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ABSTRCT  

By using the well-known Bryton cycle, great turbine industries strive to 

extend the turbine inlet temperature and increase engine performance. However the 

turbine inlet temperature increment creates harsh environment for the downstream 

components of the combustor and so it is needed to design a cooling technique. The 

blowing ratio increase, caused to cooling effectiveness enhancement, however, for 

the traditional cooling system, the coolant not attached better on the surface at higher 

blowing ratios and therefore, it is required to restructure the cooling holes. 

Compound cooling holes is the useful way to this achievement. But, Most of the 

previous studies paid attention on the using compound cooling holes on the turbine 

blades and there is a lack of research on the application of these holes at the end wall 

of combustor. This study was accomplished in order to investigate the effects of 

cylindrical and row compound cooling holes with alignment angle of 30 degree, 60 

degree and 90degree. The combustor used in the study is Pratt and Whitney gas 

turbine engine. This model was simulated and analyzed with a commercial finite 

volume package ANSYS FLUENT 14.0 to gain fundamental data.The entire 

findings of the study showed that with using the row compound cooling holes near 

the end wall surface, film cooling effectiveness is doubled compared to the cooling 

performance of baseline case. To conclude, as different arrangements of cooling 

holes affect the film cooling performance, it is strongly recommended to use a 

combination of compound cooling holes with different alignment angles for cooling 

panels. 
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ABSTRAK  

 
 Dengan menggunakan kitar Bryton yang terkenal, industri turbin berusaha untuk 

menambahkan lagi suhu di alur masuk turbin dan meningkatkan prestasi enjin. Walau 

bagaimanapun pertambahan suhu di alur masuk turbin mewujudkan persekitaran yang 

kasar untuk komponen-komponen di hiliran pembakar dan menyebabkan perlunya 

kepada mereka-bentuk teknik penyejukan. Peningkatan nisbah penyemburan, 

menyebabkan peningkatan pada keberkesanan penyejukan, walaubagaimanapun, untuk 

sistem penyejukan tradisional, bahan penyejuk tidak melekat dengan baik di permukaan 

pada nisbah penyemburan yang tinggi, dan disebabkan itu, ia memerlukan penyusun 

semula lubang-lubang penyejukan. Penyejukan lubang secara kompoun adalah cara yang 

berguna untuk pencapaian ini. Tetapi, kebanyakan kajian terdahulu memberi perhatian 

terhadap penyejukan secara kompoun pada bilah turbin dan kurang penyelidikan 

berkenaan dengan penggunaan lubang ini di dinding akhir ruang pembakar. Kajian ini 

dijalankan untuk menyiasat kesan silinder dan deretan lubang penyejukan secara 

kompoun dengan sudut penjajaran 30 darjah, 60 darjah dan 90 darjah. Pembakar yang 

digunakan dalam kajian ini adalah Pratt dan Whitney enjin turbin gas. Model ini telah 

simulasi dan dianalisis dengan menggunakan ANSYS FLUENT 14.0 komersial untuk 

mendapatkan data-data asas. Seluruh hasil kajian menunjukkan bahawa dengan 

menggunakan deretan lubang-lubang penyejukan secara kompaun berhampiran dengan 

permukaan dinding akhir, keberkesanan selaput penyejukan adalah dua kali ganda 

berbanding dengan prestasi penyejukan kes asas. Kesimpulannya, penyusunan lubang 

penyejukan yang berlainan memberi kesan kepada prestasi selaput penyejukan, sangat 

disyorkan untuk menggunakan kombinasi penyejukan lubang secara kompoun dengan 

sudut penjajaran berbeza untuk panel-panel penyejukan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The turbine propulsion science history came back to 150 B.C; In that time,the 

first steam engine  the aeolipile is shown in Figure (1.1) was created by the Egyptian 

mathematicians and philosophers called Hero. In this engine, a simple closed 

spherical vessel was set up on bearings and this mechanism allowed it to have 

rotational movement due to the exerted tangential forces which are created by the 

steam discharge of the nozzles.Thereafter, in 1930, Frank Whittle received the patent 

for the first gas turbine engine invention. 

Modern gas turbine industries strive for higher engine efficiencies and power 

to weight ratio. Brayton cycle is a key to this study. According to this cycle, the 

turbine inlet temperature should increase [1] to gain more efficiency. However, the 

operating temperature is such above that all materials cannot resist against this value 

of temperature [2]. Furthermore, increasing the turbine inlet temperature creates an 

extremely harsh environment for critical downstream components such as turbine 

vanes. 
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Figure 1.1 Schematic of aeolipile engine 

 

Figure (1.2) shows that how the incidence of such condition can destroy the 

critical components downstream the combustor.  On the other hand, based on our 

observation, the interaction between film cooling and mainstream makes a complex 

temperature and velocity profiles. 

 

Figure 1.2 Schematic of annular combustor and the turbine first vane damage 

 

In addition, while, the existence of complete uniform temperature and 

velocity profile at the end of combustor simulator is desirable, this condition is rarely 

achieved as a result of non-uniformities at the end of combustion chamber. The hot 

layers lead to early premature wear and turbine components failure. Also, turbine 

inlet non combusted fuel mixes with cooling layers leading to catastrophic failures of 

the engine. So the rate of exit velocity and temperature profiles of the combustor is 
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critical in the turbine inlet secondary flow simulation. Therefore, a cooling technique 

must be applied to prevent the thermal degradation of critical components. 

While, the early gas turbine engines functioned at temperature range of 

1200 to 1500 , the advanced engines operated at the turbine inlet temperature of 

1950 to 2010 . However, Figure (1.3) shows that the turbine inlet temperature 

increased above 2000  with new patterns of cooling since the first of 21
th

century 

[3]. 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 1.3 Gas turbine inlet temperature developments per year 

 

Gas turbine cooling classified into two different schemes: internal cooling 

and external cooling. In the internal cooling method, coolant provided by the 

compressor, is forced into the cooling flow circuits inside turbine components. In the 

external way, the injected coolant is directly perfused from coolant manifold to save 

downstream components against hot gases. In the external cooling, coolant is used to 

quell the heat transfer from hot gas stream to a component. External cooling contains 

several ways. Film cooling is the most well-known method of preservation.  Figure 

(1.4) shows that in this system, a low temperature thin boundary layer such as buffer 

zone is formed by cooling holes and attached on the protected surface. To improve 

the film cooling effectiveness, it is needed to increase the mass flux ratio. However, 
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it is required to achieve a better attachment of coolant on the surface especially at 

higher blowing ratios. By trenching cooling holes, the flow behavior and thermal 

Characteristics are modified. In the trenched cooling holes, the injected coolant is 

suddenly spread before exiting the cooling holes and entering the main flow and as a 

result enhances the film cooling effectiveness [4]. 

 

 

 

 

 

 

 

Figure 1.4 Schematic of film cooling 

1.2 Problem Statement 

End wall of the combustion chamber can be damaged by the hot gases 

which flow inside a combustor and increasing the film cooling effectiveness 

above these surfaces is an important issue. Most of the previous studies paid 

attention on the using compound cooling holes on the turbine blades and the 

application of these holes at the end wall combustor is very few. The effect of 

alignment angles of the compound cooling holes has not been tried by past 

researcher. 

1.3 Objective of Research 

The aim of this study is to find out the effects of compound cooling holes 

on the thermal and flow field characteristics near the end wall surface of a 

combustor. Investigate and analysis compound cooling hole under different 

alignment angles. 
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1.4 Research Scopes 

The combustor used in the study is representation of a Pratt and Whitney 

gas turbine engine that is shown in Figure (1.5). The combustor simulator 

included four different cooling panel holes. Each panel included many cooling 

holes. However the second and third one contained two rows of dilution jets. In 

the combustor, the dilution jets and cooling flow staggered in the stream wise 

direction and aligned in the spanwise direction as well. The present control 

volume not included high momentum dilution. In this case temperature is 332 

degree kelvin. The current study has been performed with turbulence model and 

flow is compressible. In this study α is 30 and β are, 30, 60 and 90 degree. 

In this research, the gas turbine engine was simulated and analyzed with a 

commercial finite volume package ASYS FLUENT 14.0 to gain fundamental 

data. The current study has been performed with Reynolds-averaged Navier-

Stokes turbulence model (RANS) on internal cooling passages. Furthermore, the 

two-dimensional representation of a part of combustor endwall was simulated 

and a program will be written in the finite difference method to solve the 

problem. 

 

 

 

Figure 1.5 Schematic of Pratt & Whitney turbine engine 
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1.5 Research Contributions 

According to the investigations which were done on the previous 

literatures and the principle objective of the current research, it is needed to have 

taken new steps to develop a database documenting in this field of study. 

The literatures highlighted that, the first area that faced with outlet hot 

gases is the combustor end wall surface and therefore, cooling this area is very 

important to protect that and increase the expected life of this critical component. 

So, it is needed to increase the effectiveness of film cooling. Enhancement of 

mass flux ratio is the key of this. But, as stated before, with increasing the 

blowing ratio, the coolant not attached well on the protected surface and 

changing the structure of the cylindrical cooling holes is an important issue. 

 As stated in the previous literatures, it is found that the row compound 

cooling holes have more influence on the film cooling performance compared to 

the individual compound cases. On the other hand, according to the structure of 

cylindrical cooling holes placement at the end of combustor simulator, and the 

effects of different alignment angles of row compound cooling holes, this is 

another subject that motivated the researcher. 

According to the effects of the variety of coolant mass flux ratios on the 

film cooling performance downstream the cylindrical and row compound cooling 

holes near the combustor exit end wall surface, it is necessary to study the effects 

of blowing ratios. 
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