INFLUENCE OF ELECTRIC DISTRIBUTION NETWORK TOPOLOGY ON HARMONICS

SHAIFUL NIZAM BIN SAMIN

UNIVERSITI TEKNOLOGI MALAYSIA

INFLUENCE OF ELECTRIC DISTRIBUTION NETWORK TOPOLOGY ON HARMONICS

SHAIFUL NIZAM BIN SAMIN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical μ Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JUNE 2014

This research specially dedicated to both my beloved mother and father for their support and encouragement, also to my supervisor Dr. Ahmad Safawi Bin Mokhtar, my wife, Nurulhuda Mohamed Hatta who always be my strength & my childrenÑ, Naim, Izzah & Hafiy, family members and all my friends.

ACKNOWLEDGEMENT

First of all, I would like to thank and praise be to Allah S.W.T, the Most Merciful and the Most Compassionate. Peace is upon him, Muhammad S.A.W., the messenger of God.

I would like to express my special thanks to my supervisor, Dr. Ahmad Safawi Bin Mokhtar for his advices, continual guidance, opportunity and support until this project was completed successfully. He always gives the brilliant idea and knowledge in helping me to carry out the project in a better way. Dr. Ahmad Safawi knowledge and help is very useful for me to complete the project appropriately.

My thanks also extended to all my friends and research partners for their kind corporations. Finally, I would like to thank my parents and my lovely wife, who always being supportive, children **N** and family for their understanding and unconditional love and encouragement, which allow me to achieve what I have and will.

Thank you.

ABSTRACT

The invention of electronic equipment has lead to a serious power quality problem in harmonics. The equipments, also known as the nonlinear loads have the ability to distort parameters such as voltage and current. Component of harmonics might increase RMS value of current, thus jeopardizing the power system components. These harmonic currents can in worst cases result in; Overheating or de-rating of transformer, Overheating of wiring, Damaging of capacitor banks, Resonance, Malfunction of electronic equipment, Communication interference and Distorted supply voltage. Due to the impedance of the distribution line the harmonic currents lead to harmonic voltage distortion, which results in increased losses or damaging of parallel loads and in worst case to system instability. The interest in harmonic distortion study has increased in both manufactures of electronic equipment and the power supply authorities. Harmonic studies have become an important aspect of power system analysis and design in recent years. Harmonic simulations are used to quantify the distortion in voltage and current waveforms in a power system and to determine the existence and mitigation of resonant conditions. Driven by challenging environmental constraints, deregulation of the energy market and privatization of the power supply industry, distribution power systems are ever more often operating at their maximal performance limits (and frequently beyond them) to maximize asset utilization. Since the quality of electrical power, example the voltage at the point of common coupling, has become an important feature of consumer goods on the market, the interest on finding, describing and above all in forecasting system behavior grows continuously.

ABSTRAK

Penciptaan peralatan elektronik telah membawa kepada masalah kualiti kuasa yang semakin serius ketika ini. Peralatan elektronik tersebut, juga dikenali sebagai beban tak linear mempunyai keupayaan untuk mencemarkan parameter voltan dan arus di dalam sistem kuasa. Komponen harmonik mungkin meningkatkan nilai RMS, dan menjejaskan sistem kuasa. Arus harmonik juga punca peningkatan suhu atau menurunkan keboleharapan alatubah kuasa, kepanasan pendawaian, merosakkan banka kapasitor, resonan, kerosakan peralatan elektronik, gangguan komunikasi dan menjadi punca voltan bekalan terherot. Oleh kerana galangan talian pengagihan, arus harmonik boleh menjana voltan harmonik, yang menyebabkan kerugian atau merosakkan beban dan ketidakstabilan sistem kuasa. Berdasarkan impak-impak tersebut, kepentingan dalam kajian berkaitan harmonik telah meningkat dalam kedua-dua pengeluar peralatan elektronik dan syarikat utiliti. Kajian harmonik telah menjadi satu aspek penting dalam analisis sistem kuasa dan reka bentuk sejak akhir-akhir ini. Simulasi harmonik digunakan untuk mengukur kadar gangguan dalam bentuk gelombang voltan dan arus dalam sistem kuasa bagi menentukan kewujudan dan langkah pengurangannya. Didorong oleh situasi yang mencabar, diregulasi pasaran tenaga dan penswastaan industri bekalan kuasa, sistem pengagihan kuasa biasanya lebih kerap beroperasi pada had maksimum prestasi mereka untuk mengoptimakan penggunaan aset. Kini kualiti kuasa elektrik, contohnya voltan pada pusat penghantaran kuasa (PCC - *point of common coupling*), telah menjadi satu kriteria penting bagi pengguna. Maka, keperluan untuk menjalankan kajian secara berterusan bagi menerangkan fenomena tersebut dan meramalkan tindakbalas sistem kuasa adalah satu prasyarat dan menunjukkan peningkatan berterusan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMET	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	х
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	XV
LIST OF SYMBOLS	xvii
LIST OF APPENDICES	xviii

1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Project	4
1.5	Thesis Organization	4

2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Power Distribution System in Malaysia	10

2.3	Harmonic		12
	2.3.1	Triplen Harmonic	16
2.4	Consu	imer Load Characteristic	17
	2.4.1	Linear Load	19
	2.4.2	Nonlinear Load	20
2.5	Harm	onic in Power Distribution System	23
	2.5.1	Harmonic Definition	23
	2.5.2	Harmonic Sequences	24
	2.5.3	Quantitative Term of Harmonics	26
2.6	Harm	onic Sources	28
	2.6.1	Harmonics due to Application of	29
		Switching Equipment	
	2.6.2	Harmonics from Modern Electronic Based	30
		Equipment	
2.7	Harm	onic Effects on Equipment and Power	31
	Distri	bution System	
2.8	Electr	ical Distribution System Planning	32
	2.8.1	Basic Design Criteria	34
	2.8.2	Distribution Network Configuration	35
ME	THOD	OLOGY	
3.1	Introd	luction	37
3.2	Harm	onic Analysis	37
	3.2.1	Harmonic Analysis By Mathematics	38
	3.2.2	Harmonic Analysis by Simulation	40
3.3	Power	r System Computer Aided Design Model	41
	(PSC/	AD)	
	3.3.1	PSCAD [®] /EMTDCØ V4.2.0	42
3.4	Case	Study Specifications	43
	3.4.1	Case Study 1 Interconnected Topology	45

3

3.4.2 Case Study 2 Ring Topology Model 46

Model

3.4.3 Case Study 3 Radial Topology Model 47

3.5	Field Measurement at TNB Main Intake	49
	Substation	

4 **RESULTS AND DISCUSSION**

4.1	Introduction	51
4.2	Simulation Results: Case Study 1	51
4.3	Simulation Results: Case Study 2	58
4.4	Simulation Results: Case Study 3	65
4.5	Field Measurement Results and Analysis	72
4.6	Summary Results and Discussion	73

5 CONCLUSION

5.1	Conclusion	76

5.2 Recommendation 78

REFERENCES	80
Appendix A	84
Appendix B	85
Appendix C	86
Appendix D	87

LIST OF TABLES

TITLE

TABLE NO.

2.1	IEEE STD 519-1992 Current Distortion Limits For	16
	General Distribution Systems.	
2.2	Typical Load of User.	18
2.3	Harmonic order and subsequent sequences.	25
3.1	Parameters being used for the modelling	44
4.1	Comparison of THDv & THDi between 3 cases	74
4.2	Comparison of harmonic orders between 3 cases at	74
	Source Bus	
4.3	Comparison of harmonic orders between 3 cases at	74
	Load Bus	
4.4	Summary of site measurement at SDAI Substation	75
	(Radial topology)	
A.1	Characteristics of Power System Electromagnetic	84
	Phenomena by IEC.	
B.1	IEEE 519-1992 Recommended Voltage Distortion	85
	Limits	
C.1	IEC 61000-3-6: Compatibility levels for harmonic	86
	voltages (in percent of the nominal voltage) in LV	
	and MV power systems	
D.1	IEC 61000-3-6:Indicative values of planning levels	87
	for harmonic voltage (in percent of the nominal	
	voltage) in MV, HV and EHV power systems	

PAGE

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Harmonic distortion caused by an adjustable speed	12
2.2	drive. Current waveform and harmonic spectrum of an	15
2.2	ASD input current.	10
2.3	An electrical one-line diagram for a simple system	17
	used by many facilities that use computers	
	extensively.	
2.4 (a)	Pure resistive network where there is no difference	20
	in phase angle between voltage and its	
	corresponding current.	
2.4 (b)	Impedance-loaded network where there is a	20
	difference in phase angle between voltage and	
	current.	
2.5	Example of waveform of (a) source voltage, and (b)	21
	distorted current at time interval t_1 and t_2 .	
3.1	Relationship of Distorted Waveform with Frequency	39
	Spectrum.	
3.2	PSCAD and Manitoba logo	42
3.3 (a)	Radial Distribution System Topology Model	45
	(without harmonic source)	
3.3 (b)	Radial Distribution System Topology Model (with	46
	harmonic source)	
3.4 (a)	Ring Distribution System Topology Model (without	46

harmonic source)

	narmonic source)	
3.4 (b)	Ring Distribution System Topology Model (with	47
	harmonic source)	
3.5 (a)	Interconnected Distribution System Topology	48
	Model (without harmonic source)	
3.5 (b)	Interconnected Distribution System Topology	48
	Model (with harmonic source)	
3.6	Skudai 275/132/33/22kV Substation Single-line	49
	Drawing	
3.7	22kV Radial type distribution network topology at	50
	SDAI 275/132/33/22kV Substation	
3.8	Qualitrol BEN32 Analysis Centre version 3.8.4	50
	software	
4.1 (a)	Radial Distribution System Topology Model	52
	(without harmonic source) voltage measurement	
	simulation result	
4.1 (b)	Radial Distribution System Topology Model	52
	(without harmonic source) current measurement	
	simulation result	
4.1 (c)	Radial Distribution System Topology Model	53
	(without harmonic source) voltage FFT analysis	
	(THD and harmonic order)	
4.1 (d)	Radial Distribution System Topology Model	54
	(without harmonic source) current FFT analysis	
	(THD and harmonic order)	
4.2 (a)	Radial Distribution System Topology Model (with	55
	harmonic source) voltage measurement simulation	
	result	
4.2 (b)	Radial Distribution System Topology Model (with	55
	harmonic source) current measurement simulation	
	result	
4.2 (c)	Radial Distribution System Topology Model (with	56
	harmonic source) voltage FFT analysis (THD and	

harmonic order)

	narmonic order)	
4.2 (d)	Radial Distribution System Topology Model (with	57
	harmonic source) current FFT analysis (THD and	
	harmonic order)	
4.3 (a)	Ring Distribution System Topology Model (without	58
	harmonic source) voltage measurement simulation	
	result	
4.3 (b)	Ring Distribution System Topology Model (without	59
	harmonic source) current measurement simulation	
	result	
4.3 (c)	Ring Distribution System Topology Model (without	60
	harmonic source) voltage FFT analysis (THD and	
	harmonic order)	
4.3 (d)	Ring Distribution System Topology Model (without	61
	harmonic source) current FFT analysis (THD and	
	harmonic order)	
4.4 (a)	Ring Distribution System Topology Model (with	62
	harmonic source) voltage measurement simulation	
	result	
4.4 (b)	Ring Distribution System Topology Model (with	62
	harmonic source) current measurement simulation	
	result	
4.4 (c)	Ring Distribution System Topology Model (with	63
	harmonic source) voltage FFT analysis (THD and	
	harmonic order)	
4.4 (d)	Ring Distribution System Topology Model (with	64
	harmonic source) current FFT analysis (THD and	
	harmonic order)	
4.5 (a)	Interconnected Distribution System Topology	65
	Model (without harmonic source) voltage	
	measurement simulation result	
4.5 (b)	Interconnected Distribution System Topology	66
	Model (without harmonic source) current	

	measurement simulation result	
4.5 (c)	Interconnected Distribution System Topology	67
	Model (without harmonic source) voltage FFT	
	analysis (THD and harmonic order)	
4.5 (d)	Interconnected Distribution System Topology	68
	Model (without harmonic source) current FFT	
	analysis (THD and harmonic order)	
4.6 (a)	Interconnected Distribution System Topology	69
	Model (with harmonic source) voltage measurement	
	simulation result	
4.6 (b)	Interconnected Distribution System Topology	69
	Model (with harmonic source) current measurement	
	simulation result	
4.6 (c)	Interconnected Distribution System Topology	70
	Model (with harmonic source) voltage FFT analysis	
	(THD and harmonic order)	
4.6 (d)	Interconnected Distribution System Topology	71
	Model (with harmonic source) current FFT analysis	
	(THD and harmonic order)	
4.7	Measurement window and result from site	72
	measurement at SDAI 275/132/33/22kV Substation	
4.8	Typical Load Profile at SDAI 275/132/33/22kV	73
	Substation	

LIST OF ABBREVIATIONS

TNB	-	Tenaga Nasional Berhad
PCC	-	Point-of-common Coupling
THDv	-	Total Harmonic Distortion Voltage
THDi	-	Total Harmonic Distortion Current
PDCA	-	Plan-Do-Check-Act
PMU	-	Main Intake Sub-station (Pencawang Masuk Utama)
PPU	-	Main Distribution Sub-station (<i>Pencawang Pembahagian Utama</i>)
SSU	-	Main Switching Station (Stesen Suis Utama)
PE	-	Distribution Sub-station (Pencawang Pembahagian Elektrik)
LV	-	Low-voltage
SMPS	-	Switch-mode power supply
RMS	-	Root-mean square
EGAT	-	Electricity Generating Authority of Thailand
OLTC	-	On Load Tap Changers
THD	-	Total Harmonic Distortion
ASD	-	Adjustable speed drive
UPS	-	Uninterruptible power supplies
ATS	-	Automatic transfer switch

S/S	-	Static bypass switch
IHD	-	Individual Harmonic Distortion
PWM	-	Pulse width modulation
PSCAD®	-	Power Systems Computer Aided Design
EMTDC	-	Electromagnetic Transients with DC analysis

LIST OF SYMBOLS

V	-	Voltage
AC	-	Alternating Current
DC	-	Direct Current
Hz	-	Hertz
A	-	Ampere
kVA	-	Kilo Volt-Ampere
>	-	Greater than
<	-	Less than
mA	-	mili-Ampere
Т	-	Temperature
3 rd	-	Third
kV	-	kilo-Volt
%	-	Percentage

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Characteristics of Power System Electromagnetic	84
	Phenomena by IEC	
В	IEEE 519-1992 Recommended Voltage	85
	Distortion Limits	
С	IEC 61000-3-6: Compatibility levels for harmonic	86
	voltages (in percent of the nominal voltage) in LV	
	and MV power systems	
D	IEC 61000-3-6:Indicative values of planning	87
	levels for harmonic voltage (in percent of the	
	nominal voltage) in MV, HV and EHV power	
	systems	

CHAPTER 1

INTRODUCTION

1.1 Introduction

Harmonics have existed in power systems for many years. In the past, most electrical equipment is using balance linear load. A linear load in a power system distribution is a component in which the current and voltage are perfect sinusoidal. Examples of linear loads are induction motor, heaters and incandescent lamps. But the rapid increase in the electronics device technology such as diode, thyristors, etc. cause industrial loads to become non-linear. These components are called solid state electronic or non-linear load. The non-linear load connected to the power system distribution will generate harmonics current and voltage. The effect of current distortion on power distribution systems can be serious, primarily because of the increased current flowing in the system.

In other words, because the harmonic current does not deliver any power, its presence simply uses up system capacity and reduces the number of loads that can be powered. Harmonic current occur in a facility **Ñ** electrical system can cause equipment malfunction, data distortion, transformer and motor insulation failure, overheating of neutral buses, tripping of circuit breakers, and solid-state component

breakdown. The cost of these problems can be enormous. Harmonic currents also increase heat losses in transformers and wiring.

Nowadays, Power Quality has become the main factor in our life. If this quality of power is being polluted over the electrical power network, serious problems will arise within the modern society and its conveniences. The generation of harmonic currents and voltages cause one of the most harmful power quality problems. Harmonic may affect the whole electrical environment and there are many possible ways it can further degrade the power quality at much larger distances from where it originates. The efficiency of power in our homes, offices, schools, factories and power plants could also be affected by the generation of harmful harmonics. However, to determine the limits of harmonic levels and to eliminate this problem is not a straightforward exercise.

The rapid development in this industrial era and the increasing demand on electricity supply had contributed to a vast expansion of the power system. A distribution network may expand from a small and simple system to a more complicated connection to fulfill the needs arises. This mix of distribution network topology may influence the harmonics level itself. Therefore there is a need to investigate the influence of distribution network topology to harmonics.

1.2 Problem statement

The issue in electricity power sector delivery is not confined to only energy efficiency and environment but more importantly on quality and continuity of supply or power quality and supply quality. Harmonics have always been present in power systems. Thus, harmonic distortion can be considered as a sort of pollution of the electric system which can cause problems if the sum of the harmonic currents exceeds certain limits. It is important to understand the effects of different type of electric distribution network topology on different level of harmonics. Since nowadays non-linear loads represent a large percentage of the total loads. Under these conditions, total harmonic distortion (THD) may become very high and therefore dangerous for the system.

It is vital to investigate the power system response to harmonics and understand how the network topology influence the harmonics effect itself. In addition, further site harmonic measurements and analysis was carried out at Tenaga Nasional Berhad (TNB) Main Intake Substation **N** point of common coupling (PCC) to compare the results obtained from the simulation study.

1.3 Objectives

This research has the following objectives:

- a) The study the effects of different type of electric distribution network topology on different level of harmonics.
- b) To design and model distribution network topology using commercial Engineering Tools/Software.
- c) To perform simulation study of different distribution network topology to obtain the effects on harmonics level itself.
- d) To investigate the harmonics level in terms of THDv & THDi.

1.4 Scope of project

To achieve the said objectives, this project will study and review previous papers and research to get the relevant methods of harmonics studies technique. This project is using a Plan-Do-Check-Act (PDCA) approach and few scopes and guidelines are listed to ensure the research is conducted within its intended boundary. Firstly, there were many papers on harmonic analysis available mainly focusing on harmonic sources, harmonic analysis and harmonic measurement. This project scope however focused on the impact of distribution network topology on harmonics level only. Secondly, the most important aspect of this project is related to modeling and simulation using PSCAD®/EMTDCØ V4.2.0 and Matlab Simulink R2009a software.

Hence, in order to complete the project, one must have strong knowledge in PSCAD®/EMTDCØ V4.2.0 and Matlab Simulink R2009a. On top of that, as to develop the distribution network topology model, a lot of research and literature review need to be done. Some papers already describe the topologies used to develop this distribution network topology. And some papers shares the problems arise in obtaining the output result. Finally, for this paper, the scope of project is up until the simulation results only. Hopefully, it will be useful as for reference to other students and researchers.

1.5 Thesis Organization

This thesis will be discussing in detail the design stages, the data gathered and the probable output based on the calculations done. This thesis will be divided into five chapters. Chapter One; Introduction, Chapter Two; Literature Review, Chapter Three; Methodology, Chapter Four; Results and Chapter Five; Conclusion. Chapter one; Introduction will be discussing the background of the study, objectives and scopes of study. Chapter two will discuss in detail the reviewed papers, journals, proceedings and relevant information regarding the methods of harmonics studies applicable. The methodology chapter will be discussing the methods used in this project. Chapter four will then discuss the results obtained in the computer simulation study for this project. The results will be compared with site measurement carried out at Tenaga Nasional Berhad (TNB) Main Intake Substation view of common coupling (PCC). The last chapter will conclude the findings and recommendation for further improvement in future study.

REFERENCES

[1] Denisa, R., Silvia, D. and Marian, D. Evaluation of Power Quality Factors on the Boundaries between Networks. *ICMET*. Craiova.

[2] Meyer, J. and Schegner, P. Characterization of power quality in low voltage networks based on modeling by mixture distributions. 9th International Conference on Probabilistic Methods Applied to Power Systems. 2006

[3] Mansoor, A. Lower Order Harmonic Cancellation: Impact of Low-Voltage Network Topology. *EPRI Power Electronics Applications Center*.

[4] Khandaker, M. S. Islam, and Abdul, H. Samra. Identification Of Harmonic Sources In Power Distribution Systems. *Florida International University*.

[5] Lana, A., Tero Kaipia, T. and Partanen, J. Investigation Into Harmonics Of LVDC Power Distribution Network Using EMTDC/PSCAD Software. *International Conference on Renewable Energies and Power Quality (ICREPQ'11)*. 13th to 15th April, 2010. Las Palmas de Gran Canaria (Spain). 2010

[6] Heyge, H. Discussion of Power Distribution System Design for Operation Under Nonsinusodial Load Conditions *Š. IEEE Transaction On Industrial Application*. September/October 1995. Kansas City, USA. IEEE. 1995. Vol. 31, No. 5. [7] Cox, R. W. An Intuitive Analysis of Harmonic Power Flow in Electrical Distributions System. *IEEE IQ Metering & Protection Cutler-Hammer*. Pittsburgh, PA. IEEE.

[8] Hansen, S., Nielsen, P. and Blaabjerg, F. Harmonic Cancellation by Mixing Non-linear Single-phase and Three-phase Loads. *Aalborg University, Institute of Energy Technology*. Graasten, Denmark.

[9] Task Force On Harmonics Modelling And Simulation, Transmission and Distribution Committee. Test Systems for Harmonics Modelling And Simulation. *IEEE Transactions on Power Delivery*. April 1999. IEEE. 1999. Vol. 14, No. 2.

[10] Sharma, V. K., Moinuddin, M. N., Ibraheem, D. and Khan M. A. Power Quality Assessment And Harmonic Comparison Of Typical Non-linear Electronic Loads. *International Conference on Industrial Technology (ICIT 2000)*. Goa, India. IEEE Industrial Electronics Society. 2000.

[11] Bachry, A. and Styczynski, Z. A. An Analysis Of Distribution System Power Quality Problems Resulting From Load Unbalance And Harmonics. IEEE.

[12] M. Z. C. Wanik, Y. Yusof, S. N. Al-Yousif, K. C. Umeh and A. Mohamed. Simulation of Harmonic Resonance Phenomena in Industrial Distribution System. Department of Electrical, Electronics and System Engineering, Universiti Kebangsaan Malaysia. Bangi, Selangor.

[13] Hamzah, N., Mohamed, A., and Hussain, A. Methods For Determining Utility
And Customer Harmonic Contributions At Point Of Common Coupling. *National Power and Energy Conference (PECon)*. Bangi, Selangor. PECon 2003 Proceedings.
2003.

[14] M. Z. C. Wanik, Y. Yusof, S. N. Al-Yousif, K. C. Umeh and A. Mohamed. Simulation of Harmonic Resonance Phenomena in Industrial Distribution System. *National Power and Energy Conference (PECon)*. Kuala Lumpur, Malaysia. PECon 2004 Proceedings. 2004.

[15] Munasinghe, K. D. A. and Abeyratne, S. G. Power Quality and Harmonic Loads. I^{st} International Conference on Industrial And Information Systems (ICHS 2006). 8th μ 11th August, 2006. Sri Lanka. 2006.

[16] Nicholson, G., Gosbell, V. J. and Parsotam, A. Analysis of Harmonic Distortion Levels on a Distribution Network. *IEEE*.

[17] Venkatesh, C., Kumar, D. S., Siva Sarma, D. V. S. S. and Sydulu, M. Estimation and Mitigation of Voltage and Current Harmonics in Distribution System. *IEEE*.

[18] McDee, K. B. And Simoes, M. G. Location the Origin of Feeder Level Harmonics Utilizing Remote THD Measurements. @2011 IEEE.

[19] Perera, S., Gosbell, B. J. and Sneddon, B. A Study on the Identification of Major Harmonic Sources in Power Systems. *School of Electrical, Computer and Telecommunications Engineering, University of Wollongong*. New South Wales.

[20] Nasini, P. R., Narra, N. R. and Santosh, A. Modelling and Harmonic Analysis of Domestic/Industrial Loads. International Journal of Engineering Research and Application (IJERA). September-October 2012. ISSN: 2248-9622 <u>www.ijera.com</u>. Vol. 2, Issue 5. pp. 485-491.

[21] Lian, K. L. and Lehn, P. W. Harmonic Analysis of Single-phase Full Bridge Rectifiers Based on Fast Time Domain Method. July, $9^{th} \mu 12^{th}$, 2006. Montreal, Quebec, Canada. *IEEE ISIE 2006*. 2006

[22] Manitoba HVDC Research Centre. Application of PSCAD/EMTDC. Manitoba, Canada. 2008.

[23] Venkatesh, C., Kumar, D. S., Siva Sarma, D. V. S. S. and Sydulu, M. Modelling of Non-linear Loads and Estimation of Harmonics in Industrial Distribution System. *15th National Power Systems Conference (NPSC)*. December, 2008. IIT, Bombay, India. 2008.

[24] De La Rosa, F. C. *Harmonics and Power System*. Boca Raton, FL, USA. CRC Press, Taylor & Francis Group. 2006

[25] Suriadi. Analysis of Harmonics Current Minimization on Power Distribution System Using Voltage Phase Shifting Concept. M. Sc. Thesis. Universiti Sains Malaysia. 2006.

[26] Muhammad Mokhzaini Bin Azizan. *Determining Correction Factor of Power Cable Sizing Under Non-linear Load Conditions*. M. Sc. Thesis. Universiti Sains Malaysia. 2008.

[27] Kabelo Clifford Modipane. An Investigation of the Effects of Voltage and Current Harmonics on an Electrical Distribution Island Network. University of Johannesburg. 2005.

[28] Lehn, P. W. Direct Harmonic Analysis of the Voltage Source Converter. *IEEE Transacton on Power Delivery Vol. 18, No. 3.* July 2003.

[29] Anaya-Lara, O. and Acha, E. . Modelling and Analysis of Customs Power System Using PSCAD/EMTDC. *IEEE Transacton on Power Delivery Vol. 17, No. 1.* January 2002.