipe 

conveyor. The basic and conventional image reconstruction algorithms also will be 

presented at the end of this chapter.  

 

Chapter 4 is divided to two main parts: Hardware development and Software 

development of UT system. It starts with the production of the experimental setup 

which includes the metal pipe and base holder design and also the rapid prototyping 

mechanical works for producing the sensors fixture. The main step in this research is 

finding the proper sensor for the case of metal pipe. For this purpose, various 

simulations with COMSOL software are carried out to find the optimum frequency 

as the resonance frequency of the applied sensor. Detailed explanation on each parts 

and its importance to the whole system is presented including various other sub-

systems such as the ultrasonic sensor, electronic circuitry, embedded system, PCB 

design and finally the data acquisition module. Programming structures are charted 

to illustrate all software-wise mechanisms. Additionally, this chapter is focused on 

explaining the software development. Virtual projection of the ultrasound 

propagation is mapped and used by the proposed algorithms for image reconstruction 

where composition determination and error measurement are calculated. The 

structure for constructing the application software providing the graphical user 

interface are given in details in associated flow chart. Additionally, several types of 

functions that are designed for operating the measurement process are also 

discussed. 

 

Chapter 5 exposed all the achieved results from simulation with COMSOL 

regards to the finding the optimum frequency and identification of the sampling 

method form received signals, results from forward modeling of UT system and 

resultant cross-sectional images form experimental static UT system by inserting 

hollow PVC pipe inside the metal pipe. The dynamic results of UT system with 

metal pipe for bubbly flow are illustrated in this chapter. The results are analysed on 
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its imaging capabilities specifically in a metal pipe configuration, the recorded 

measurement of liquid and gas component distributions inside the metal pipe and 

error measurement from the actual value.  

 

Chapter 6 concludes the research findings throughout the dissertation 

including discussing significant contributions towards process tomography 

community particularly on the subject of ultrasonic tomography. Recommendations 

for future works are also addressed to assist other researchers in pursuing the works 

for further development and improvement. 
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