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ABSTRACT

Rotating Disc Contactor (RDC) column is one of the important equipments for
separation process, because it gives high performance and is more efficient among
equipments for solvent extraction. Over the years, researchers and engineers are
designing and building models of hydrodynamics of drops and mass transfer to
interpret the performance and to increase the efficiency of the RDC column. In this
research, the main aim is to develop and design models of hydrodynamics and mass
transfer of drops that are capable of work with any design of RDC column based on the
experimental data and fuzzy modelling. Firstly, the Sauter mean diameter is calculated
based on the flow rate of dispersed phase and Mamdani fuzzy model. Secondly, the
fuzzy model based on optimal interval technique (FMBOIT) is established to predict
models of the hydrodynamics of drops such as, mean number of daughter drops,
probability of drop breakage, Sauter mean diameter and hold-up of dispersed phase
from experimental data. Then, these models and beta distribution are incorporated
to develop the forward model of drop size distribution, which is used to obtain the
drop size distribution along RDC column. Besides the forward model, the inverse
model of drop size distribution is constructed based on the optimization technique that
determined the number of drops at bottom stages using the number of drops at top
stages. The last model is the mass transfer model, which depends on the forward
model of drop size distribution for calculating the amount of mass transfer from the
continuous phase to the dispersed phase. In addition, the mass transfer model allows
the usage of either the terminal or the characteristic velocity of drops which determines
the lifetime of drops between compartments. All the models are developed based on
three phases. Phase one is the literature review and problem formulation. Phase two
is the design and development of the proposed models. Phase three is implementation,
verification and validation of proposed models from phase two. Most of these models
give less error when compared with simulation data of previous researchers against
experimental data. Furthermore, the new mass transfer model allows parameters such
as the height of the compartment, the number of stages or the diameter of the column to
be changed at the same time. Thus, this new model is a powerful model for predicting
the performance and design of RDC column.
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ABSTRAK

Turus Penyentuh Cakera Berputar (RDC) adalah salah satu peralatan yang
penting bagi proses pemisahan kerana ia memberikan prestasi yang tinggi dan lebih
berkesan berbanding peralatan lain bagi pengekstrakan pelarut. Sejak beberapa
tahun kebelakangan ini, penyelidik dan jurutera mereka bentuk dan membina model
hidrodinamik titisan dan pemindahan jisim bagi mentafsirkan prestasi turus RDC serta
meningkatkan kecekapannya. Tujuan utama kajian ini ialah untuk membangunkan
dan mereka bentuk model hidrodinamik dan pemindahan jisim titisan yang mampu
berfungsi dengan sebarang reka bentuk turus RDC berdasarkan data eksperimen dan
pemodelan kabur. Pertama, purata diameter Sauter dikira berdasarkan kadar aliran fasa
terserak dan model kabur Mamdani. Kedua, Model kabur berdasarkan teknik selang
optimum (FMBOIT) diwujudkan untuk meramal model hidrodinamik titisan seperti
purata titisan anak, kebarangkalian pemecahan titisan, purata diameter Sauter dan isi
tertahan bagi fasa terserak daripada data eksperimen. Kemudian, model ini bersama
dengan taburan beta digabungkan untuk membentuk model ke depan bagi taburan
saiz titisan yang digunakan untuk mendapatkan taburan saiz titisan di sepanjang
turus RDC. Selain daripada model ke depan, model songsang bagi taburan saiz
model dibina berdasarkan teknik pengoptimuman bagi menentukan bilangan titisan
pada peringkat bawah turus dengan menggunakan bilangan titisan pada peringkat
atas turus tersebut. Model terakhir ialah model pemindahan jisim yang bergantung
kepada model ke depan untuk taburan saiz titisan bagi mengira jumlah pemindahan
jisim daripada fasa berterusan ke fasa terserak, dan juga membolehkan penggunaan
sama ada halaju terminal atau cirian bagi titisan untuk menentukan tempoh hayat
titisan antara kompartmen. Semua model dibina berdasarkan tiga fasa. Fasa pertama
ialah tinjauan kajian dan perumusan masalah. Fasa kedua ialah reka bentuk dan
pembangunan model yang dicadangkan. Fasa ketiga ialah pelaksanaan, penentusahan
dan pengesahan model daripada fasa kedua. Kebanyakan model ini memberikan
ralat yang lebih sedikit apabila dibandingkan dengan data simulasi yang diperoleh
penyelidik terdahulu terhadap data eksperimen. Tambahan pula, model pemindahan
jisim baharu membolehkan parameter seperti ketinggian ruang, bilangan peringkat
atau diameter turus ditukar serentak. Maka, model ini berkeupayaan tinggi untuk
meramal prestasi dan reka bentuk turus RDC.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Liquid-liquid extraction is one of the most important types of separation
process for chemical systems, which is based on the different distribution of the
separable components of two liquid phases (Molavi et al., 2011a). Most types of
liquid-liquid extraction equipment use two phases in the separation process, which
are the dispersed phase and the continuous phase. The dispersed phase can be
described as the phase that contains drops to provide the largest area of contact with the
continuous phase (Talib, 1994). The process of liquid-liquid extraction is commonly
used in chemical, biochemical and biotechnology industries (Maan, 2005; Molavi
et al., 2010b, 2011a).

In the last century, many types of equipment were used in the separation process
of chemical fields, such as the Rotating Disc Contactor (RDC) column, which was
developed during the period 1948–1952 by the Royal Dutch/Shell group in Amsterdam
(Talib, 1994). The RDC column is more commonly used because it gives high
performance and is more efficient when compared with other equipment for solvent
extraction (Moris et al., 1997).

However, the improvement of the design of the RDC column in recent years
has increased the importance of this column among the extraction columns (Moreira
et al., 2005). Therefore, in this research our concern is the RDC column, especially
for the modelling of the extraction process involved in the equipment. The modelling
of the RDC column is related to the modelling of the drop size distribution and the
modelling of the mass transfer.

Many researchers (Bahmanyar, 1988; Ghalehchian, 1996; Maan, 2005; Talib,
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1994) introduced models for drop size distribution and mass transfer to improve the
performance and capability of the RDC column. These models can be grouped into
two categories, which are the forward model and inverse model. The forward model
can be defined as the model that takes the geometrical and physical properties of the
RDC column as inputs in determining of the drop size distribution and mass transfer
along the RDC column, while the inverse model is usually used to obtain the input
parameters or to determine the causes for the desired output parameters (Maan et al.,
2003).

1.2 Problem Background

Modelling the process involved in the RDC column is divided into two types
of process, which is drop size distribution and the mass transfer process. Many
researchers have focused on both of these processes to interpret the performance of
the RDC column. Talib (1994) introduced three models of drop size distribution and
two models of mass transfer. Then, Ghalehchian (1996) developed a new steady-state
model for the mass transfer of the RDC column. After that, Arshad (2000) developed a
new steady-state model for the hydrodynamic process, and used fuzzy logic to predict
the input parameter for the specific given output. To get closer to reality, Maan (2005)
modified the mass transfer model with a time dependent function boundary condition.
Furthermore, Maan (2005) established a new technique for solving the inverse problem
of determining the value of the input parameters for the desired values of the output
parameters using the fuzzy approach. These models are mathematical forward models
except Maan (2005), which introduced an inverse model of mass transfer based on the
fuzzy approach.

Most of the models mentioned above were designed based on the geometrical
and physical properties of a specific RDC column. Furthermore, the parameters
of these models, such as the mean number of daughter drops, probability of drop
breakage and Sauter mean diameter are calculated through equations based on these
properties. These equations are called the empirical equations or empirical correlation,
which means they are unsuitable for all chemical systems and the design of all RDC
columns (Mohanty, 2000). In fact, the process of building these equations takes more
time and more experimental work to get the final equations or models. Furthermore,
it is well known that the measuring of drop size distribution in the liquid-liquid
extraction industries is challenging, expensive and very tedious (Ismail Al-Rahawi,
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2007). However, the following points explain the limitations and weakness of the
previous models in this field:

• The current equation of the mean number of daughter drops (Hancil and Rod,
1988) depends on the ratio between the drop diameter and the critical drop
diameter. Although this equation is used for a wide range of systems, and for
different extraction equipment (Talib, 1994), it needs to be improved for two
reasons. The first reason is that this equation was built based on particular
experimental data and specific geometrical properties. However, the liquid-
liquid extraction equipment has improved in recent years for use in various
fields, which means that this equation must be improved to be applicable to the
experimental data and design of the RDC column. For example, Garthe (2006)
modified this equation based on his experimental data, also Kalem et al. (2011)
used the modified equation by Garthe (2006) in his work. The second reason
is that this equation does not depend on the volume of fractions of the mother
drops in the calculation of the mean number of daughter drops. However, these
fractions are considered to be the core of the process of determining the drop
size distribution.

• The current equations for the probability of drop breakage (Bahmanyar and
Slater, 1991) need to be improved for two reasons. The first reason is the same
as the first reason in the previous point, which means that these equations are
unsuitable for all designs of RDC columns. For example, Molavi et al. (2011a)
proposed a new correlation for the probability of drop breakage to be compatible
with their experimental data and design of the RDC column. The second reason
is that these equations are built to obtain the probability of breakage at stage one,
but, in fact, this probability varies from one stage to another (Bahmanyar, 1988).

• Many researchers (Ismail Al-Rahawi, 2007; Kumar and Hartland, 1982; Moreira
et al., 2005; Soltanali and Ziaie-Shirkolaee, 2008) focused on the generation and
improvement of the correlation of the Sauter mean diameter, which is used in the
models of drop size distribution (Ismail Al-Rahawi, 2007; Soltanali and Ziaie-
Shirkolaee, 2008). Thus, the design of these models of drop size distribution
must be based on the developed correlation of the Sauter mean diameter based
on the experimental data or based on the flow rate.

• The distribution mechanism of the current forward models of the drop size
distribution begins from the bottom stages to the top stages. The Sauter mean
diameter can be calculated from the bottom stage, which leads to determining
the initial drop diameter and drop size distribution along the RDC column.
Sometimes, the experimental data are incomplete or contain the distribution of
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drops for some stages, which means the existing forward models of drop size
distribution fail to calculate the Sauter mean diameter for the bottom stage or
cannot be used directly in these cases.

• The current computer programs need to be developed to be able to combine the
hydrodynamics of the drops and mass transfer in one program that is capable
of presenting the results, and which is also compatible with different systems
(Arshad, 2000). For example, Attarakih et al. (2006) built a simulation tool
named LLECMOD for the liquid-liquid extraction column.

1.3 Problem Statement

Several models for the hydrodynamics of drops and mass transfer have been
proposed to improve the behaviour and performance of the RDC column. Most of
these models have been successful in simulating the process of the hydrodynamics of
the drops and mass transfer, and have given results close to the real process inside
the RDC column. But, these models were built based on the empirical correlation.
This means that these models are only valid for a specific RDC column or a particular
chemical system. Furthermore, the parameters of these models, such as the mean
number of daughter drops and probability of drop breakage might not be valid for the
different types of RDC column.

The problem is how to design and develop the hydrodynamic models of drops
and mass transfer to enable it to work with any design of RDC column based on the
experimental data and fuzzy models.

1.4 Objectives of the Research

The objectives of this study are as follows:

1. To develop models for the mean number of daughter drops and probability of
drop breakage along the RDC column using fuzzy models and experimental data.

2. To establish a new technique that can be incorporated in the fuzzy models to
predict models from the experimental data.
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3. To develop the correlation of the Sauter mean diameter and use it to formulate
an equation to determine the initial drop diameter.

4. To develop a forward model of drop size distribution that depends on the flow
rate and develop models for objectives 1, 2 and 3.

5. To construct an inverse model of drop size distribution that depends on the
forward model of the drop size distribution and fuzzy approach.

6. To develop a mass transfer model by incorporating the forward model of the drop
size distribution.

7. To create flexible simulation programs for all the models in this study.

1.5 Scope of Study

The main goals of this research are to determine models for the hydrodynamics
of the drops and mass transfer process based on the experimental data, several
equations of hydrodynamics and mass transfer of drops in the RDC columns from
previous researchers in this field (Bahmanyar, 1988; Kumar and Hartland, 1982; Maan,
2005; Talib, 1994), and fuzzy modelling. As there is no experimental work involved
in this study, the experimental data from previous researchers in this field will be used
for developing and comparing the models. Furthermore, the drops assumed that are
spherical in shape and that there is no coalescence between drops.

In this research, the hydrodynamics of the drops are determined using models
of the mean number of daughter drops, the probability of drop breakage and the models
of drop size distribution, which are forward and inverse. The forward model of drop
size distribution is incorporated in developing the mass transfer model. These models
are verified by many steps, such as check the theoretical description of each model
and statistical analysis. Furthermore, these models are validated by comparison with
experimental data and simulation data from previous researchers in this field. The
experimental data used in this study are taken from Talib (1994), Bahmanyar (1988),
Ghalehchian (1996), Molavi et al. (2011) and the simulation data are taken from
Bahmanyar (1988), Talib (1994), Maan (2005). The simulation programs of the models
are designed based on the MATLAB 2011 software.
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1.6 Significance of the Findings

This study introduces a new concept for building models of the hydrodynamics
of drops and the mass transfer of the RDC column based on the fuzzy models and
experimental data. The fuzzy models of the mean number of daughter drops and the
probability of drops gives results very close to the experimental data. Furthermore,
these models can be easily modified based on the size of the experimental data. The
Sauter mean diameter is developed based on the experimental data, and is used it to
determine the initial drop diameter through a linear equation. The forward model of
drop size distribution is designed based on the developed models of the mean number
of daughter drops, the probability of drop breakage and initial drop diameter, which is
calculated based on that linear equation. Furthermore, this model is able to work with
the flow rate directly. Moreover, it gives results closer to the reality of the distribution
of drops inside the RDC column.

The inverse model of drop size distribution has many advantages besides the
distribution of drops, which can be used to control the drop distribution between stages.
This research gives a flexible mass transfer model that is capable of working with
different velocities of drops and allows for a change in the value of the geometrical and
physical properties of the RDC column. This work provides a new technique, named
the optimal interval technique, which merges with the fuzzy models to obtain models
for the probability of drop breakage, the Sauter mean diameter and hold-up of the
dispersed phase from the experimental data directly. Furthermore, this study provides
computer programs of all the models, which can help engineers in designing the RDC
column. Finally, these models will enhance our understanding of the performance and
capability of the RDC column.

1.7 Organization of Thesis

This thesis consists of seven chapters. The present chapter gives a general
background, problem background, problem statement, objective of the research, scope
of study and significance of the findings. Chapter 2 consists of ten sections. The
first and second section presents the literature review of the liquid-liquid extraction
in general. The third and fourth sections present liquid-liquid equipment, especially
the RDC column, and the hydrodynamics of drops, such as drop velocities, hold-up of
the dispersed phase and the probability of drop breakage. The fifth and sixth sections
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provide a review of the mass transfer and previous work of researchers in this field,
such as the probability of drop breakage, forward model of drop size distribution and
mass transfer. The seventh and eighth section provide a review of the inverse problem
and fuzzy models. The ninth section shows the relationship between the literature and
the objectives of this study. The last section provides the summary of this chapter.

The third chapter presents two models and a technique, which are the fuzzy
models of the mean number of daughter drops and the probability of drop breakage,
and the new technique called the optimal interval technique. The first model describes
the process for obtaining the mean number of daughter drops by determining the
volume fraction of mother drops using the fuzzy model. The second model describes
the process of obtaining the probability of drop breakage along the RDC column using
two steps. The first step is using the optimal interval technique with the fuzzy model
to determine the probability of drop breakage at stage one, while the second step is
calculating the variation in the value of probability in step one for the remaining stages.

In Chapter 4, the Sauter mean diameter will be determined by two methods.
The first method develops the Kumar and Hartland (1982) equation based on the
experimental data. The second method is calculating it direct from the experimental
data using the fuzzy model. After that, the Sauter mean diameter is used for calculating
the initial drop diameter through a linear equation. The main aim of this chapter is to
determine the forward model of the drop size distribution. This model is developed
using the fuzzy models in Chapter 3, in which the Sauter mean diameter, initial
drop diameter and beta distribution with the random number of volume fraction are
developed. Furthermore, it presents the distribution of drops along the RDC column
and plotting the volume fraction for each stage.

The fifth chapter presents the inverse model of drop size distribution, which
is used to determine the number of drops at the bottom stage by the number of drops
at the top stage using the fuzzy approach. Furthermore, this model can be used for
the control of the distribution of drops between stages. This chapter provides a new
relationship for all the Sauter mean diameters along the RDC column.

In Chapter 6, the model of mass transfer is developed that can be incorporated
in the forward model of drop size distribution to determine the concentrations of the
continuous and dispersed phase. This model can be considered as the flexible model,
which is able to work with different velocities of drops and allows for a change in
the value of the geometrical and physical properties of the RDC column, such as
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rotor speed, height of compartment and flow rate. Furthermore, it is considered
as a predictive model that can be used to determine the relationship between the
geometrical and physical properties of the RDC column, such as the relationship
between the rotor speed and flow rate, concentration of phases and interfacial tension.

Chapter 7, the final chapter concludes the thesis and includes suggestions for
the further research of this field. Figure 1.1 shows the flow chart of the organization of
the thesis.
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Figure 1.1: Organization of the Thesis
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