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ABSTRACT 

 Existing cryptosystems deal with static design features such as fixed sized 

data blocks, static substitution and apply identical set of known encryption 

operations in each encryption round. Fixed sized blocks associate several issues such 

as ineffective permutations, padding issues, deterministic brute force strength and 

known-length of bits which support the cracker in formulating of modern 

cryptanalysis. Existing static substitution policies are either not optimally fit for 

dynamic sized data blocks or contain known S-box transformation and fixed lookup 

tables. Moreover, static substitution does not directly correlate with secret key due to 

which it has not been shown safer especially for Advanced Encryption Standard 

(AES) and Data Encryption Standard (DES). Presently, entire cryptosystems encrypt 

each data block with identical set of known operations in each iteration, thereby 

lacked to offer dynamic selection of encryption operation. These discussed, static 

design features are fully known to the cracker, therefore caused the practical cracking 

of DES and undesirable security pitfalls against AES as witnessed in earlier studies. 

Various studies have reported the mathematical cryptanalysis of AES up to full of its 

14 rounds. Thus, this situation completely demands the proposal of dynamic design 

features in symmetric cryptosystems. Firstly, as a substitute to fixed sized data 

blocks, the Dynamic Data Blocking Mechanism (DDBM) has been proposed to 

provide the facility of dynamic sized data blocks. Secondly, as an alternative of static 

substitution approach, a Randomized Substitution Mechanism (RSM) has been 

proposed which can randomly modify session-keys and plaintext blocks. Finally, 

Multi-operation Data Encryption Mechanism (MoDEM) has been proposed to tackle 

the issue of static and identical set of known encryption operations on each data 

block in each round. With MoDEM, the encryption operation can dynamically be 

selected against the desired data block from the list of multiple operations bundled 

with several sub-operations. The methods or operations such as exclusive-OR, 8-bit 

permutation, random substitution, cyclic-shift and logical operations are used. 

Results show that DDBM can provide dynamic sized data blocks comparatively to 

existing approaches. Both RSM and MoDEM fulfill dynamicity and randomness 

properties as tested and validated under recommended statistical analysis with 

standard tool. The proposed method not only contains randomness and avalanche 

properties but it also has passed recommended statistical tests within five encryption 

rounds (significant than existing). Moreover, mathematical testing shows that 

common security attacks are not applicable on MoDEM and brute force attack is 

significantly resistive. 
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ABSTRAK 

 Sistem kripto yang sedia ada berhubung kait dengan ciri-ciri reka bentuk 

statik seperti sekatan data bersaiz tetap, statik penggantian dan penggunaan set yang 

sama dalam operasi enkripsi bagi setiap pusingan enkripsi. Sekatan bersaiz tetap 

dikaitkan dengan beberapa isu seperti permutasi yang tidak berkesan, isu-isu 

padding, ketentuan kekuatan kuasa kasar dan panjang yang dikenali bagi bit yang 

dapat menyokong penceroboh di dalam menggubal analisis kripto moden. Dasar-

dasar penggantian statik sedia ada adalah sama ada tidak bersesuaian secara optima 

untuk blok-blok data bersaiz dinamik atau kandungan yang dikenali sebagai 

transformasi kotak-S dan jadual carian tetap tanpa berhubung langsung dengan 

korelasi bersama kunci rahsia. Disebabkan oleh hal yang demikian, dasar-dasar ini 

menunjukkan tidak selamat terutamanya untuk Piawaian Penyulitan Lanjutan (AES) 

dan Piawaian Penyulitan Data (DES). Sehingga kini, keseluruhan sistem kripto 

menyulit setiap blok data dengan set yang serupa dalam operasi yang diketahui bagi 

setiap lelaran, sekali gus kurangnya penawaran pilihan operasi penyulitan yang 

dinamik. Melalui perbincangan ini, ciri-ciri reka bentuk statik adalah serba diketahui 

oleh penceroboh, sehingga menyebabkan pencerobohan praktikal oleh DES dan 

kesulitan keselamatan yang tidak diingini terhadap AES seperti yang dibuktikan 

dalam kajian sebelum ini. Pelbagai kajian telah melaporkan bahawa analisis kripto 

secara pendekatan matematik pada AES sehingga 14 pusingan keseluruhannya. Oleh 

itu berdasarkan situasi ini cadangan pendekatan reka bentuk dinamik pada sistem 

kripto simetri diperlukan. Pertamanya, Mekanisme Sekatan Data Secara Dinamik 

(DDBM) telah dicadangkan untuk menyediakan kemudahan blok bersaiz dinamik 

sebagai pengganti kepada sekatan data bersaiz tetap. Kedua, Mekanisme Penggantian 

Rawak (RSM) telah dicadangkan sebagai altenatif kepada pendekatan penggantian 

tetap untuk mengubah kunci-sesi dan blok teks biasa secara rawak. Akhirnya, 

Mekanisme Pelbagai Operasi Penyulitan Dinamik (MoDEM) telah dicadangkan 

untuk mengatasi perlaksanaan tetapan set bagi operasi penyulitan di setiap blok data 

dalam setiap pusingan. Melalui MoDEM, operasi penyulitan boleh memilih blok 

secara dinamik daripada senarai pelbagai operasi yang digandingkan dengan 

beberapa sub operasi. Kaedah atau operasi seperti eksklusif-OR, 8-bit pilih atur, 

penggantian rawak, syif kitaran dan operasi logik telah digunakan. Penilaian 

eksperimen menunjukkan bahawa DDBM boleh menyediakan blok data bersaiz 

dinamik jika dibandingkan dengan pendekatan yang sedia ada. Kedua-dua RSM dan 

MoDEM telah memenuhi sifat kedinamikan dan kerawakan seperti yang diuji dan 

disahkan mengikut piawaian analisis statistik yang disarankan. Kaedah yang 

dicadangkan bukan sahaja mempunyai sifat-sifat rawak dan runtuhan malah ia telah 

melepasi ujian statistik yang disarankan dalam tempoh hanya lima pusingan sahaja 

(ketara berbanding dengan sedia ada). Tambahan pula, ujian matematik 

menunjukkan bahawa serangan keselamatan biasa tidak berkaitan degan MoDEM 

dan serangan kuasa kasar adalah lebih ketara rintangannya. 
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CHAPTER 1 

 INTRODUCTION  

1.1  Overview 

Security is the major driving force for remote communication. Security 

against confidential transactions cannot be compromised over insecure 

communication channels. Variety of cryptosystems persist to offer encryption 

heuristics for such kind of transactions but the question of security strength of 

underlying algorithm matters against cryptanalysis attacks. Cryptanalysis is a way of 

breaking cryptographic algorithms using analytical reasoning, pattern locating, 

guessing and statistical analysis approaches as discussed in (Ayushi, 2010). 

Exhaustive key searching is commonly used, efficient and successful attack to defeat 

the security strength of any cryptographic algorithm discussed by Jarvinen (2008). 

Therefore, differential cryptanalysis, exhaustive key searching, shortcut attacks and 

side channel attacks are creating anxious and perilous scenario for remote 

communication. It is too critical to remain competitive in forgoing market with data 

privacy and security without the science of cryptography. Currently, symmetric 

cryptosystems are prime heuristics in designing of secure cryptosystems (Yadav, 

2010) with several benefits such as short key length, computational efficiency and 

less memory consumption as compare to asymmetric cryptosystems (Rejani and 

Krishnan, 2015). Symmetric cryptosystems associate several noteworthy parameters 

such as fixed data blocking (FIPS Pub 46; Jain et al., 2015), static substitution and 

fixed set of identical enciphering operations on each data block (Saini, 2014; 

Abdulgader et al., 2015), which trigger actual security vulnerabilities (Biryukov et 

al., 2014) for cryptosystems and play the vital role in the successfulness of modern 
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attacks as reflected through many studies against advanced encryption 

standard (Alex and Johann, 2012; Derbez et al., 2013; Bogdanov et al., 2014; Chang 

et al., 2015; Gangadari et al., 2015). 

Existing well-known encryption algorithms such as Advanced Encryption 

Standard (AES) and Data Encryption Standard (DES) are reliant on a reality of fixed 

data blocking (FIPS Pub 46; Chavan and Annadate, 2015) which means the block 

size (bit length) is not dynamic, fully known and total number of blocks against a 

plain text are also known before initiating encryption phase. AES deals with 8 bit 

static substitution and 128 bit fixed data blocking (Senthilkumar and Rajamani, 

2014; Abdulgader et al., 2015). Similarly, DES contains 64 bit fixed block size (Jain 

et al., 2015).  In existing algorithms (e.g. AES), each time fixed set of known and 

identical encryption operation are applied to encrypt data (Srinivas et al., 2014; Kaur 

and Madaan, 2014; Dara and Manochehri, 2014; Saini, 2014) which means there is 

no multi-operation based dynamic enciphering. Existing dynamic substitutions 

approaches have been designed to work with fixed-sized data blocking approaches 

(See Chapter 2, Section 2.7) due to which it cannot fit with dynamic natured ciphers 

which contains dynamic features such as dynamic data blocking, randomized 

substitution, dynamic selection of encryption opertions.  The knowledge of block sets 

and fixed sizes are increasingly beneficial for any cryptanalyst to possibly crack any 

symmetric encryption algorithm (Biryukov et al., 2014; Gangadari et al., 2015). 

Static substitution causes less random permutation and is the primary weakness of 

existing block ciphers (Ritter, 1998; Mehla and Kaur, 2014) which means just to 

increase processing computational ability that can easily be defeated in current era‟s 

based high computing processors. In this situation, the practical cracking of DES 

(Biryukov et al., 2010) and academic (theoretical) cracking of all AES versions are 

noteworthy (Biryukov et al., 2009; Biryukov and Großschäd, 2012; Chang et al., 

2015).  

 Moreover, the AES security strength is not as stronger as it is believed or 

conveyed (Biryukov et al., 2010). The 4 rounds of  AES-128 requires 2
17

 time with 

2
16

 data complexities and 5 rounds takes 2
38

 time and  2
40

 data complexities which 

become 2
90

 time with 2
64

 data complexities against 6 round of AES-128 (Tiessen et 
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al., 2015). On 8 rounds of AES-192 and AES-256, the key recovery attack takes 2
172

 

and 2
196

 time complexities respectively which give overall 2
107

 chose plaintext 

complexity with 2
96

 memory lookup trails as well as 9-rounds based key recovery 

attack requires  2
120

 chosen plaintext complexity with 2
203

 memory lookup trails on 

AES-256 (Derbez et al. 2013). The 10, 11 and full 14 rounds of AES-256 are also 

vulnerable against modern attacks (Biryukov et al., 2009a; Biryukov et al., 2010; Lu, 

2010; Bogdanov et al., 2011; Bogdanov et al., 2014; Chang et al., 2015). Lu (2010) 

claimed, AES has lowest impossible-boomerang-attack computational complexity 

(2
56

) and according to Biryukov the quasi-practical attack takes only 2
70 

time traces to 

recover 11 rounds of AES-256 with 2
45 

time complexity having 2
33

 memory lookups 

and 2
44

 data complexity trials. This gives almost practical cracking complexity of 

(q.2
67

) queries against full rounds of AES-256. Furthermore in year 2014 and 2015 

the cryptanalysis of full rounds of AES remained carry on with further 

improvements. For full rounds of all AES versions (AES-128, AES-192 and AES-

256), the latest and outperformed attack complexities (2
125.56

, 2
189.51 

and 2
253.87

) have 

been found respectively (Bogdanov et al., 2014). The large scale machine (hardware) 

based attacks are also feasible on AES-128 and AES-256 which can be applied with 

time complexity of 2
100

 search trails (Biryukov and Großschäd, 2012). The hashing 

based biclique-cryptanalysis of AES-128 was conducted by change et al., (2015) and 

he observed that attack complexities lie between 2
126.3 

up to 2
127.4

 search trails. Thus, 

the critical literature findings show that full rounds of all AES versions are 

vulnerable to modern cryptanalysis attacks and overall discussion made in this 

section triggers the need of significant design parameters such as dynamic data 

blocking rather to fixed data blocking, randomized substituion rather to static 

substitution and dynamic selection of encryption operations as compare to static and 

identical selection of encryption operations in symmetric cryptosystems to encrypt 

data. 

1.2    Problem Background 

This section discusses the problem background which has been divided to 

three sub-sections. Each sub section highlights and discusses the related issues.  
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1.2.1   Fixed Data Blocking 

Existing well-know symmetric cryptosystems (AES, DES, TDES) use fixed 

sized data blocks (FIPS Pub 46; Mehla and Kaur, 2014; Jain et al., 2015) with 

Substitution-Permutation Network (SPN) or Feistel cipher structure (Tu et al., 2015) 

which means they did not create dynamic sized blocks. Due to the lack of dynamicity 

in data blocking, the fixed sized block parameters help the cracker in cryptanalysis 

inspection as discussed by Biryukov et al., (2014), in case of Feistel based block 

ciphers (SIMON and SPECK), he considered four differential (d1, d2,….d4) to 

recover key of SIMON32 through constructing of one set of 2
23

 fixed plaintexts 

blocks (each with 9 bits) and he was succeed to locate several plaintext pairs 2
25

 for 

each differential (di). In case of 4 key guess approach upon 2 ciphered rounds, to 

locate 2
30.5 

plaintext pairs, the achieved complexity was {2
33.5 

* 4* (2/29)} ≈ 2
32

 

which gives ultimate 2
34

 computational complexity to apply full key recovery attack. 

Moreover as compare to the random permutation on fixed or same sized (length) 

blocks, the differential attacks always provide larger differential probability for 

cryptanalysis (Lu, 2008; Lu, 2010) which has reflected the full cracking of all AES 

versions (128, 192, 256) with computational complexities trails 2
125.56

, 2
189.51

 and 

2
253.87

 respectively (Bogdanov et al., 2014) because AES also uses fixed sized data 

blocking. Several other studies about the cryptanalysis of AES are the part of 

literature (Une and Kanda , 2007; Biryukov et al., 2009;  Alex and Johann,  2012; 

Derbez et al., 2013; Chang et al., 2015).  

 

Other significant issue is that, the secret sub-keys of fixed sized block based 

SPN structure can be recovered (Guo et al., 2014) and SPN also associates the 

discrepancy in linear cryptanalysis and its secret design can be re-produced by 

matching of cipher and plaintext values each with 16 bits as discussed in (Brown et 

al., 2009; Rivain and Roche, 2013). Thus, it truly reflects the literature that the fixed 

length blocks support the cracker in matching of supposed decrypted string (block) 

with the targeted chosen plaintext string to get accurate final results. Another 

noteworthy problem with fixed (known) length block is the brute force attacking 

because any chosen fixed sized block means that same sized key is implemented due 
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to which the brute force attack is more likely and effectively to be applicable as 

explained in Table 1.1. 

 

Table 1.1:   Randomness Comparison between Dynamic and Static Data Blocking 

Factors With Prior Fixed Data 

Blocking Mechanism of (DES, 

AES-128) 

With Proposed Dynamic Data 

Blocking Mechanism 

 

Probabilistic 

Randomness 

Calculation 

 

 

 

 

Suppose, Plaintext (D) = 2048 

bits. 

Blocking with AES-128= 

2048/128= 16 blocks, So 

Number of Data Blocks (β) = 16 

 

 

Number of bits of each block(μ) : 

128 bits 

 

 

Probabilistic Randomness 

Calculation Formula: β * 2 
μ bits

   

where  

For each single block= 1* 2 
μ bits

 

β is fixed = 16 in supposed case 

μ is fixed = 128 in supposed case 

So, 16 * 2 
128 bits

 

 

The condition (P≠NP) is not 

satisfied. because each parameter 

is known and fixed 

Suppose Plaintext (D) = 2048 bits 

 

 

Number of Data Blocks are based on  

Random (dynamic) parameter (say)  

= ₱(β) 

 

Number of bits of each block are 

based on  Random (dynamic) 

parameter (say) = ₱(μ) bits 

 

 

Probabilistic Randomness 

Calculation 

Formula:  ₱(β)* 2 
₱(μ) bits

 

Where 

₱(β) is random  

₱(μ)  is random  

As these are unknown to the cracker. 

So it is quite hard for the cracker to 

guess it. So (P≠NP) is effectively 

satisfied because both parameters 

(β,μ) are un-known and random. 

Result of 

guessing of 

block 

partitioning 

Weak and guessable hard to guess 

 

Research Gap: Furthermore, in existing literature there is gap of dynamic 

block ciphers because AES, DES are fixed-natured ciphers having fixed data 

blocking (Jain et al., 2015), fixed substitution (Dara and Manochehri, 2014) and 

fixed selection of encryption operation for each encryption round (Shyamala-Bai, et 

al., 2011; Srinivas et al., 2014). Rather to dynamic-natured ciphers, either fixed-

natured or few variable-natured block ciphers exist which did not deal with dynamic 

data blocking approach, neither with effective randomized substitution nor with 

dynamic selection of encryption operations for each round such as RC5 (Rivest, 

1995) which utilizes three fixed and known variable block sizes (32, 64, 128 bits) 
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and similarly the Rijndael (Daemen and Rijmen, 2002) has also three fixed and 

known block sizes (128,192,256 bits). User can select any of block size from the 3 

available options. These block sizes are publically known, variable in nature but not 

dynamic in nature. The Modified Symmetric Encryption Algorithm (MSEA) (Kumar 

et al., 2014) provides large block size selection list (128, 192, 216, 256…728, 936, 

1024, 1384, 1712, 2048 bits) these are also fixed and publically known. Therefore, 

MSEA also provides fixed and known variable block sizes which are not dynamic in 

nature. In case of MSEA the many block size options (728, 936, 1024, 1384, 1712, 

2048 bits) are inadequate because the block size range that has been used in recent 

well-known algorithms (DES, AES) lies among (64, 128, 256 bits) which means the 

block size larger to 256 bit is not a recommended approach. Many other ideas of 

dynamic encryptions are either based on dynamic Steganography approach with 

fixed block size (Sawant et al., 2015) or variable blocking using dynamic key 

(Shyamala-Bai et al., 2011) or pair of keys (static and dynamic) with fixed block size 

(Harmouch and Kouch, 2015) which means their data blocking approach is not 

dynamic. 

 

The variable block partitioning policy of Message Based Random Variable 

Length Key Encryption Algorithm (MRVLK) (Mirvaziri et al., 2009; Davahli et al., 

2014) is based on a secret number ranged from (Rnd: 7 to 61) in which initial (very 

first) block size is decided in between 7 to 61 and other block sizes become arbitrary 

longer in such a way: (Rnd, 2Rnd, 4Rnd, 6Rnd ……). But, MRVLK has several 

discrepancies such as, it‟s very first small-sized block (Mirvaziri et al., 2009) for 

which DES like weak block attacks are permissible (Minematsu, 2008; Paar and 

Pelzl, 2010) or arbitrary longer blocks even greater to 720 bits (un-recommended), 

fixed padding, and its non multiple of 8 bit block size is not feasible for disk 

encryption (Zhang, 2012) as well as its non-secure enciphering and randomness 

limitations (Davahli et. al., 2014). Thus, the critical literature analysis shows that, the 

variable data blocking solution of MRVLK has been found deficient in block length, 

disk encryption, enciphering strength, padding, cryptanalysis etc. and all other prior 

variable solutions contain fixed block sizes which is also known to the cracker.  
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Concussively, fixed sized blocking (AES, DES) and fixed padding are more 

helpful (Biryukov et al., 2014) for cracker in succeeding of exhaustive key searching 

attack (brute-force attack) (Du and Atallah, 2001), reaction attack (Bellare et al., 

2004), biclique attack (Chang et al., 2015) as well as other cryptanalysis attacks on 

AES (Bogdanov et al., 2014; Guo et al., 2014). Random padding is fine but not 

always especially in case if block size is fixed or known (e.g. 128 bit in AES) 

because if the random padding (e.g. 16 bits) has been used with 128 bits fixed block 

size which simply meaning that (128-16 = 112 bits) resulting many bits (112 bits) as 

a “waste bits” in cipher-text (C) due to which attacker can recover secret key bits 

through matching all possible keys (K ∈ K’) until block cipher (E
-1

K’(C)) starts with 

112 zeros (Black and Rogaway, 2002), thus random-padding also provides trapdoor 

to render the algorithms vulnerable through back-door of an encryption key (Russell 

et al., 2015). Variable-input-length (VIL) based cipher designs associate several 

issues such as infeasibility of encrypting disk sectors, weak security strength with 

smaller sized message, fixed padding, known-bit and weak block attacks (Bellare and 

Rogaway, 1999; Patel et al., 2005; Zhang, 2012; Nandi, 2014) that demand the 

improvement in data blocking approach with dynamic features such as block size 

should be dynamic rather to fixed or variable, must be multiple of 8 without fixed 

padding, not greater than 256 bits, and must not be known to the cracker. 

1.2.2    Static Substitution 

 The existing S-box design of AES is static (fixed) and un-changeable (Dara 

and Manochehri, 2014). Therefore, the static substitution policy of AES is its weak 

point (Mehla and Kaur, 2014; Abdulgader et al., 2015) because of happening of 

static connection with input and output bits due to which AES has no direct 

association with secret key that is the only changeable parameter (Senthilkumar and 

Rajamani, 2014). The modern attacks (linear and differential) ideally require known 

transformation of lookup tables (i.e. S-box) as agreed by Kazlauskas et al., (2015). 

Moreover, Senthilkumar and Rajamani discussed that differential attacks are more 

applicable on static s-boxes because these attacks are based on the information of 

XOR tables produced against S-Boxes. The XOR table contains columns and rows 

starting with indexes (0, 1, 2 …… 2
m-1

) against the related (m x m)S-box which can 
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further mapped with XOR table entries q,f ∈ (0, 1, 2 …… 2
m-1

) deal with position q , f  

having {value|(Z ∈ {0, 1}
m 

: S(Z) ⊕ S(Z ⊕ q) = f)|}. Thus, modern cryptanalysis 

attacks ideally demand fixed (static) relationship of input and output bits with S-

boxes that prompt the need of key dependent randomized substitution policy 

(Senthilkumar and Rajamani, 2014). Furthermore, the substitution policy of AES is 

based on static numerical search tables which lead the AES to vulnerable against 

modern security attacks and have not been shown safe in terms of designing various 

cryptanalysis methods (Moreno-Diaz and Pichler, 2011; Gangadari et al., 2015).  

The linearity in static substitution is significant weakness of AES (Shyamala-

Bai et al., 2011; Sikdar, 2014) due which permutation produces only bit re-

distribution which does not satisfies the sufficient diffusion properties (Ritter, 1998) 

because strength of algorithm and hindrance of cryptanalysis significantly relies on 

S-Box parameters (Jithendra and Shahana, 2015). The internal Substitution 

components of DES and AES (Sub-Bytes, Shift Column, ShiftRow) are insecure 

because they do not contain any correlation with secret key (Ramly et al., 2001; 

Sreedharan, 2014) by itself and key is the only changing parameter (Senthilkumar 

and Rajamani, 2014). Moreover, the prior symmetric block ciphers implement 

substitution through look-up tables and look-up substitution tables (fixed S-Boxes) 

help the cracker (Saini, 2014; Kazlauskas et al., 2015) and are more vulnerable upon 

timing attacks (Smith, 2007; Sahmoud et al., 2013) therefore as a result, static 

substitution boxes should be eliminated from prior algorithms. Kocher et al. (2011) 

have claimed that the secret parts in symmetric cryptographic algorithms can be 

changed or masked under fresh randomness and if key state is updated on some 

random bases dynamically then it can be resulted as reasonably hard for adversary 

(attacker) to get useful secret information. Also, the dynamic substitution is 

significant area of improvement (Flamm, 2014) better to static s-box (ReddyK and 

Vishnuvardhan, 2014) and can enhance confusion (strength) properties (Kazlauskas 

et al., 2015) of encryption algorithms which make them more difficult in 

cryptanalysis (Mirvaziri et al., 2009; Hosseinkhani and Javadi, 2012; Saini, 2014; 

Velayutham et al., 2015). Furthermore, the related (existing) substitution methods 

are deficient in many aspects (e.g. design, known parameters, feasibility etc.) as it 

has been discussed in Chapter 2. Thus, substitution should not be fixed and it should 
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be done against the probabilistic random values achieved from key.  All these 

evidences negate the utilization of static (fixed) substitution in future cryptosystems.  

1.2.3 Static and Identical Enciphering Operations   

 Each AES version has fixed number of multiple encryption rounds 

with repetition of identical (similar) operations having known strategies (Saini, 2014; 

Srinivas et al., 2014; Kaur and Madaan, 2014) and last-round-attack can be applied 

on the final round of AES because this round does not apply mix-column operation 

(Tange and Andersen, 2014). AES encryption operations are publically well-known 

which is more serious aspect towards AES because the linear and differential attack 

always require known S-box transformation (Kazlauskas et al., 2015) but on the 

other hand, the dynamic transformation which is not known to the cracker makes the 

algorithm more resistive against modern attacks (Al-Wattar et al., 2015; Velayutham 

et al., 2015). Moreover, each round in AES is identical and computationally feeble 

(Mirvaziri et al., 2009) which are unclear to predict whether large number of rounds 

with fixed operations are really feasible to create strong enciphering as agreed by 

Ritter, (1998) in US Patient No. 5727062. Furthermore, existing enciphering designs 

(Feistel, SPN) are not reliably secure or suspected against various cryptanalysis 

attacks (Brown et al., 2009; Isobe and Shibutani, 2013; Biryukov and Nikolic, 2014; 

Guo et al., 2014). The other more surprising fact that reflecting the weakness of 

current enciphering mechanism is the cracking of DES (Franke et al., 2005; Batina et 

al., 2005; Zaidan et al., 2010) and the cryptanalysis of AES (Biryukov et al., 2009; 

Biryukov et al., 2010; Biryukov and Großschäd, 2012; Derbez et al., 2013; Chang et 

al., 2015) which has been discussed in Chapter 2.  

Security of any cryptographic algorithm is essentially reliant on randomness 

that can be achieved through probabilistic process (dynamicity) (Duta et al., 2014). 

The term operational dynamicity means to select encryption operation run time on 

dynamic bases so that, it should not be aware to the cracker, which encryption 

operation has applied on which data block. This sort of operational dynamicity 

creates sufficient operational randomness because unpredictable information directly 

co-relates with pseudo-randomness (Sanjeev and Barak, 2008; Alimomeni, 2014). 
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Enhancing the randomness means enhancing the security of encryption algorithm 

(Al-Shakarchi, 2014). Poor, predictable and repeated randomness can be resulted as 

full security breakdown of cryptosystems (Ristenpart and Yilek, 2010; Alimomeni, 

2014). Thus, for designing secure algorithms, randomness and dynamicity are the 

needy constraints because randomness enhances confusion to resist modern and 

common attacks (Cook, 2006; Mishra and Mankar, 2012). All these evidences 

prompt that the cryptographic algorithm is always as secure as it contains 

randomness and operational dynamicity. The solution to cope the issue of constant 

and static selection of encryption operations in prior algorithms (DES, AES) requires 

the need of dynamic selection of encryption operations by developing multi set of 

operations having sub-operations inside. This type of multiple operation 

development approach is known as design diversity approach and it can be achieved 

through joint committee of different sub-operations under a master encryption 

operation (Schneier, 1994). Currently, multi-encryption is the most focused area of 

development for symmetric cryptosystems (Harmouch and Kouch, 2015). Currently, 

there is a significant gap of this type of particular feature (i.e. dynamic selection of 

encryption operation for each data block) in existing literature.   

1.3 Problem Statement 

Fixed data blocking approach is inadequate to create effective dynamicity and 

larger computational probability due to which it helps the cracker in succeeding of 

modern attacks as witnessed in the literature. Static substitution approaches do not 

create sufficient diffusion (distribution of output bits) which depends on the input 

bits, but only within the scope of substituted number of bits and in this way the 

permutation is just bit re-distribution. Moreover, existing substitution approaches are 

either infeasible for dynamic sized data blocks or deal with known S-box 

formulations or lacked of direct association with encryption key or behaves as a 

trapdoor for building and succeeding of cryptanalysis attacks due the fixed relation 

of input and output bits. Similarly, the known selection of identical operations on 

each data block is not an optimal way of creating effective operational randomness 

under least number of encryption rounds.  Thus, fixed data blocking, static 
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substitution and constant implementation of fixed set of known enciphering 

operations are the critical factors limiting the dynamicity and randomness in 

cryptosystems as reflected through mathematical cracking of AES-256 up to full of 

its14 rounds. 

1.4    Research Questions 

 Prominent literature problems prompt the need to answer these several 

research questions. 

i. How to improve fixed data blocking approach in symmetric 

cryptosystems with dynamic data blocking:- 

(a) How to achieve effective and dynamic sized data blocks? 

(b) How to avoid fixed padding and weak sized dynamic block even by 

fulfilling the condition of multiple of 8 bits? 

ii. How effectively to enhance static substitution policy in symmetric 

cryptosystems with randomized substitution approach:- 

(a) How to achieve key-dependent randomized substitution?  

(b) How to enhance pseudo-randomness and dynamicity with 

randomized modifications in key and data? 

iii. How to achieve effective and secure encryption in symmetric 

cryptosystems:- 

(a) How to use multi-encryption operations dynamically for each data 

block? 

(b) How to achieve effective data encryption (security) with least 

number of encryption rounds? 
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1.5    Research Aim 

 The aim of this research is to develop dynamic multi-encryption method by 

„improving‟ fixed data blocking with dynamic data blocking, static substitution with 

randomized substitution and known operation based identical encryption approach 

with dynamic multi-encryption method to improve data encryption effectively.   

1.6 Research Objectives 

 To answer the projected research questions, this study includes several 

objectives which potentially required to be accomplished as an optimal solution for 

the said problem.  

i. To develop dynamic data blocking mechanism for converting the data to 

dynamic sized blocks in order to achieve effective dynamicity and larger 

computational probability.  

ii. To develop a randomized substitution mechanism for mixing (key and Data) 

through dynamic modifications in order to achieve effective dynamicity and 

probabilistic randomness.  

iii. To develop a multi-operation data encryption mechanism to select 

enciphering operation dynamically in order to achieve effective data 

encryption (security) with less number of encryption rounds. 

1.7   Significance of the Study  

Data security and privacy against confidential information are increasingly 

important in remote transactions over insecure communication channels. The 

encryption practices are actively employed in banking sectors, exchange of 

confidential data in academic organizations, medical sectors, storage of data in 

forensic and scientific laborites and securing of network communications. This study 
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is enriched with great significance of data encryption with optimal security. It 

provides an encryption method with dynamic design features such as dynamic data 

blocking, randomized substitution and multi-operation based dynamic enciphering 

mechanism. These features are an optimal way to enhance the security of data 

encryption method. Earlier encryption algorithms (DES, AES) possesses static 

design features in various stages such as data blocking, substitution and selection of 

enciphering operations which are seriously effecting the overall security of already 

deployed design ciphers (Feistel, SPN) as discussed in problem background section. 

These static features are not effectively sufficient to create dynamicity, larger 

probability and optimal randomness due to which the past cryptanalysis of DES and 

present academic cracking of AES are being more critical day by day. Thus, the 

proposed study is timely significant to improve the static design features with 

dynamic design features through development of dynamic data blocking, randomized 

substitution and multi-operation data encryption mechanism. The proposed idea is 

essentially important to boost the security of symmetric cryptosystems. Furthermore, 

the proposed idea is effectively innovative for the researchers to design future 

cryptosystems and highly beneficial for the academic researchers to evolve the 

cryptography research. 

1.8 Research Scope  

This study focuses on symmetric data encryption method for providing both 

data privacy and security upon confidential data. The proposed idea mainly covers 

the design and development of proposed encryption method which includes dynamic 

data blocking, randomized substitution and multi-operation data encryption 

mechanism. Furthermore the scope of this study covers:- 

i. The different natured plaintext (alphabets, numerical data, special characters 

or their combination) have been used to make user input samples for testing 

the system. 

ii. Development has been done by using Visual Studio.Net tool. 
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iii. Evaluation is done using standard tool - Statistical Testing Suite(STS) 

recommended by National Institute of Standard and Technology (NIST).  

iv. In statistical evaluation, some tests require large sized input sample (10
6
 bit 

longer sequence) which is recommended by NIST. Therefore, large sequence 

size has been used for some tests (Serial test, Lempel-Ziv, overlapping and 

non-overlapping tests). 

v. The longer sequence size (1268784 bits) is used for evaluating the 

Randomized Substitution Mechanism (RSM) during the statistical 

randomness testing, because the longer parameter length in STS, must be 

greater than or equal to 10
6
.  

vi. The larger sequence (1153440 bits) is used to test the Multi-operation Data 

Encryption Mechanism (MoDEM) because it is recommended parameter 

length (≥ 10
6
) for STS tool. 

1.9  Thesis Structure 

The rest of this thesis is structured as:- 

In Chapter 1, overview, problem background related to fixed data blocking, 

static substation including static and constant enciphering operations have been 

discussed to generate problem statement. Furthermore, the study aim, research 

questions, objectives, significance and research scope have been highlighted. 

Chapter 2, provides the extensive literature review of most related research 

topics (Issues in symmetric cryptosystems, Feistel structure limitations, SPN design 

deficiencies, other potential security issues, need of proposed design and discussion 

of latest attacks on AES and DES). 

Chapter 3, outlines the research methodology and flow used in this research. 

It discusses the research plan, design and procedures followed against the 

development of proposed method. Furthermore, it elaborates the research scope and 
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evaluation metrics through which the proposed method can be evaluated. Detail 

about the recommend statistical tests and tool with experimental setup has also been 

discussed in this chapter. 

Chapter 4, contributes the design, development and evaluation of proposed 

Dynamic Data Blocking Mechanism (DDBM) which is the first objective of this 

study. The DDBM has been developed in Visual Studio.Net and its evaluation has 

been done through practical experimentations.  

Chapter 5, provides the design, development and evaluation of proposed 

Randomized Substitution Mechanism (RSM) by discussing all interrelated steps. The 

RSM is the second objective of this study which firstly developed through utilizing 

the Visual Studio. Net tool and after that it has been evaluated and validated by 

executing several statistical randomness tests (discussed in Chapter 3) by using 

Statistical Testing Suite (STS) tool recommended by National Institute of Standard 

and Technolgoy (NIST).  

Chapter 6, discusses the design, development and evaluation of Multi-

Operation Data Encryption Mechanism (MoDEM) which is the third objective of this 

study. The proposed MDEM has been developed in Visual Studio. Net and 

subsequently, it has been evaluated and validated through experimental testing of 

NIST‟s recommend statistical tests conducted through STS Tool. Mathematical 

testing of common attacks against proposed method including brute force strength 

attack have also been provided in Chapter 6. 

Chapter 7, comprehensively summarizes the achievements and contributions 

against each study objective in addition with the concluding remarks. Moreover, this 

chapter directs the researchers how to continue this research work toward more 

revolutionary enhancements about cryptosystems in near future.  
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