
1-4244-0674-9/06/$20.00 ©2006 IEEE.

Update-Ordering For Database Consistency in Peer-to-Peer Environments

W. N. Shuhadah1, M.Mat Deris2, A. Noraziah1, M.Y.Saman1, M.Rabiee1

 1University College of Science & Technology Malaysia, Faculty of Science and Technology,

21030, Mengabang Telipot, Kuala Terengganu, Malaysia.
E-mail: shud_81@yahoo.com

2University College of Technology Tun Hussein Onn, Faculty of Information & Technology

Multimedia,
86400 Parit Raja, Batu Pahat, Johor, Malaysia.

E-mail: mmustafa@kuittho.edu.my

Abstract

Database consistency is one of the major issues in
replicated database in peer to peer environment. The
logical design for the replicated nodes and the
transaction management mechanism are two aspects
that give a serious impact to the performance and the
consistency of replicated database. This paper
proposes a new model that combines the Neighbor
Replication on Grid (NRG), where the data is
replicated to the neighbors of the grid with the Update
Ordering approach. The performance comparison
shows that the proposed mechanism is greatly improve
the performance of the replicated database in peer to
peer environment up to two orders of magnitude while
preserving the data consistency.

1. Introduction

Peer-to-peer (P2P) environment is undoubtedly
one of the most touted topics in the internet. As new
communication technologies are emerging, P2P
concepts become reality and allow for even higher
degrees of flexibility in distributed databases [3, 4].
Replication is a useful technique for a distributed
database systems where an object will be accessed
from multiple locations such as from a local area
network environment or geographically distributed
world wide [2]. Replication supports a variety of
applications that have very different requirements.
Some applications are adequately supported with only
limited synchronization between the copies of the
database and the corporate database system, while
other applications demand continuous synchronization

between all copies of the database [5]. Most of all,
replication jeopardizes data consistency. In turn,
mechanisms have to be employed to enforce the data
consistency. Maintaining the data consistency is very
expensive [7]. A common practice is then to relax the
data consistency as much as possible to give rise to
better system performance.

The existing replication control mechanism can be
categorized into two spectrums: the logical design for
the replicated nodes and its transaction management
mechanism. For the logical design point of view, the
protocol focuses on the number of copies being
updated upon write operation. The examples include
read-one-write-all (ROWA) [8], and the quorum
techniques where one of which is Neighbor Replication
on Grid (NRG) [7]. The NRG imposes the intersection
requirement between read and write operations. This
technique produces high availability for update-
frequent operations by imposing a neighbor binary vote
assignment to the logical grid structure on data copies.
Also, it reduces the waiting time by decreasing the
number of copies being contacted upon executing the
write operation.

For a transaction management mechanism point of
view, the protocol determines how to manage the
transaction (read and write) on the replicated data in
order to preserve the data consistency. Various existing
transaction management protocol is developed for a
transactional model. The examples include the model
proposed in [1], [7], [8]. Two-phase commit [5]
protocol is the most common approach to providing a
consistent view for a transactional model in a
distributed database system. However, data replication
developed for transactional models are very strict since

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 19:17 from IEEE Xplore. Restrictions apply.

one-copy-serializability is often required in order to
maintain the ACID (atomicity, consistency, isolation
and durability) property. Therefore, a long response
time may occur and a low system throughput rate
results.

Not all replication systems require such a strong
transactional semantics. Thus, the update ordering
protocol has been proposed in [6]. Update ordering is
an alternative data consistency model with weaker
semantics with those of one-copy-serializability since
the model let replicas execute the same set of update
requests in a sensible order. This approach can be
applied in many distributed applications with less strict
consistency requirements such as applications in retail
and wholesale and applications in information storage
and retrieval.

In this paper, without loss of generality, the terms
node and site will be used interchangeably. The
purpose of this paper is to combine and reconcile NRG
logical design and update ordering approach to
improve the performance of replicated systems in
terms of response time while still preserve the data
consistency.

This paper is organized as follows: In Section 2,
we review the NRG logical design and update ordering
approaches which are then compared with the protocol
proposed in [1]. In Section 3, the reconciliation model
is presented. Section 4, the simulation and the example
for the potential scenario of the model is given. The
performance evaluation of the proposed model is in
terms of systems response time is presented in Section
5 while the conclusion is presented in Section 6.

2. Model

2.1 Replica Control Technique

A distributed system with replicated servers consists
of many sites interconnected by a communication
network. In NRG, all sites are logically organized in
the form of a two-dimensional grid structure. For
example, if an NRG consists of twenty-five sites, it
will be logically organized in the form of 5 x 5 grid as
shown in Figure 1. We use R to denote the set of all
sites in a replicated system:

R = { R1, R2…, Rn}, where n = total number of sites
in replicated system.

Each site has master data item. Let O be the set of
all data item that can be reached by the update request
for replicated system. Thus,

O = { 1d , 2d ,…, id ,….., nd }, where i = 1,2,3,..,n

and id is a master data item for site R1.

A site is either operational or failed and the state of
(operational or failed) of each site is statistically
independent to the others. When a site is operational,
the copy at the site is available; otherwise it is
unavailable.

Definition 1: A site X is a neighbor to site Y, if X is
logically-located adjacent to Y.

A data will replicate to the neighboring site from its
primary site. The number of data replication, r≤ 5.

For example, from Figure1, data from site 1 will

replicate to site 2 and site 4 which are its neighbors.
Site 5 has four neighbors, which are sites 2, 4, 6, and 8.
As such, site 5 has five replicas. For simplicity, the
primary site of any data file and its neighbors are
assigned with vote one and vote zero otherwise. This
vote assignment is called binary vote assignment on
grid. A neighbor binary vote grid assignment on grid,
G, is a function such that B(R i) ∈ {0,1}, 1≤ i ≤ n,

where G(R1) is the vote assign to site R i . This
assignment is treated as an allocation of replicated
copies and a vote assigned to the site results in a copy
allocated at the neighbor. That is, 1 vote ≡ 1 copy.

Let S(B) be the set of sites at which replicated
copies of data items are stored corresponding to the
assignment B. Then

S(B) = {R1| B(R1) = 1, 1 ≤ i ≤ n}.
For any site iR , where)(

xdi BSR ∈ , iR is said

as a replica for data item xd . Therefore, for an

Figure 1: A grid organization of 9 copies of an object

r-replica group, we use C to denote a number of
replicas for a particular data item xd .

C = { tR1 ,…, s
iR ,…, r

nR }, where t,s = 1,2,…r, t ≠ s,

i = 1,2,…,n, t
iR)(

xdBS∈ and r ≤ 5.

2.2 Update Ordering

An update ordering approach is a model which
using a set of ordering constraints to express the
corresponding set of operations provided by a replica
group. The ordering implementation takes account of
detailed inter-operation semantics denoted by
commutative operations and causal operations to

4

2 3

5 6

7 8 9

1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 19:17 from IEEE Xplore. Restrictions apply.

reduce unnecessary delay. Each replica will execute
the same set of update operations in a sensible order
which is confined to the set of ordering constraints but
maybe different at replicas. When an update requests
are propagated to a group of replicas by different
replicas concurrently, their arriving orders at replicas
maybe different. Figure 2 depicts this scenario by
considering iR where iR)(

1dBS∈ with referring
grid organization in Figure 1. Four operations u1,u2,u3
and u4 are send to a three-replica group { R1, R2, R6},
they arrive at in R1,

R

 R2,and R6 the order of (u1,u2,u3,
u4), (u2,u3,u4, u1) and (u1,u3,u2, u4), respectively.

R1 R2 R6

u1 u2 u3
 u3
u2 u2
u3

 u4

u4 u1 u4

Figure 2: A scenario of message arriving orders
with four operations u1,u2,u3 and u4 are send to
a three-replica group { R1, R1, R1}.

This scenario is the result of different network

latencies on communication links between members on
which the group of replicas are running. To ensure the
correct semantics of the replicated service system, a
sensible arriving order of update operations has to be
defined and enforced over the whole replica group. In
general, ordering constraints are categorized into four
types: FIFO, causal, total and total + causal to reflect
different semantic requirements of the replicated
system and its client. FIFO and causal orderings are
the ones often required from the client’s point of view,
whereas total ordering is often required from the
replicas group’s point of view. Total + causal is the
integrated constraint to give the satisfaction to both
parties: clients and the replica group.

Let U be a set of update request in the system.
Then,U={u(xd)|u=update request, xd = data

item.}

An update request, u(dx) received by a replica Ri

directly from its client is said to be originated from Ri.
Thus, R1 is also said as a primary site for update
request u(dx). Any replica Rj, where i ≠ j who received
an update request, u(dx) from other replica, Rj is said as
neighbor site for a particular data item xd . We also

need to distinguish a received request from a
deliverable request. When a request is received by a
replica, it is stored in a buffer/log and awaits to be
checked on its ordering constraint. Once its ordering
constraint is satisfied, that request is executable or
deliverable. In other words, that request is ready to be
executed by the replica.

For any replica iR , where)(
xdi BSR ∈ , iR will

only allowed to receive only an update request for a

particular data item xd . We define)(xdBST as a set

of update request that will be allowed to receive by a
set of replica group)(

xdBS . Thus,

)(xdBST = {)(1 xdu ,)(2 xdu ,……,)(xk du }

3. Simulation

All experiments are performed using two set of
simulator representing two set of models; our
reconciliation model and the existing ones which has
been proposed in [1]. The simulator is written in C++
and has been used to simulate the update execution for
both models over the same database environment. We
do not consider the contribution of network delay in
our simulation activities. Each replica in a particular
replica group is assumed to receive an update request
eventually after it is sent from the original replica. In
this section, we only discussed the example for our
reconciliation model since the existing ones has been
discussed explicitly in [1].

The reconciliation model proposed in this paper can
be applied in many distributed applications with less
strict consistency requirements, such as applications in
retail and wholesale and applications in information
storage and retrieval. In this paper, we use a sales
information system as an example in our simulation
model to show the potential use of this model.

The following shows an example of potential
scenario in our simulation model.
Example:

In this example, we consider 9 sites, (R1, R2,…R9)
which are logically organized in 3 x 3 grid structure and
each site holds a master data item, (d1,d2,…,d9)
respectively. Supposed there are 10 update request,
(1u , 2u , 3u ,…., 10u) which consists the combination
of four update operations, 1u , 2u , 3u and 4u
representing the operation of addStock, deleteStock,
sendMessage and replyMessage respectively. Each
update request reached at various site and their arriving
patterns at each site are shown in Figure 5.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 19:17 from IEEE Xplore. Restrictions apply.

Each update operations can be categorized into three
operation set, i.e: opTotal = { 1u , 2u }, opComm =

{ 3u , 4u } and opCausal = { 2u , 4u }. Each update
request carries the information for their own data items
and it may be different between each update requests.
Thus, the simulator is then need to identify a particular
replica group for each update request by identifying
their data item.

 u1(d1)1 u3(d2)6 u3(d1)2 u1(d2)9
 d1 d2 d3
 R1 R2 R3
u1(d4)3 u4(d1)7 u4(d2)8 u2(d2)10
 d4 d5 d6
 R4 R5 R6
 u2(d1)4 u1(d2)5
 d7 d8 d9
 R7 R8 R9
Fig. 5: An example of grid organization with 9 nodes

By analyzing all update request shown in Figure 2,
the summary of replica groups for each update request
are as below:

)(1dBST ={u1(d1)1 ,u3(d1)2 ,u2(d1)4, u4(d1)7}

)(2dBST = { u1(d2)5 ,u3(d2)6 ,u4(d2)8, u1(d2)9}

)(4dBST = { u1(d4)3 }

All update requests in opTotal in different replica
group will be assigned with different set of counter.

Since opComm = { 3u , 4u }, the execution for
2u , 6u , 7u and 8u will be based on the FIFO

protocol, while for every update request in opCausal ,
their execution will be based on the VT protocol. For

4u and 10u , they carries a time stamp (TS) which
consists of two fields. As a result, the execution orders
for each update requests at their original replicas for
u1,u2,u3,u4,u5,u6,u7,u8,u9 and u10 are 1,1,1,2,1,1,2,2,2,
and 3 respectively.

There is no prerequisite for 1u , 3u and 5u to be
executable as they are the first operations issued in
their own replica group. Thus, they can be executed
concurrently at their original replica without being
deferred for the arriving of any other update request
while for 2u and 6u , they also can be executed
concurrently at their original replica since both of them
are commutative to each other. For 4u , it carry TS and

can only be executed after 1u has been executed. 7u
and 8u are both in opCausal . Thus, they can only be
executed concurrently at their original replicas after

2u and 6u has been executed respectively. For 10u ,
it carry TS and can only be executed after the
execution of 9u and it will be the last update request
that will be executed at its original replicas for this
example.

4. Results

The performance evaluation is based on response
time over update request. In this paper, we compare the
response time for our reconciliation model with the
existing model which has been proposed by Baruch
Awerbuch et al. in [1] with respect to update
operations. All our experiments are carried out in the
same database environment for both models.

The performance evaluation for total, total +
commutative and total + causal operations is shown in
figure 6. For total operations, all update requests are in

opTotal and they are conflicting to each other. For
total + commutative operations, all update request are
also in opTotal , but there are commutative pairs of
update request that received by the sequencer. For each
number of update request, we identify the maximum
number of commutative pairs that possibly to have in
each number of update request. For example, for 5 and
10 update request that received by the sequencer, the
maximum number of commutative pairs for each
number of update request are 2 and 5 pairs
respectively. For total + causal operations, all update
request are both in opTotal and opCausal . The
execution of these three update operations bring out the
same output for their response time since they are
using the same protocol for their execution.

From Figure 6,7, and 8, the execution for
commutative operations produced the lowest response
time. The reason for this is that when receiving a
commutative operation, the request can be handled
right away at a replica. Whereas for total-ordering
request, the request is sent to the sequencer to get the
unique sequence number before it can be handled,
which generates a long time delay compared to a
commutative operations. The response time for the
caused-by operation is slightly higher than the response

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 19:17 from IEEE Xplore. Restrictions apply.

PERFORMANCE EVALUATION (TOTAL, TOTAL + COMMUTATIVE AND TOTAL
+ CAUSAL OPERATIONS)

0

100

200

300

400

500

600

700

5 10 15 20 30

No.of update request

R
es

po
ns

e
tim

e
(m

s)

NRG + Update Ordering
(N=9)
NRG + Update Ordering
(N=16)
NRG + Update Ordering
(N=25)
Baruch Awerbuch et al.
(N=9)
Baruch Awerbuch et al.
(N=16)
Baruch Awerbuch et al.
(N=25)

Figure 6: Performance evaluation for total, total +
 commutative, total + causal operations

PERFORMANCE EVALUATION (COMMUTATIVE OPERATIONS)

0

100

200

300

400

500

600

700

10 15 20 30

No. of update request

R
es

po
ns

e
tim

e
(m

s)

NRG + Update Ordering
(N=9)
NRG + Update Ordering
(N=16)
NRG + Update Ordering
(N=25)
Baruch Awerbuch et al.
(N=9)
Baruch Awerbuch et al.
(N=16)
Baruch Awerbuch et al.
(N=25)

Figure 7: Performance evaluation for Commutative
operations.

PERFORMANCE EVALUATION (CAUSED-BY OPERATIONS)

0
100
200
300
400
500
600
700
800

10 20 30

No.of update request

R
es

po
ns

e
tim

e
(m

s)

NRG + Update Ordering
(N=9)
NRG + Update Ordering
(N=16)
NRG + Update Ordering
(N=25)
Baruch Awerbuch et al.
(N=9)
Baruch Awerbuch et al.
(N=16)
Baruch Awerbuch et al.
(N=25)

Figure 8: Performance evaluation for Caused-by
 operations.
time for commutative but it still lower than the
execution of total-ordering operations. The caused-by
operations is executable as long as its causal update
request has been executed. Thus, a longer time delay is
detected for its execution especially at a higher number
of update requests.

5. Conclusions

 A new reconciliation model has been proposed to

maintain the database consistency in peer to peer
environments. The NRG logical design has been
reconcile with Update Ordering approach for this
proposed model. We then analyzed the system
performance in terms of an important response time for
the execution of update request by the replicated
system. The performance analysis shows the following
findings: Firstly, an Update Ordering approach reduces
the unnecessary delay and brings a better response time
upon update request by allowing the definition of
ordering constraint on each update operation, so further
give a better concurrency rate to improve the systems
performance. Secondly, the reconciliation by
combining the NRG logical design and Update
Ordering approach has greatly improved the
performance for replicated systems up to two orders of
magnitude while still maintain the replicated database
consistency.

6. References

[1]B. Awerbuch, C. Tutu, Maintaining Database

Consistency in Peer to Peer Networks, Technical
Report, CNDS-2002-2, February 2002.

[2] M. D. Mustafa, B. Nathrah, M. H. Suzuri, M. T.
Abu Osaman, Improving Data Availability Using
Hybrid Replication Technique in Peer to Peer
Environments, Journal of Interconnection
Networks, vol. 5, no. 3, (2004) 299-312.

[3]J. Holiday, R. Steinke, D. Agrawal, and A. El
Abbadi, Epidermic Algorithms for Replicated
Databases, IEEE Trans. On Knowledge and Data
Engineering, vol.15, 5(2003), pp. 1218-1238.

[4] O. Wolfson, S. Jajodia, and Y. Huang, An Adaptive
Data Replication Algorithm, ACM Transactions on
Database Systems, vol.22, 2(1997), pp.255-314.

[5] T. Connolly, C. Begg, Database Systems: A
Practical Approach to Design, Implementation and
Management, Edisson Wesley, 4th edition, 2005.

[6] W. Zhou, L. Wang, W. Jia, An Analysis of Update
Ordering in Distributed replication Systems, Future
Generation Computer Systems 20 (2004) 565-590.

[7] M. D. Mustafa, A. Noraziah, M. Y Saman, A.
Noraida, Y. Yuan, High System Availability Using
Neighbor Replication on Grid, IEICE Transactions
on Information and Systems, vol. E87-D, no. 7,
July 2004.

[8]J. Holliday, D. Agrawal, A. E. Abbadi, Database
Replication Using Epidemic Communication,
Lecture Notes in Computer Science, 2000.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 19:17 from IEEE Xplore. Restrictions apply.

