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ABSTRACT 

 

 

 

 

 Flexible manipulator systems offer numerous advantages over their rigid 

counterparts including light weight, faster system response, among others. However, 

unwanted vibration will occur when flexible manipulator is subjected to disturbances. If 

the advantages of flexible manipulator are not to be sacrificed, an accurate model and 

efficient control system must be developed. This thesis presents the development of a 

Proportional-Integral-Derivative (PID) controller tuning method using evolutionary 

algorithms (EA) for a single-link flexible manipulator system. Initially, a single link 

flexible manipulator rig, constrained to move in horizontal direction, was designed and 

fabricated. The input and output experimental data of the hub angle and endpoint 

acceleration of the flexible manipulator were acquired. The dynamics of the system was 

later modeled using a system identification (SI) method utilizing EA with linear auto 

regressive with exogenous (ARX) model structure. Two novel EAs, Genetic Algorithm 

with Parameter Exchanger (GAPE) and Particle Swarm Optimization with Explorer 

(PSOE) have been developed in this study by modifying the original Genetic Algorithm 

(GA) and Particle Swarm Optimization (PSO) algorithms. These novel algorithms were 

introduced for the identification of the flexible manipulator system. Their effectiveness 

was then evaluated in comparison to the original GA and PSO. Results indicated that the 

identification of the flexible manipulator system using PSOE is better compared to other 

methods. Next, PID controllers were tuned using EA for the input tracking and the 

endpoint vibration suppression of the flexible manipulator structure. For rigid motion 

control of hub angle, an auto-tuned PID controller was implemented. While for 

vibration suppression of the endpoint, several PID controllers were tuned using GA, 

GAPE, PSO and PSOE. The results have shown that the conventional auto-tuned PID 

was effective enough for the input tracking of the rigid motion. However, for end-point 

vibration suppression, the result showed the superiority of PID-PSOE in comparison to 

PID-GA, PID-GAPE and PID-PSO. The performance of the best simulated controller 

was validated experimentally later. Through experimental validation, it was found that 

the PID-PSOE was capable to suppress the vibration of the single-link flexible 

manipulator with highest attenuation of 31.3 dB at the first mode of the vibration. The 

outcomes of this research revealed the effectiveness of the PID controller tuned using 

PSOE for the endpoint vibration suppression of the flexible manipulator amongst other 

evolutionary methods. 
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ABSTRAK 

 

 

 

 

 Sistem pengolah mudah lentur menawarkan banyak kelebihan berbanding sistem 

tegar termasuk ringan, tindak balas sistem yang lebih cepat, dan lain-lain. 

Walaubagaimanapun, getaran tidak diingini akan berlaku apabila sistem pengolah 

mudah lentur ini terdedah kepada gangguan. Sebuah model yang jitu dan sistem 

kawalan berkesan perlu dibangunkan untuk mengeksploitasi kelebihan sistem mudah 

lentur.Tesis ini membentangkan pembangunan kaedah talaan pengawal kadaran-

kamiran-terbitan (PID) menggunakan algoritma evolusi (EA) untuk sistem pengolah 

mudah lentur satu lengan. Pada mulanya, rig sistem pengolah mudah lentur satu lengan, 

telah direka dan difabrikasi, dengan kekangan untuk bergerak pada arah mendatar. Data 

masukan dan keluaran yang untuk sudut pangkal dan getaran di hujung sistem pengolah 

mudah lentur diperolehi secara eksperimen. Model sistem dinamik kemudiannya 

diperolehi melalui kaedah sistem identifikasi (SI) menggunakan struktur model linear 

autoregresif dengan input eksogenus (ARX). Dua algoritma evolusi baru iaitu algoritma 

genetik dengan penukar parameter (GAPE) dan pengoptimuman kerumunan zarah 

dengan penjelajah (PSOE) telah dibangunkan di dalam kajian ini dengan memodifikasi 

algoritma genetik (GA) dan pengoptimuman kerumuhan zarah (PSO) yang asli. 

Algoritma-algoritma ini telah diperkenalkan untuk identifikasi sistem pengolah mudah 

lentur. Keberkesanannya kemudian dinilai dengan perbandingan kepada GA dan PSO 

yang asli. Keputusan menunjukkan identifikasi untuk sistem pengolah mudah lentur 

menggunakan PSOE lebih baik berbanding dengan kaedah lain. Seterusnya, pengawal 

PID telah ditala menggunakan algoritma-algoritma evolusi untuk menjejak masukan dan 

menghapus getaran hujung struktur pengolah mudah lentur. Untuk kawalan gerakan 

tegar sudut pangkal, talaan-automatik PID telah digunakan. Manakala untuk 

penghapusan getaran hujung, beberapa pengawal PID telah ditala menggunakan GA, 

GAPE, PSO dan PSOE. Keputusan telah menunjukkan bahawa pengawal konvensional 

menggunakan talaan-automatik PID adalah cukup berkesan untuk menjejak masukan 

gerakan tegar. Bagi penghapusan getaran pada hujung struktur, keputusan menunjukkan 

kelebihan pengawal PID-PSOE mengatasi pengawal PID-GA, PID-GAPE dan PID-

PSO. Pengawal yang mempunyai prestasi terbaik secara simulasi telah dipilih untuk 

disahkan secara eksperimen. Melalui pengesahan secara eksperimen, didapati PID-

PSOE telah mampu mengurangkan getaran sistem pengolah mudah lentur satu lengan 

sebanyak 31.3 dB pada mod pertama getaran. Hasil kajian menunjukkan keberkesanan 

pengawal PID yang ditala menggunakan algoritma PSOE untuk menghapuskan getaran 

hujung pengolah mudah lentur yang lebih baik berbanding kaedah evolusi yang lain. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

In the past, rigid structure has been chosen in many applications to avoid 

unwanted vibration. Unfortunately, this heavy and strong metal is not always acceptable 

because it limits the operation speed and consumes more energy during application 

(Mohamed et al., 2003). In addition, many industries such as spacecraft and aircraft 

engineering require the weight of mechanical structures to be kept as low as possible. 

Therefore flexible manipulator systems have received substantial attention in recent 

years motivated by the requirements of industrial applications. Flexible manipulators 

offer several advantages over rigid manipulators including lighter weight, lower energy 

consumption, faster system response, safer operation due to reduced inertia, smaller 

actuator requirement, low-strength mounting and low-rigidity requirement, less bulky 

design and are more transportable and maneuverable (Mohamed et al., 1996; Choi et 

al.1999; Tokhi et al., 2001) 

 

However, flexible manipulator systems are known to demonstrate an intrinsic 

property of vibration when subjected to disturbance forces due to low stiffness (Abdul 

Razak, 2007). Light weight manipulators will vibrate during and after a maneuver. This 

vibration will become more severe and deflection will increase when the maneuver 

becomes faster (Vakil, 2008). Vibration can result in noise, disturbances, and discomfort 

which are undesirable in any operation. Vibration can reduce system effectiveness, 
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affect machine precision and lead to structural fatigue. Therefore, it is important to 

control the vibration of flexible structures.  

 

Generally, the purpose of vibration control in flexible manipulator is to suppress 

unwanted vibration and to enable satisfactory endpoint tracking. A common approach is 

the use of passive control methods with the addition of passive material to increase the 

damping and stiffness properties. However, the performance of these conventional 

control strategies may not be satisfactory at low frequency problems. Moreover, 

mounting the passive material will add to the dynamic load of the system which is 

undesirable in many applications (Fan and Silva, 2007). Hence, particular emphasis has 

been placed on active vibration control (AVC). 

 

AVC introduced anti-phase excitation to destructively interfere with the system 

disturbances, hence resulting in a vibration reduction (Mat Darus and Tokhi., 2003a). 

AVC has successfully been applied, offered cost effective solution and reliable at low 

frequency vibration control problems (Mat Darus and Tokhi, 2005). Thus, vibration 

reduction using AVC has received considerable attention from many researchers. 

 

Furthermore, the exploitation of smart material in AVC area presents a more 

attractive solution in the studies. A smart material such as piezoelectric material is able 

to change its behavior in response to a signal. Piezoelectric material mounted along the 

link serves as an actuator and sensor adding sensing and control capabilities for 

vibration suppression. The unique ability of smart material to achieve transformation 

between mechanical deformation and electric field leads to the development of AVC 

using smart structure which is expected to obtain better control performance. Many 

papers have been reported on modeling of smart material in intelligent structure 

(Crawley and Anderson, 1990; Vincent, 2001) and on control schemes for smart flexible 

structure (Wei et al. 2010; Mohamad, 2011). 

 

Challenging jobs for control design of flexible smart structure involve 

optimization. A large number of papers deal with optimization of size and 
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sensor/actuator location on structures (Molter et al., 2010) and controller parameters 

(Choi et al., 1999; Davighi et al., 2006). Optimization is a term of finding for the 

optimal solution with different objectives and subject to a variety of constraints. Further 

development of evolutionary algorithm (EA), aim for an efficient practical algorithm to 

find optimal solutions especially for nonlinear optimization problems. 

 

EA method has attracted the attention of the wider control community due to 

their various advantageous features in relation to identification and control. Many EA 

have been develop, among them includes genetic algorithm (GA) and particle swarm 

optimization (PSO) are the two popular methods. GA mimics the biological evolution, 

while, PSO tries to imitate the intelligence emergence behavior of social insect 

(Mohamad, 2011). Both GA and PSO have been extensively used in many fields and 

various optimization areas. Consequently, the use of GA and PSO as optimizers in 

identification and control problem is a promising solution. 

 

 

 

 

1.2 Problem Statement 

 

 

 At the present time, flexible manipulators are gaining considerable attention of 

researchers due to their suitability in many applications such as manufacturing, 

aerospace equipment, and the semiconductor industry, among others. Vibration of the 

structure is often a limiting factor in the performance of many industrial processes and 

can lead to structural damage, fatigue, instability and reduced performance 

(Tavakolpour, 2010). Many researches have been done for vibration suppression of this 

traditionally complex system. Conventional control methods have not been widely 

successful due to the complexity of flexible structures. Moreover, the frequency 

associated with these structures is commonly low and vibration control becomes an 

important issue. As a result, AVC has been devised to optimally reduce vibration 

suppression for flexible manipulator. 

 



4 
 

In an attempt to provide better control performance, smart material is included in 

the AVC studies to serve as an alternative approach to researchers and engineers. Smart 

material is more attractive because this material is usually small in size, light in weight, 

have faster response and can be embedded with flexible structures (Preumont, 2006). In 

the case of AVC of flexible manipulator, smart material is normally embedded along the 

structure and works as an actuator or sensor. 

 

Thus, this thesis serves to present alternatives to cope with the vibration control 

problem of such complex systems. In this research, optimization procedure of PID 

control parameters is tackled using EA. Two novel EAs are developed, namely, Genetic 

Algorithm with Parameter Exchanger (GAPE) and Particle Swarm Optimization with 

Explorer (PSOE) in such a way that the optimization can be improved. The PID control 

tuning method using EA is implemented on the identified model using system 

identification (SI) technique with regards to the knowledge of the system acquired from 

the experimental test. The performance of these control schemes are then analyzed via 

experimental validation. An understanding of the principles involved in the analysis is 

crucial as this research aimed to investigate a new optimization methodology for 

intelligent AVC of a flexible manipulator system. 

 

 

 

 

1.3 Objectives of the Research 

 

 This research focused on intelligent AVC schemes for flexible manipulator 

structure. Thus, four important objectives of this thesis are as follows: 

 

1. To develop novel tuning methods using Particle Swarm Optimization with 

Explorer (PSOE) and Genetic Algorithm with Parameter Exchanger (GAPE) for 

PID controllers in comparison to Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA) for suppression of the unwanted endpoint vibration of 

single-link flexible manipulator. 
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2. To model the dynamic of single-link flexible manipulator system via parametric 

system identification (SI) method using PSOE and GAPE in comparison with its 

original of PSO and GA. 

 

3. To assess, analyze and compare the performance of the PID controller using the 

novel tuning method of PSOE and GAPE with their original counterparts.  

 

4. To verify and validate the performance of the PID controller tuned using the best 

tuning method of PSOE via experimental test. 

 

 

 

 

1.4 Scope of the Research 

 

The scope of this research comprises the following aspects: 

 

1. The development and fabrication of laboratory size single-link flexible 

manipulator test rig constrained to move in horizontal direction only and 

gravity effect is neglected.  

 

2. Shear deformation, rotary inertia and effect of axial force are neglected. 

The elastic deformation of the link is assumed very small with respect to 

the hub motion. 

 

3. Response of an aluminum alloy of flexible manipulator is limited to hub 

angle and endpoint acceleration only. 

 

4. Parametric modeling of single-link flexible manipulator system using SI 

method limited to PSOE and GAPE in comparison to the original of PSO 

and GA algorithms only. 
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5. All developed models are validated using mean squared error (MSE) and 

correlation tests only. 

 

6. Rigid and flexible motion controls of flexible manipulator are conducted 

using two different PID control feedback loops, respectively. 

 

7. Rigid motion control scheme constrained to auto-tuned PID controller 

and evaluated in input tracking only. 

 

8. Flexible motion control scheme using PID controller tuned by EA limited 

to PSOE, PSO, GAPE and GA only and the performance is assessed in 

vibration attenuation at the first mode of vibration. 

 

9. Experimental validation based on the best performance of control 

schemes of PID-PSOE obtained from the simulation evaluations is 

performed on the developed flexible manipulator rig using piezoelectric 

(PZT) actuator. 

 

10. The robustness test for the PID control schemes on experimental rig are 

limited to speed and angle variation and endpoint mass payload. 

 

 

 

 

1.5 Research Contributions 

 

The main contributions of this research are given as follows: 

 

 This research proposed novel EAs of Genetic Algorithm with Parameter 

Exchanger (GAPE) and Particle Swarm Optimization with Explorer (PSOE). 

The effectiveness of this new approach is presented in parametric modeling of 

single-link flexible manipulator for hub angle and endpoint acceleration analysis 
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in comparison to the original of Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO). A comparative study is provided between the tuning 

algorithm to highlight the ability of the algorithm in finding the global optimum 

with faster convergence and improved diversity.  

 

 Detailed implementation of EAs for tuning the PID controller using PSOE, PSO, 

GAPE and GA. This allows PID parameter to be tuned on the dynamic model 

obtained from parametric modeling technique. The performance of the control 

schemes is observed in vibration suppression of single-link flexible manipulator 

at the first mode of vibration.  

 

 The outcome from the experimental PID tuned by EA based AVC on flexible 

manipulator using piezoelectric (PZT) actuator is provided. Its offer a good 

platform for evaluation and validation of the proposed novel EA. The advantages 

of the algorithms are assessed in terms of vibration attenuation. 

 

 

1.6 Research Methodology 

 

 

 The flowchart describing the research methodology used in this research is 

shown in Figure 1.1. 

 

After a literature review has been carried out, a single-link flexible manipulator 

constrained to move in horizontal direction was chosen and presented in this research. 

Initially, test rig of flexible manipulator was designed and fabricated in order to acquire 

the input and output data. The instrumentation and data acquisition system were setup 

and integrated with the rig. Manipulator rig then underwent an impact test. Results from 

this test will identify the first three modes of vibration which are the modes of interest in 

vibration control. These results will eventually be compared with the experimental 

studies to show the validity of the developed model.  
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Movement of the flexible link is driven by the motor at hub which serves as a 

disturbance producing unwanted vibration at the endpoint of flexible link. Responses at 

the hub and endpoint of flexible manipulator were recorded including hub angle and 

endpoint acceleration. The input-output data acquired were then utilized to develop the 

model of the system through simulation environment. For this research, system 

identification (SI) modeling technique was employed in representing the dynamic 

response of flexible manipulator system. Relationship between input and output of the 

system was expressed using linear auto regressive with exogenous (ARX) model 

structure. In this study, two novel EAs were introduced included Genetic Algorithm 

with Parameter Exchanger (GAPE) and Particle Swarm Optimization with Explorer 

(PSOE). The effectiveness of novel EAs was evaluated using SI of single-link flexible 

manipulator in comparison to their standard counterparts of GA and PSO. A 

comparative study of the performance of the approaches in SI of flexible manipulator is 

provided. The best model that characterizes the dynamic system will be used in 

designing the PID controller in the simulation environment. 

 

Next, PID control schemes were implemented on the best model achieved for 

hub angle and endpoint acceleration analysis. For flexible motion control of endpoint 

acceleration, PID parameter was optimized using GA, GAPE, PSO and PSOE for AVC 

of flexible manipulator to find the best agreement that can attenuate the vibration most. 

While for rigid motion control of hub angle, PID tuned by auto tuning function in 

MATLAB/Simulink environment was implemented for input tracking. Simulation study 

is provided and the performance of control system is investigated. 

 

The optimized PID parameter for rigid and flexible motion control was also 

validated using experimental procedure to demonstrate the practicality of the control 

schemes. The validity, efficiency and the performance characteristic of the algorithms in 

attenuating the unwanted vibration of flexible manipulator in response to the input 

command were taken into account. Finally, discussion and recommendations to improve 

the results obtained for further studies is included.  
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Figure 1.1: Research Methodology 
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1.7 Organization of thesis 

 

This thesis is organized into eight chapters. A brief outline of the content of each 

chapter of the thesis is as follows: 

 

Chapter 1 presents the introduction of the research problem. Background and problem 

statement as well as objective and scope of the research are included. The flowchart of 

research methodology and research contribution is also outlined in this chapter. 

 

Chapter 2 is devoted to the literature review of the related topics. It includes the AVC 

of flexible manipulator system and previous work of dynamic modeling based on SI of 

the system. A brief overview of GA and PSO is reviewed. The recent application of 

AVC system and PID tuning by EA control technique previously applied was 

highlighted. Finally, the research gap found is identified in this chapter. 

 

Chapter 3 focuses on the mechatronic design and experimental development of single-

link flexible manipulator structure. A rectangular aluminum beam attached to the motor 

at the hub is developed. The experimental hardware, instrumentation, data acquisition 

system and software used for experimental setup are elaborated. Then, the experimental 

devices are integrated with the test rig and method of capturing the data is explained. 

Impact test is carried out to identify the dominant mode of vibration of the flexible link. 

A result from the test was compared with the experimental data recorded for model 

validation. 

 

Chapter 4 presents the development of novel EAs of PSOE and GAPE. A brief 

introduction to EA optimization of PSO and GA are provided. Details methodologies of 

the proposed novel EAs are highlighted in this chapter. 

 

Chapter 5 presents the system identification technique employed for modeling of 

single-link flexible manipulator system. The ARX model is used to represent the 

system. The developed PSOE and GAPE are used as the optimization tools in obtaining 
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the parameters of the ARX model. The effectiveness of these algorithms is tested in 

comparison to their original of GA and PSO. A comparative study among the 

optimization tools to identify the best model is presented. The transfer function that best 

represents the system is used as the system plant to be controlled in the simulation part.  

 

Chapter 6 focuses on the approach for PID control tuning method on the identified 

model of flexible manipulator system in simulation environment. For hub angle control 

scheme, an auto-tuned PID within MATLAB/Simulink platform is investigated for input 

tracking. Meanwhile, for endpoint acceleration, PID controller tuning strategies using 

GA, GAPE, PSO and PSOE is applied to optimally attenuate the unwanted vibration of 

flexible manipulator. The performances of the control schemes are discussed.  

 

Chapter 7 devoted the optimized PID control schemes of a flexible manipulator 

implemented on the experimental rig. In rigid motion control of hub angle, the 

performance of the controller is investigated by analyzing the angle positioning of the 

link to meet the input commands. For flexible motion control of endpoint acceleration, 

the proposed control scheme is evaluated in terms of suppressing unwanted vibration. 

The position of piezoelectric (PZT) actuator placement at the flexible link is also 

considered to find the best position that can attenuate the vibration most. Then, the 

robustness of the control schemes is tested subjected to speed and angle variation and 

addition of endpoint mass payload. 

 

Chapter 8 sums up the work presented and relevant conclusions are drawn. The 

direction for future works and recommendations are also outlined. 
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 Additionally, other control techniques such as self-tuning controller and adaptive 

control can be applied to observe the performance in vibration attenuation of a 

flexible manipulator for future works.  

 

 A well-known problem for motors that use gears is the backlash. This will create 

an effect of compliance resulting in a certain delay being introduced to the plant. 

This delay may have such big impact that one may be forced to reduce the 

dynamic behavior or the precision of the drive. Thus, dual loop or two individual 

encoders can be considered for improvement of this problem with one directly 

mounted to the motor and another mounted at the gear or directly on or near to 

the load. With this arrangement, motor movement as well as load movement can 

be controlled resulting in a precise and high dynamic regulation of motor. 

 

 To test other higher blocking force of piezoelectric actuator patch to cope with 

higher disturbance and enhance the performance of control system. 

 

 Aligned with the advance of microprocessor, embedded system could be 

considered in the control system. Several advantages of embedded system 

include light weight, compact size, cheap, low energy consumption, and 

satisfactory computational power to perform vibration control in real-time 

applications.   

 

 In many industries, multiple link and ability to move in multi degree of freedom 

(DOF) is much preferred. The used of this arrangement may cause complexity to 

the control problem due to multipart dynamics of the structure. Hence, multi-link 

and multi DOF is one of the major challenges in vibration control which needs to 

be studied in the future. 

 

 Extensive study on multi input multi output (MIMO) control structure is 

recommended prior to the multi-link and/or multi DOF arrangement. 
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