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ABSTRACT 

Composite concrete slab with steel decking profile as permanent formwork is 

gaining wide acceptance in structural construction of large scale buildings. The 

strength and behaviour of composite slabs are governed by the shear interaction 

between the concrete and the steel deck. The loss of interaction between the two 

materials is the main reason of the failure of composite slabs before reaching the 

maximum bending capacity. Technical information to strengthen the bonding and 

interaction in composite slab is still lacking. This study presents a new method for 

strengthening composite slab by an innovative U-bolts shear connectors and 

conventional headed studs shear connectors (HSSC). The study comprises of three 

components; experimental, theoretical and numerical works. The experimental work 

consists of eight full-scale composite slab specimens. The first specimen was made 

without any shear connection. The second specimen was constructed with one line of 

shear studs welded to the support beam while the third, fourth and fifth specimen was 

constructed with two lines of shear studs. The sixth specimen was constructed with 

U-bolts shear connectors that were fixed through the steel sheets profile. The seventh 

specimen was constructed with one line of shear studs with the U-bolts shear 

connectors. The eighth specimen was constructed with two lines of shear studs and 

the U-bolts shear connectors. The theoretical work consists of modifying existing 

stiffness method to analyse the composite slab with the U-bolts shear connectors and 

end anchorages. A calculation procedure was also developed to study the shear bond 

stress versus end slip relationships (shear bond property) from four-point bending 

test. Finally, three-dimensional finite element software, ANSYS, was used to 

determine the accuracy of the elastic stiffness method. Experimental results of 

composite slab tests show that the shear connectors had more efficiency for 

increasing the stiffness and strength of the composite slab compared with composite 

slab without shear connectors. Also, it was observed that the U-bolts shear 

connectors are strong and ductile enough to provide full composite action between 

the profile steel plate and concrete slab. Composite slabs with the U-bolts shear 

connectors show that the best performance is achieved compared to composite slab 

with HSSC shear connectors. The bending resistance of the proposed composite slab 

was improved up to 500% compared to conventional composite slab. The theoretical 

results show that the modified elastic stiffness method is successful to analyse partial 

and full composite slab. The theoretical values show a good agreement compared to 

the results of full-scale slab test. Good agreement was recorded between the results 

from finite element modelling, experimental and the modified stiffness method at 

linear elastic stage. It is concluded that the proposed composite slab is strong enough 

to be used in large scale structure. 
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ABSTRAK 

Papak konkrit rencam dengan profil keluli geladak sebagai acuan tetap 

semakin meluas digunakan dalam pembinaan struktur bangunan berskala besar. 

Kekuatan dan kelakan papak rencam adalah disebabkan oleh interaksi ricih antara 

konkrit dan geladak keluli. Kehilangan interaksi antara kedua-dua bahan ini adalah 

sebab utama kegagalan papak rencam sebelum mencapai keupayaan lenturan 

maksimum. Maklumat teknikal mengenai pengukuhan ikatan dan interaksi dalam 

papak rencam adalah sangat terhad untuk diperolehi. Kajian ini membentangkan 

mengenai kelakuan papak rencam kukuh dengan kancing berkepala konvensional 

penyambung ricih (HSSC) dan dengan penyambung ricih inovatif atau yang baru 

diperkenalkan (U-bolts). Kajian ini terdiri daripada tiga komponen - kerja ujikaji, 

teori dan kaedah berangka. Kerja-kerja eksperimen terdiri daripada lapan skala penuh 

spesimen rencam papak. Spesimen pertama dibuat tanpa sambungan ricih. Spesimen 

kedua terdiri daripada satu baris kancing ricih dikimpal kepada sokongan rasuk 

manakala spesimen yang ketiga, keempat dan kelima terdiri daripada dua baris 

kancing ricih. Spesimen keenam terdiri daripada penyambung ricih jenis U-bolts 

yang dicadangkan dan digerudi melalui kepingan keluli profil. Spesimen ketujuh 

terdiri daripada satu baris kancing ricih dengan penyambung ricih U-bolts. Spesimen 

kelapan terdiri daripada dua baris kancing ricih dan penyambung ricih yang 

dicadangkan. Kerja-kerja teori terdiri daripada pengubahsuaian kaedah kekukuhan 

sedia ada untuk memberikan kesesuaian menganalisis papak rencam dengan 

penyambung ricih U-bolts dengan tambatan hujung. Prosedur kiraan telah 

dibangunkan untuk mengkaji hubungan tegasan  ikatan ricih berbanding slip hujung 

(sifat ikatan ricih) berdasarkan ujian lenturan empat titik. Perisian unsur terhingga 

tiga dimensi, ANSYS telah digunakan untuk menentukan ketepatan kaedah 

kekukuhan anjal. Keputusan eksperimen ujian papak rencam menunjukkan bahawa 

penyambung ricih mempunyai kecekapan yang tinggi untuk meningkatkan 

kekukuhan dan kekuatan papak rencam berbanding dengan papak rencam tanpa 

penyambung ricih. Selain itu, didapati bahawa penyambung ricih yang dicadangkan 

adalah cukup kuat dan mulur untuk menghasilkan tindakan rencam penuh antara plat 

profil keluli dan papak konkrit. Papak rencam dengan penyambung ricih U-bolts 

menghasilkan prestasi yang terbaik berbanding papak rencam dengan penyambung 

ricih HSSC sahaja. Rintangan lenturan papak rencam dengan U-bolts telah 

meningkat sehingga 500% berbanding dengan papak rencam konvensional. 

Keputusan teori menunjukkan bahawa kaedah kekukuhan anjal berjaya digunakan 

untuk menganalisis papak rencam separa dan penuh. Nilai teori menunjukkan 

keputusan yang baik berbanding dengan keputusan ujian papak berskala penuh. 

Keputusan yang baik dicapai antara pemodelan unsur terhingga, eksperimen dan 

analisis menggunakan kaedah kekukuhan diubahsuai pada tahap anjal lelurus. 

Kesimpulannya, papak rencam yang dicadangkan dalam kajian in adalah cukup kuat 

untuk digunakan dalam struktur berskala besar. 
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′or 𝑓𝑐𝑛 - Concrete cube compressive strength 

F - External force 

𝑓𝑦𝑝 - Yield strength of corrugated steel plate 

𝑓𝑦 - Yield tensile strength of steel material 

𝑓𝑢 - Ultimate tensile strength of bolt 
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 ℎ𝑝 - Depth of the profile steel haunch 

hsc - Height of the headed stud 

h - Depth of beam section 

ℎ𝑡 - Total thickness of composite slab 

ℎ𝑐 - Height of concrete slab above profile steel      

sheeting 

ℎ𝑝 - The height of profile steel sheeting 

𝐼𝑐 - Moments of inertia of concrete  

𝐼𝑠 - Moments of inertia of steel  

𝐼𝑛 - Effective second moment of  profile steel area 

k - ordinate intercept of reduced experimental 

shear-bond line 

𝑘 - Curvature of the common deflection 

K - Shear stiffness of U-bolts 

K - Stiffness matrix for the beam element 

kc - Elastic stiffness matrix of the element 

L - Length of composite slab  

𝐿𝑠 - Shear span length 

M - Resisting moment 

m - Slope of reduced experimental shear-bond line 

𝑀𝑐 - Moment in concrete element 

𝑀𝑐 - Moment in steel element 

𝑀𝑅 - Design moment resistance 

𝑀𝑈 - Ultimate bending moment 

m - Shear modulus of the steel–concrete interface 

n - Distance from the central axis of the concrete to 

that of the corrugated steel sheet 

𝑃𝑅𝐾 - Shear connector design resistance 

Pu - Ultimate load 

Q - External deformation 
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s - Slip at concrete-steel interface 

Sp - Effective compression section modulus of 

profile steel plate 

Sn - Effective section modulus tension of profile 

steel plate 

T - Axial tension in steel 

V - Maximum shear at failure due to full scale tests 

V - Shear force of U-bolts 

v - shear density transferred by single U-bolt on the 

interface 

W - Distributed load 

Wt - Maximum load 

𝑊0.1 - Load cause slip 0.1 mm 

cZ  and sZ  

 

- Distances from the neutral axes of concrete and 

steel components to their top surfaces 

respectively 

Z   - Height of the neutral axial of the total section of 

composite slab 

𝜌 - Concrete density 

δ - Vertical deflection 

𝛿𝑢 - Slip at ultimate load 

𝛿𝑢𝑘 - Characteristic slip capacity 

𝛾𝑣 - Partial factor of safety 

τu - Mean ultimate shear stress 

τu,Rd - Design value of shear stress 

α and φ - Parameters relevant to material properties and 

section dimensions in composite slab 

σ - Bending stress 

휀𝑐 - Concrete strain 

휀𝑠 - Steel strain 

휀𝑠𝑙𝑖𝑝 - Slip strain 

μ          -        Coefficient of friction  
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction 

Concrete is one of the most important materials in the construction that 

promises a lot of advantages. The obvious advantages of concrete are that it can be 

cast into any shape, its excellent resistant to water and high temperatures and it 

requires less maintenance because of its high durability. Concrete is also known as 

an economical material which can reduce the overall project cost. Concrete alone is 

not applicable for construction due to its low tensile strength. Concrete can be 

strengthen by acting compositely with steel. This is due to the fact that steel materials 

have advantage that is not available for concrete (Al Nageim and MacGinley, 2005; 

Lui, 1999) such as: 

1. High strength/weight ratio: Hence, the dead weight of steel constructions is 

relatively small. This property makes the steel a very attractive structural 

material for long-span bridges, high-rise buildings and structures located in 

seismic areas.  

2.  High ductility: steel can undergo great plastic deformation before failure, so 

providing high reserve strength. This property is referred to as ductility. A 

ductile structure has energy-absorbing capacity and will not incur rapid 

failure. It shows large visible deformation before collapse. 

3. Predictable material properties: Properties of steel can be expected with a 

high degree of certainty. Steel indeed shows elastic behaviour up to a 

relatively high and well-defined stress level.  

 



2 

4. Speed of erection: Steel constructions can be erected rather rapidly.  

5. Quality of construction: Steel structures can be built with narrow tolerances 

and high-quality workmanship. 

6. Ease of repair and adaptation of prefabrication to repetitive use. 

7. Expanding existing structures: Steel buildings can be easily expanded by 

adding new bays or wings. 

8. Steel structures have relatively good fatigue strength. 

 

Therefore, in order to take advantage of both concrete and steel, they can 

combine to form composite structure. The composite structure that combine steel and 

concrete is composite slab which is more durable, stiffer and strong that using the 

materials alone. Composite structure can benefit from both the advantages of 

concrete and the advantages of steel together. The ability of composite slab to carry 

the loads depends on the degree of connection between the concrete and the steel. 

Therefore, whenever the interaction between these two materials is increased, the 

capacity and stiffness of composite slab increased.  

There are many types of composite slab but the most widely used type of 

composite slab is shown in Figure 1.1. The corrugated steel profile sheeting acts as 

the tensile reinforcement for the slab and normally the steel sheeting contains 

embossments to reduce the relative movements between the steel and concrete. Light 

mesh reinforcement is placed in the concrete to resist the cracking and shrinkage. 

Shear connectors are used to develop and increase composite action between the slab 

and the beam.  

 



3 

 

Figure 1.1: Typical steel and concrete composite constructions (adopted from Crisinel 

and Marimon, 2004) 

Steel is a material that works very well in tension. Figure 1.2 shows the 

plastic stress distribution in the composite slab. The proportions of the concrete slab 

and steel section refer to that the plastic neutral axis usually lies within the concrete 

slab. Therefore, all steel is in tension. Concrete material works well in compression 

but has insignificant resistance in tension. Hence for construction purposes, it 

conventionally depend on profiled steel deck to carry the tensile forces (this is the 

role played by the steel deck part of the composite cross section, which is efficient 

external reinforcement). 

 

Figure 1.2: Plastic stresses distribution of typical composite slab under positive 

bending 
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Where; 

dp:    Effective depth of composite slab 

e:   Centroid axis of sheeting 

Ap:  Cross section area of profile corrugated steel plate 

fc:   Concrete cylinder compressive strength 

fyp:  Yield strength of corrugated steel plate 

ht:   Total thickness of composite slab 

hc   The height of concrete slab above profile steel sheeting 

hp   The height of profile steel sheeting 

The steel part of a cross section undergoes the tension, and the concrete part 

(within the effective width) undergoes the compression force. The two materials 

should be structurally tied together using different types of shear connectors that are 

attached to the upper flange of the steel beam support. This type of shear connector is 

considered as end anchorage for composite slab. The profiled steel decking  is 

sandwiched between the top flange and the base of the stud, and the welding process 

links all the three together.  

The overall construction system has many significant advantages to offer 

when compared to the conventional systems. Composite slabs are the ideal solution 

for any type of construction project requiring both maximum technical and 

mechanical performance. Additional implicit advantage of this system is that it is 

lighter, it has a better quality control, and it reduces site time - fast track construction 

and less material handling at site. Furthermore, it has a better ductility and hence 

superior lateral load behaviour, better earthquake resistance and the overall 

construction depth is reduced because of the relatively short spans used (Altenbach et 

al., 2004; Ault and Kelly, 1976). In addition, the choice of this technology 

corresponds to certain inevitable requirements found in modern buildings, such as 

the composite slab is allowed for using false ceilings and improving planning of the 

various stages of execution.  

http://www.steelconstruction.info/Steel_construction_products#Decking_for_floors
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Composite slabs have conventionally found their highest application in steel 

framed office buildings, but they are also suitable for the following categories of 

building (Figure 1.3): 

1. Hospitals and schools 

2. Commercial buildings 

3. Leisure buildings, cinemas and stadia  

4. Industrial buildings and warehouses  

5. Refurbishment projects. 

6. Housing; both individual houses and residential buildings 

 

Figure 1.3: Applications of composite slab construction 
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1.2  Problem Statements 

The problem statements for this study can be given as follow: 

 

1. A composite member is designed to act monolithically. The monolithic 

behaviour is possible only if the horizontal shear at the interface between the 

two components can be resisted. Traditionally, full composite action can be 

achieved by neglecting the interface slip movement between the two 

components in the composite member (Ariffin, 2010). 

 

2. The shear bond failure of the composite slab is a big challenge facing by the 

designers and researchers. Introducing composite action between the 

corrugated steel plate and concrete slab should be based on their strength and 

ductility requirements. The improvement of the composite action will be 

studied in this research. 

 

3. The headed studs shear connectors (HSSC) is the most famous type of shear 

connection device. The shear studs acts with composite slab as end 

anchorage. However, the efficiency of using such structural members with 

concrete to form composite slab members has not been properly investigated. 

 

4.  According to European standards code Eurocode 4 (EN 1994-1-1, 2004), the 

method of analysis and design of the composite slab is semi-empirical. 

Modifying the existing stiffness method for analysis of every new type of 

composite slab will pose a problem.  

 

5.  In the literature, the theoretical and numerical analysis for full and partial 

composite slab with shear connection along the shear span distance is very 

limited and have drawbacks.  
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1.3  Aim and Objectives 

The aim of this study is to develop an efficient composite slab system with 

fully composite behaviour through experimental work, analytical and numerical 

analysis.  

Four specific objectives are considered in this study: 

1. To develop a new type of shear connectors in which more efficient and able 

to obtain composite slab full connection capacity.  

2. To study the performance of composite slab with cold formed corrugated 

steel and using welded shear studs connectors (HSSC). Also to compare the 

difference of the strength between the conventional composite slab, 

composite slab with the proposed shear connectors and composite slab with 

HSSC shear connectors. 

3. To modify the existing elastic stiffness matrix analysis method for predicting 

the behaviour of the composite slab with the proposed shears connectors and 

to simplify the analysis of composite slab with end anchorage (headed studs 

shear connectors)  

4. To validate the performance of the proposed composite slab by comparing 

empirical result and theoretical predictions with finite element analysis using 

ANSYS software. 

1.4  Scope of Study 

A new type of composite slab system comprising of corrugated steel plate 

sections as permeant formwork and concrete as slab is studied. A new type of shear 

connectors (U-bolts) is used. This study focuses on the behaviour of full and partial 
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composite slab structural system. The study covers two areas of research; the first 

research area is related to the performance of the proposed shear connectors by 

experimental work. The second research area is related to the analysis of partial and 

full composite slab action by modifying existing stiffness method analysis. The 

scopes of the study are as follows: 

1. Laboratory test program of composite slab, comprising of eight samples of 

composite slab utilizing profile trapezoidal deck type (SDP51-10) that is 

commonly available in Malaysian market. Full-scale 2.0 m length simply 

supported is tested using four-point load system. These specimens are built 

using one type steel deck and concrete grade 35 N/mm
2
. 

 

2. The first composite slab specimen was made without any shear connection. 

The second specimen was constructed with one line shear studs welded to the 

support beam while the third, fourth and five specimen were constructed with 

two lines of shear studs welded to the support beam. The sixth specimen was 

constructed with U-bolts shear connector that was fixed through the profiled 

steel sheets.  The seventh specimen was constructed with one line of shear 

studs with a U-bolts shear connector and finally the eighth specimen was 

constructed with two lines of shear studs and a U-bolts shear connector. 

  

3. In experimental work, the composite slab behaviour was investigated by 

measuring: 

a. Load-deflection behaviour  

b. End-slip interface between the concrete and corrugated steel plate 

c. Strain distribution at steel and concrete 

d. Mode of failure 

e. The plasticity of the composite slab based on EN code  

f. Stiffness of slab 

4. Simplified headed studs shear connectors (HSSC) as rotation spring to analyse 

the composite slab with end anchorage was presented. In addition, derivation 
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a stiffness equation for the analysis of the proposed composite slab with U-

bolts shear connector was conducted. 

5. A comparison between experimental, theoretical and 3D finite element 

analysis results was conducted. 

1.5  Significance of the Research 

Composite slab are extensively used in construction industry due to their 

efficiency in strength, stiffness and material savings (Degtyarev, 2014b). To date, 

headed stud shear connectors are commonly used to perform the composite action 

between steel beam and concrete slab (Lawson et al., 2001). However, it was found 

in many research that headed stud shear connectors is not enough to achieved full 

composite slab action. For this reason, a new shear connectors needed to be 

developed in an economical manner and easy construction. 

The new type of shear connectors that is developed in this study, namely U-

bolt shear connectors (UBSC) is able to reduce the longitudinal shear stress and to 

increase the resistance of shear bond at the interface between the steel deck and 

concrete. As a result the strength and capacity of composite slab is increased. The U-

bolt shear connectors could also reduce the rotation between the composite slab and 

the support beam due to the increment of the composite slab stiffness. On the other 

hand, the analysis method for composite slab needs to be modified to be equivalent 

with the new shear connectors and with the headed studs shear connectors (HSSC). 

The findings from this research may eventually lead to the development or 

improvement of the existing system to reduce the longitudinal shear failure of 

composite slab. Therefore, using U-bolt shear connectors with composite slab could 

significantly increase the strength and stiffness capacities required and achieved full 

composite action. It is potentially useful in the construction of longer composite slab. 
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1.6  Thesis Layout 

Chapter one presents the general introduction, background of the study, 

problem statement, aims and objectives, scope of this research. Significance of the 

study and thesis layout are also described in this chapter. 

Chapter two details a comprehensive literature review on the area of study 

and all published works related to the current study. 

Chapter three provides detailed description on the methodology of 

experimental work.  The fabrication of new shear connectors and their configurations 

are presented. Push test specimen configuration, fabrication, instrumentation and test 

procedure are described. Also, detailed description on the full–scale composite slab 

test i.e. fabrication of the specimen, test setup and procedure are outlined. 

Chapter four describes and analysis the experimental results for full-scale 

flexural test of composite slabs. Load-deflection curves and load-slip curves of all 

specimens and their strength capacity and ductility as well as failure modes are 

discussed.  

Chapter five presents the theoretical analysis of composite slab using 

stiffness analysis method. Also, is the derivation of the modification stiffness 

matrixes for composite slab containing the proposed shear connectors which are 

fixed along the shear spans distance. 

Chapter six expounds the modelling validations of theoretical and 

experimental work using three dimension finite element software ANSYS.  

Chapter Seven presents the summary of this research, conclusions, and 

recommendations for future work development.  
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