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ABSTRACT 

 

 

 

 

Missing data is one of the issues often discussed amongst hydrologists in 

Malaysia.  Various imputation methods were introduced to help minimize the bias 

and improve the accuracy of the statistical analysis.  However, the performances of 

the imputation methods will be affected if the reason for data being missing is 

unidentified.  Therefore, this study objectively investigates the reasons why some 

data is missing, known as missingness mechanism, and selects the best model to 

impute the missing rainfall data.  A model using a combination of expectation 

maximization and logit (EM-Logit) is proposed and applied to a simulated data with 

missing values that are characterised as missing completely at random (MCAR), 

missing at random (MAR) and missing not at random (MNAR).  Besides, 

homogeneous rainfall data that are coupled with temperature and humidity in 

Damansara and Kelantan are also used before validating the proposed model.  The 

results indicate that the model is able to identify types of missingness mechanism 

which leads to a data being missing.  The results of the model has also identified that 

the MNAR is best missingness mechanism to describe missing rainfall data in both 

study areas.  Therefore, for the imputation purposes, a two-step approach is 

proposed.  The first step is to analyze the rainfall events, either wet or dry day, by 

using weighted-average algorithm and the subsequent step is the wet-classified day 

with missing data is estimated by self-organizing map (SOM).  The two-step 

approach, also known as Probability Density Function Preserving Approach with 

SOM (PDSOM), is then compared with SOM model alone and Multilayer Perceptron 

(MLP).  By using the mean absolute error (MAE) and root mean square error 

(RMSE) criteria and comparing the statistical properties of the imputed data with the 

rainfall data, PDSOM is found to be performing better than SOM and MLP.  The 

missing rainfall data from 1996 to 2004 from the two stations (Damansara and 

Kelantan) are also selected to validate the performance of PDSOM by comparing the 

estimated mean and variance of the rainfall data with missing values that are imputed 

by PDSOM.  The imputations are found within the confidence interval that are 

constructed under observed rainfall data.  PDSOM has shown its capability to well 

preserve the mean and variance of the missing rainfall data, as well as the number of 

rainfall events in Damansara and Kelantan.  Thus, PDSOM can be an alternative 

imputation model in dealing with rainfall data with missing values. 
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ABSTRAK 

 

 

 

 

 Kehadiran data ketakdapatan adalah salah satu isu yang sering dibincang di 

kalangan para hidrologi di Malaysia.  Pelbagai kaedah telah diperkenalkan untuk 

mengurangkan ralat dalam penganggaran dan meningkatkan kejituan data anggaran.  

Namun, prestasi kaedah akan terganggu jika penyebab data ketakdapatan tidak 

diketahui.  Oleh itu, tujuan utama kajian ini adalah untuk mencari faktor-faktor 

kehilangan data dan mengenal pasti kaedah yang paling efektif untuk mengimput 

data hujan ketakdapatan.  Model hibrid Pemaksimuman Jangkaan dan Logit (EM-

Logit) dicadang dan diguna dalam simulasi data yang bermekanisme Ketakdapatan 

Secara Rawak Sepenuhnya (MCAR), Ketakdapatan Secara Rawak (MAR) dan 

Ketakdapatan Secara Tak Rawak (MNAR).  Selain itu, data hujan yang homogen 

bersama dengan data suhu dan kelembapan di Damansara dan Kelantan juga 

digunakan dalam kajian ini.  Berdasarkan keputusan yang didapati, model ini dapat 

membezakan jenis-jenis mekanisme yang diimplikasi dalam data dengan tepat dan 

juga mengesahkan penyebab data hilang di Damansara dan Kelantan adalah berkait 

rapat dengan mekanisme MNAR.  Justeru, pendekatan dua langkah diperkenalkan 

untuk tujuan menganggar data ketakdapatan.  Langkah pertama meramal keadaan 

hujan, jika basah atau kering dengan menggunakan algoritma purata berwajaran 

sebelum langkah menganggar data ketakdapatan berasaskan Peta Swaorganisasi 

(SOM).  Pendekatan dua langkah yang juga dinamai sebagai Pendekatan 

Pemeliharaan Fungsi Ketumpatan Kebarangkalian dengan gabungan SOM (PDSOM) 

telah dibandingkan dengan kaedah-kaedah yang sedia ada, iaitu perceptron berlapis 

(MLP) dan SOM.  Perbandingan model telah dijalankan dengan menggunakan min 

ralat mutlak (MAE), ralat punca min kuasa dua (RMSE) dan juga membandingkan 

ciri statistik dalam data input dengan data hujan yang lengkap.  Kemampuan dan 

kemantapan model terbaik ditentukan apabila data hujan yang hilang dari tahun 1996 

ke tahun 2004 dari kedua-dua stesen (Damansara dan Kelantan) digunakan dengan 

membandingkan di antara min dan varians anggaran data hujan yang telah diimput 

oleh PDSOM.  Data imput diperolehi dalam selang keyakinan yang dibentuk di 

dalam data hujan yang dicerap.  Keputusan telah membuktikan bahawa PDSOM 

adalah lebih cekap daripada MLP dan SOM.  Model ini juga mampu memelihara ciri 

statistik dalam data hujan, terutamanya bilangan hari hujan dan kering serta taburan 

hujan di Damansara dan Kelantan.  Oleh itu, PDSOM boleh bertindak sebagai model 

alternatif dalam menangani masalah data ketakdapatan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Climate change is the most pressing term that has been defined as a threat to 

nature and human activities in the last few decades.  Observational evidences such as 

high surface temperature, high greenhouse concentrations, high sea level and 

widespread melting of ice and snow has given warning signs to the world.  Indeed, 

such multi-fold effects that have affected the statistical distribution of weather over a 

long period is undeniably a long-lasting crisis that has caused disastrous impacts to 

every aspect of human life, the ecosystem and even a country's development.  

Malaysia is also a victim of climate change and efforts are taken to prevent the 

situation from escalating.  

 

 

Situated in the Southeast Asia and in between of the Pacific Ocean and Indian 

Ocean, climate over areas or states in Malaysia is affected by the monsoon season.  

The three major monsoons namely southwest monsoon, northeast monsoon and inter-

monsoon have contributed the most in determining the rainfall patterns in Malaysia 

and subsequently has induced high variability in climatic data.  Among the areas in 

Malaysia, Damansara and Kelantan are two distinct areas that experience unique 

rainfall regime.  For example, rainfall in Kelantan is dominated by the northeast 

monsoon that occurs during November to February while rainfall in Damansara is 

dominated by the inter-monsoon that occurs during March to April and from 



2 

 

September to October.  During the northeast monsoon, Kelantan receives heavy 

rainfall associated with thunderstorms and strong wind while Damansara receives 

heavy rainfall in the forms of consecutive rains during intermonsoon period.  Indeed, 

both phenomena are sufficient for monitoring the rainfall patterns and climate over 

Malaysia. 

 

 

Understanding the synoptic circulations over both regions is very valuable 

because extreme rainfall events with high rainfall amount and strong wind have 

boosted the frequency of flood in the last few years.  This devastating flood may 

report a scenario where there is no complete rainfall data to forecast the rainfall 

events before a natural disaster happens.  Apart from this, a high amount of missing 

rainfall data that tie up with extreme events has also reduced the reliability of the 

data.  Therefore, a well-documented rainfall data is essential to produce intensive 

information regarding on the changes of rainfall behaviour and patterns in Malaysia. 

 

 

In most of the hydrological studies, incomplete data is an issue that is 

relevant to the topic of data processing and analysis.  Incomplete data, also known as 

missing data, can affect the quality of the data.  Reference from the data will also 

decrease due to the lost of informative data.  Often, missing data is not only caused 

by technical difficulties such as errors in obtaining the rainfall data, insufficient 

samples for analysis, failure of instruments such as in rain gauges and carelessness in 

data entries, but also caused by environmental variables such as temperature and 

humidity.  To reduce the loss of important information, explanation of data being 

missing should be explored. 

 

 

As mentioned earlier, there are several reasons to explain why hydrological 

data go missing.  With the knowledge on why the problems occur and what variables 

affect the missing data, the performance of an imputation model will be increased.  

Therefore, exploring the missing data pattern known as missingness mechanism is an 

important procedure before conducting an imputation method.  If the missingness 

mechanism is missing completely at random (MCAR), traditional methods such as 

mean imputation and hot deck imputation are sufficient to solve the missing data 

problem.  If the missingness mechanism is missing at random (MAR) or missing not 
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at random (MNAR), expectation maximization and artificial neural network are 

chosen.  However, most of the researchers may do the imputation process without 

knowing the types of missingness mechanism in a dataset (Junninen et al., 2004).  

The performance of an imputation model may decrease if the missingness 

mechanism is not expressed correctly.  To best handle the missing data problem in 

hydrology, types of missingness mechanism is determined before an appropriate 

model is selected.  

 

 

Ways of imputation can be divided into three, which are i) ignoring the 

missing values, ii) using estimation methods, and iii) imputing the values by using 

mean imputation or simulated randomness.  The increase of missing rainfall data has 

led researchers to delve into the topic of imputation models as the missing rainfall 

data will become an obstacle in their studies.  As a result, estimation models have 

undergone an extensive development.  The methods used include normal ratio 

method, multiple imputation, nearest neighbour weighting method, inverse distance 

weighting method, expectation maximization (EM), and artificial neural network 

(ANN). 

 

 

 

 

1.2 Statement of Problem 

 

 

A complete set of rainfall data is essential in the hydrological studies to help 

in country development such as designing bridges, or forecasting and predicting the 

occurrence of floods.  However, the completeness of data is not easily achieved as 

external factors such as climate change may contribute to the occurrence of missing 

data.  In Malaysia, for example, the factor that contributes to missing data problem 

may be due to monsoon season or climate change.  Besides, the cause of missing data 

may also be related to technical errors such as error in data entry or rain gauge 

malfunction.  To better understand the factors that affect the missing data, 

missingness mechanism is introduced.  The knowledge of missingness mechanism 

that leads to missing data should be pre-determined before the imputation process is 

carried out. 
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The task of estimating missing rainfall records ranges from traditional 

methods, model based imputation, spatial interpolation methods and data driven 

approach.  Traditional methods such as listwise and pairwise deletion are the 

pioneers in the imputation methods.  However, both methods have shown marked 

errors because deletion of missing data will reduce the sample size and then increase 

the variance of the data.  Spatial interpolation methods also worked well under the 

assumption that the relation between target station and neighbouring stations is 

significant, and their performances will be disrupted if there is variability in time and 

space.  More recently, data-driven approach that uses the evolutionary principles and 

biological network, namely artificial neural network (ANN), is suggested because it 

is superior and powerful in predicting missing values with minimum errors (Juininen 

et al., 2004; Srikalra and Tanprasert, 2006; Bustami et al., 2007; Kalteh and Hjorth, 

2009; Piazza et al., 2011). 

 

 

Self-organizing map (SOM) is one of the branches from ANN that do not 

require the desired output for the input vectors.  Optimum results will be archieved if 

the architecture of SOM, such as map size and learning rate are well defined.  More 

often, SOM is acknowledged as a high-performing computational model that is able 

to model a highly complicated system.  However, SOM is not a statistical-sound 

model as it does not preserve the statistical properties of a data.  In a hydrological 

study, statistical properties of rainfall data such as the distribution of rainfall process, 

number of wet and dry days, mean and variance of the imputed data are important 

and should be preserved.  When SOM is applied, missing data will be highly 

estimated but sometimes, the statistical properties of the data may alter.  For that 

reason, a model that can retain the statistical properties of the data is underlined in 

this study. 

 

 

The problem of missing data is not a new topic for researchers in Malaysia, 

but studies focusing on the missing data analysis in tropical regions are few and far 

between.  As mentioned earlier, river basins from Damansara and Kelantan were 

chosen because the rainfall patterns in both areas are different from each other.  The 

number of missing rainfall data is also high especially during the monsoon seasons.  

It is also recorded that the missing observations sometimes happen for a few days 
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consecutively.  In order to recover the completeness and quality of rainfall data, the 

mechanism of the missing rainfall data is first identified before the process of 

imputation. 

 

 

 

 

1.3 Objectives 

 

 

The objectives of the study are: 

 

 

i) To propose a generalized joint model that can identify the types of 

missingness mechanism in a data. 

ii) To determine the missingness mechanism of the rainfall data in Malaysia. 

iii) To determine the best-fit distribution to represent the rainfall patterns in 

Malaysia. 

iv) To propose a new imputation method by hybridizing probability distributed 

model and self-organizing map (SOM). 

v) To compare the performance of the proposed artificial neural network (ANN) 

model with the existing ANN methods. 

 

 

 

 

1.4 Scope of the Study 

 

 

This study will divide the problems of missing data into two parts, which are 

determination of missingness mechanism and prediction of missing data in the 

rainfall data of Malaysia.  Daily rainfall data over a 9-year period (1996 – 2004) in 

Damansara and Kelantan river basins will be studied. 

 

 

To accelerate the accuracy of imputation process, the mechanism of missing 

data needs to be recognized by introducing a model, namely as Expectation-

Maximization (EM) with logit.  It is a joint model where the parameter estimates 

obtained from the EM will determine the types of missingness mechanism existing in 
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the data, either by missing completely at random (MCAR), missing at random (MAR) 

or missing not at random (MNAR).  The performance of the model is then tested on a 

simulated data that reflect the real rainfall condition in Malaysia, and imposed with 

different missingness mechanism, different correlation among the variables and the 

percentage of missing data. 

 

 

Daily rainfall data coupled with humidity and temperature from the stations 

in Damansara and Kelantan for the period of 1998 to 2004 are also included in the 

model assessment.  Before the application of the joint EM-Logit model, homogeneity 

tests will be carried out to ensure the measurements of the data are taken at a time 

using same instruments and environments.  Then, the type of missingness mechanism 

that lead to rainfall data being missing is determined. 

 

 

The second part of the study is the comparison between imputation models.  

A new two-step ANN model that first analyses the occurrence of rainfall events 

before the imputation by self-organizing map (SOM) for the wet-classified day is 

constructed.  The new model will be compared with two classical ANN models, 

namely multilayer perceptron (MLP) and self-organizing map (SOM).  In order to 

ensure the proposed model is able to cope with the problem addressed, daily rainfall 

data is divided into training data, calibration data and validation data.  A 4-year daily 

rainfall data that was extracted during the monsoon season for each river basin is 

used to train the SOM while another 5-year complete daily rainfall data is used to 

evaluate all the ANN models.  The best model will then be selected and applied to 

the rainfall data in Damansara and Kelantan from 1996 to 2004.  All the algorithms 

are written in MATLAB 7. 

 

 

 

 

1.5 Significance of the Study 

 

 

This study investigates the mechanism of missing rainfall data and looks for 

possible ways to improve the estimation of missing rainfall data in Malaysia.  

Because of the high variability of climate in the last few decades, estimation by 
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traditional methods such as inverse distance weighted method (IDWM) becomes less 

convincing.  Since the rainfall data obtained from Jabatan Pengaliran dan Saliran 

(JPS) Malaysia is used for future hydrological prediction and for better 

understanding of the changes of hydrological processes, the missing data problems 

are highlighted.  By having a high quality and with correct statistical properties of 

hydrological data, engineers and economists can make investment decisions wisely 

in future infrastructure and water management systems in Malaysia.  

 

 

 

 

1.6 Organization of Thesis 

 

 

This thesis comprises of seven chapters that can be divided into two parts, 

which are missingness mechanism and imputation of missing data.  For Chapter 2, a 

literature review of missingness mechanism and imputation models is listed.  Chapter 

3 presents the description for the proposed missingness mechanism model, including 

mathematical formulation, simulation and implementation procedures.  Meanwhile, 

Chapter 4 outlines the details for proposed imputation model, along with existing 

artificial neural networks (ANN) models.  To assess the performance of the proposed 

models, Chapter 5 and Chapter 6 provide a complete evaluation and discussion.  Last 

but not least, all the summary, conclusions and recommendations for future research 

are presented in Chapter 7. 
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