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ABSTRACT 

 

 

 

 
The major problem in the development of polymer nanofiber composites with 

the infusion of multiwalled carbon nanotubes (MWCNTs) is to ensure good dispersion 

of the MWCNTs within the polymer matrix. This study reports an effective approach to 

activate the surface of MWCNTs by a non-covalent binding strategy, and incorporation 

of MWCNTs in poly (L-lactide-co-ε-caprolactone) (PLCL) using electrospinning 

process. The debundling of the MWCNTs aggregates through the non-covalent 

surfactant attachment on their outer layers was studied using surfactants with different 

ionic characters, which were sodium dodecyl sulphate (anionic, SDS), cetyltrimethyl 

ammonium bromide (cationic, CTAB), and polysorbate 80 (non-ionic, Tween-80) 

surfactants. Results obtained from the Atomic Force Microscopy (AFM) analysis of 

surface roughness of the surfactant-MWCNTs aggregates show different contours 

which were assigned to the size of the aggregates, distribution and orientation of the 

deposited surfactants on the surfaces of MWCNTs. The dispersion behavior of the 

respective surfactant molecules studied showed that the non-ionic surfactant molecules 

of Tween-80 have better adsorption coverage on MWCNTs surface due to the 

hydrophobic interactions between the liquid-solid interfaces, rather than the ionic 

surfactants of SDS and CTAB. The orientation of the adsorbed surfactants on the 

surfaces of MWCNTs was found to be strongly associated with the surfactant affinity, 

which was contributed by the surfactants head groups ionization. The surface 

morphology of each adsorbed surfactant molecule onto MWCNTs surface was 

determined by the Field Emission Scanning Electron Microscopy (FESEM) analysis. 

Furthermore, the infusion of the Tween-80-MWCNTs usability as the nanofiller 

component to produce electrospun polymer nanofiber composites was conducted using 

a customized electrospinning reactor system. The inclusion of Tween-80-MWCNTs 

resulted in superior electrospun MWCNTs-PLCL nanofiber composite with tensile 

stress value of 5.82-15.95 MPa, with the incorporation of MWCNTs ranging from 

0.1wt% to 1.0wt%. Characterization by Transmission Electron Microscopy (TEM) 

depicted the homogenous distribution of MWCNTs within the polymer matrix. The 

manipulation of the electrospinning operational parameters in producing different 

structural features of the polymer nanofibers from PLCL was successful in producing 

both solid and porous structured nanofibers through the variation of solvent 

composition used. The solid PLCL nanofibers were formulated from the optimized 

polymer solution of 11wt% (w/v) of PLCL in dichloromethane/ dimethyl formamide 

(DCM/DMF) (70:30) at an applied voltage of 14kV with spinning solution flow rate of 

1.0 mL/hr. While the porous PLCL nanofibers were formulated from the optimized 

polymer solution of 11wt% (w/v) of PLCL in DCM/acetone (70:30) at an applied 

voltage of 14kV with spinning solution flow rate of 1.0 mL/hr. The substitution of 

DMF to acetone in binary solvent system has resulted in highly-porous PLCL 

nanofibers. The AFM characterization revealed the differences in the surface roughness 

and pore depths of both dense and porous PLCL electrospun nanofibers fabricated. 
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ABSTRAK 

 

 

 

 
 Masalah utama dalam pembangunan gentian nano polimer komposit dengan 

penyatuan tiub nano karbon dinding berlapis (MWCNTs) adalah untuk memastikan 

penyebaran yang baik MWCNTs di dalam matriks polimer. Kajian ini melaporkan 

pendekatan efektif untuk mengaktifkan permukaan MWCNTs dengan menerokai 

strategi pengikatan bukan kovalen, dan penggabungan MWCNTs ke dalam poli (L-

lactid-co-ε-kaprolakton) (PLCL) menggunakan proses pemintalan elektro. 

Penyahgumpalan agregat MWCNTs dengan melekatkan surfaktan secara bukan 

kovalen pada lapisan luarnya telah dikaji dengan menggunakan surfaktan yang berbeza 

sifat ionik iaitu natrium dodesil sulfat (anionik, SDS), setiltrimetil ammonium bromida 

(kationik, CTAB), dan polisorbat 80 (bukan ionik, Tween-80). Keputusan yang 

diperoleh daripada analisis mikroskop daya atom (AFM) terhadap kekasaran 

permukaan agregat surfaktan-MWCNTs menggambarkan perbezaan bentuk kontur 

yang merujuk kepada saiz agregat, taburan dan orientasi surfaktan yang terenap pada 

permukaan MWCNTs. Perilaku penyerakan bagi setiap molekul surfaktan yang dikaji 

menunjukkan bahawa molekul surfaktan bukan ionik Tween-80 mempunyai liputan 

penjerapan yang lebih baik pada permukaan MWCNTs disebabkan oleh interaksi 

hidrofobik antara muka cecair-pepejal, berbanding surfaktan ionik SDS dan CTAB. 

Orientasi surfaktan terjerap pada permukaan MWCNTs didapati berkaitan rapat dengan 

afiniti surfaktan, yang disumbangkan oleh pengionan kumpulan kepala surfaktan. 

Morfologi permukaan bagi setiap molekul surfaktan terjerap di permukaan MWCNTs 

telah ditentukan oleh analisis mikroskopi pengimbasan elektron pancaran medan 

(FESEM). Tambahan pula, kebolehgunaan gabungan Tween-80-MWCNTs sebagai 

komponen bahan pengisi nano bagi menghasilkan pintalan elektro komposit gentian 

nano polimer telah dijalankan menggunakan sistem reaktor pintalan elektro yang 

ditempah khas. Perangkuman Tween-80-MWCNTs telah menghasilkan pintal elektro 

gentian nano MWCNTs-PLCL komposit terbaik dengan nilai tegasan tegangan 5.82-

15.95 MPa, dengan julat penggabungan MWCNTs antara 0.1wt% hingga 1.0wt%. 

Pencirian menggunakan mikroskopi penghantaran elektron (TEM) menunjukkan 

taburan MWCNTs yang sekata dalam matriks polimer. Manipulasi terhadap parameter 

operasi pemintalan elektro untuk menghasilkan gentian nano polimer daripada PLCL 

dengan ciri struktur yang berbeza telah berjaya menghasilkan gentian nano yang 

berstruktur padat dan berliang melalui penggunaan pelbagai komposisi pelarut. Gentian 

nano PLCL padat telah diformulasikan daripada larutan polimer 11wt% (w/v) PLCL 

yang dioptimumkan dalam diklorometana/ dimetilformamida (DCM/DMF) (70:30) 

pada voltan gunaan 14kV dengan kadar aliran 1.0 mL/jam. Manakala gentian nano 

PLCL berliang telah diformulasi daripada larutan polimer 11wt% (w/v) PLCL yang 

dioptimumkan dalam DCM/aseton (70:30) pada voltan gunaan 14kV dengan kadar 

aliran larutan pemintalan 1.0 mL/jam. Penggantian DMF dengan aseton dalam sistem 

pelarut dedua telah menghasilkan gentian nano PLCL yang amat berliang. Pencirian 

AFM telah mendedahkan perbezaan kekasaran permukaan dan kedalaman liang bagi 

kedua-dua pintalan elektro gentian nano PLCL padat dan berliang yang telah 

difabrikasi. 
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spinning solution flow rate at magnification of 3000x 
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5.16 

 

SEM micrograph of PLCL nanofibers produced using 

a (a) 0.45 mm (b) 0.5 mm (c) 0.7 mm (d) 0.8 mm of 

needle internal diameter at magnification of 10000x 
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6.1 

 

SEM micrograph of electrospun solid nanofiber (a) 

PLCL (b) MWCNTs-PLCL with (0.1 wt%) (c) (0.2 

wt%) (d) (0.3 wt%) (e) (0.4 wt%) (f) (0.5 wt%) and 

(g) (1.0 wt%) of MWCNTs at magnification of 

20000x 
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6.2 

 

SEM micrograph of electrospun porous nanofibers (a) 

PLCL (b)/MWCNTs-PLCL with (0.1wt%) (c) (0.2 

wt%) (d) (0.3wt%) (e) (0.4wt%) (f) (0.5wt%) and (g) 

(1.0 wt%) of MWCNTs at magnification of 10000x 
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6.3 

 

Simulated electrospun fibers from the spinneret (top) 

to the collector plate (bottom) with reference of the 

phase diagram where (i), (ii) and (iii) represent the 

elongation of fluids during the spinning. Electrospun 

fibers in dark regions represent solvent-rich regions 

and bright regions represent polymer-rich regions. 

This figure is adapted from Dayal et al. (2007) 
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6.4 

 

SEM micrographs of solid MWCNTs-PLCL 

nanofibers composite with the occurrence of fibers cut 

off at magnification of  (a) 20000x, (b) 40000x and (c) 

80000x 

 

 

 

 

139 

6.5 

 

SEM micrographs of porous MWCNTs-PLCL 

nanofibers composite with the occurrence of fibers cut 

off  at magnification of  (a) 3000x, (b) 5000x and (c) 

10000x 
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6.6 

 

Illustration of the proposed mechanism of the jet’s 

axial stress and entanglement before (dashed line) and 

after (solid line) the jet break. This figure is adapted 

from Dayal et al. (2007) 
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6.7 

 

AFM 3D images of the fragmented solid MWCNTs-

PLCL nanofibers composite 
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6.8 

 

TEM micrograph of electrospun PLCL nanofibers 

composite at scale bar of (a1) 100 nm (a2) 20 nm (a3) 

10 nm and MWCNTs-PLCL nanofibers composite at 

scale bar of (b1) 100 nm (b2) 20 nm (b3) 10 nm  
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6.9 

 

ATR-FTIR spectra of MWCNTs, PLCL nanofibers 

and MWCNTs-PLCL nanofibers composites of 0.1-

1.0 wt% 

 

 

 

146 

6.10 

 

Stress-strain curves of MWCNTs-PLCL nanofibers 

composite 

 

 

148 

6.11 

 

Molecular dynamic simulation of CNTs under axial 

compression, a-d is the possible buckling of CNTs 

morphology changes corresponding to strain. This 

figure is adapted from Yakobson et al. (1996) 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Nanofibers technology 

 

 

Nanofiber technology is one of the nanotechnology divisions where fibrous 

materials are fabricated at nano-scale dimension. Electrospun polymer nanofibers 

were formed from the highly charged polymer solution that which electrically 

heated, extruded, evaporated and cooled upon exposed in air through a technique 

called electrospinning. Electrospinning is a powerful technique in producing 

polymeric based fibers at nano to sub-micron level range of fibers diameter. They 

have attracted significant attention across multiple fields of chemistry, biochemistry 

and engineering because of the uniqueness rheological, mechanical and biomedical 

properties that are inaccessible from the casting polymers (Cameron and Shaver, 

2011). The electrospun nanofibers from biopolymer based have offered new avenue 

in the field of tissue regeneration by producing scaffolds with the critical similarities 

to the native tissue based on the interconnectivity and its dimensions.   

 

 

Electrospun polymer nanofibers were commonly produced from variety of 

polymers including, natural or synthetic polymer source, with or without filler, in 

melt or with solvent, on condition that the polymer solution was conductive enough 

to be drawn as fibrous form. Polymer based liquid precursor from high molecular 

weight polymers and high polymer concentrations are advantageous for the 

electrospinning process since polymer chain entanglements and overlapping are 

important for the formation of uniform nanofibers (Celebioglu and Uyar, 2012). On 

the other hand, the use of solvent in preparing the spinning solution is basically to 
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induce the polymer solution transformation process from droplet into fibrous form 

under high voltage atmosphere (Leach et al., 2011).  The values of the applied high 

voltage used during the electrospinning process which are normally within the range 

of 10-30 kV, managed to draw electrospun nanofibers with the fibers diameter size 

ranging from 100-1000 nm (Ramakrishna et al., 2005).   

 

 

 

 

1.2  Biodegradable polyester in nanofibers technology 

 

 

The synthetic biodegradable polymers offer an alternative over the non-

degradable polymer materials which mostly used in the biomedical applications. The 

solution of biodegradable polymers can be processed into different solid forms 

through electrospinning technique. For instance, they can either be processed into 

multi- or nanofilaments for surgical sutures or exhibit porous scaffolds with desired 

pore morphology, which is specifically conducive for implants and tissue growth. 

Besides, they can also be spun into the micro/nanospheres form for controlled drug 

delivery process application (Makadia and Siegel, 2011, Kulshrestha and Mahapatro, 

2008).  

 

 

Polyester is a category of synthetic biodegrable polymers which contain ester 

functional groups in their main chain. Polyester is widely used as cushioning and 

insulating materials in pillows, comforters and padding. Nowadays, polyester is the 

main family of synthetic biodegradable polymers that is used as commodity plastics 

packaging materials and even in the biomedical field application. The ring opening 

polymerization of cyclic esters provides an access to biodegradable, bioassimilable 

and renewable materials that made from the polyester polymer. In the previous study, 

most biomedical applications and investigation were now concerned on the 

polyglycolide, polylactide, poly (-ε-caprolactone) and their others copolymers (Ulery 

et al., 2011, Diaz et al., 2014). These are the most common of the synthetic polyester 

polymers that have been used intensively as their consumption was approved by the 

health authorities in various countries (Rentsch et al., 2012, Vroman and Tighzert, 

2009, Chen et al., 2012). 
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On the other hand, poly (L-lactide)-co- ε-caprolactone) (PLCL) is a polyester 

copolymer which has exhibited an intermediate strength of its mechanical properties. 

PLCL was synthesized by ring-opening copolymerization of L-lactide and ε-

caprolactone using coordination catalysts. PLCL is one of the compatible synthetic 

polymers for medical use as referred from its biocompatibility and slow 

biodegradability properties (Fernández et al., 2012, Baimark and Molloy, 2004, 

Garkhal et al., 2007, Jeong et al., 2004). Figure 1.1 illustrates the molecular structure 

of ε-caprolactone monomer unit, L-lactide monomer unit and PLCL copolymers. 

 

  

Figure 1.1 Molecular structures of ε-caprolactone monomer, L-lactide monomer 

and PLCL copolymer 

 

 

The advantage of PLCL properties over both poly carprolactone (PCL) and 

poly lactide (PLA) is that PLCL combines the desirable mechanical properties of 

PCL, with higher degradation and biocompatibility of PLA. The degradation process 

of PLCL proceeds via simple hydrolysis of random polymer chain scission nucleated 

on the ester part. For L-lactide-rich fragments, hydrolysis process is continues until L-

lactic acid is formed. ε-caprolactone-rich fragments on the other hand were 

hydrolyzed to produce ε-hydroxycaproic acid as shown in Figure 1.2. Both L-lactic 

acid and ε-hydroxycaproic acid will then metabolized and excreted from human body 

without any adverse toxicological effects (Baimark and Molly, 2004).  
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Figure 1.2 The degradation mechanism of PLCL by hydrolysis process 

 

 

There are variety of PLCL available which differ in their ratio of lactide to 

caprolactone (LA: CL) which are (1:99), (30:70) and (50:50) (Joeng et al., 2004, 

Sanna et al., 2011, Lim et al., 2004). Since PLCL is composed of the soft matrix of 

ε-caprolactone monomer units and the hard domains of the additional L-lactide 

monomer units, PLCL has the tendency to exhibit merely stiff or rubber-like 

elasticity in its physically cross-linked structure (Inai et al., 2005). The mechanical 

strength and elasticity of PLCL is likely varied accordingly to the (LA: CL) co-

monomers ratios. Hence, the use of PLCL with specific (LA: CL) co-monomers ratio 

were depend on its specific applications.  For example, the use of PLCL with higher 

lactide composition is preferred for slow delivery of drugs instead of PLCL with 

lower lactide composition (Makadia and Siegel, 2011).  

 

 

Even so, there are methods that can be done to modify the PLCL mechanical 

properties. An alternative way for enhancing the mechanical properties of the 

polymer is known as composite fabrication process. 
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1.3  Composite fabrication process 

 

 

Composite fabrication process is described as a technique used for the 

formation of blended materials which composed of two or more constituent materials 

which known as composite materials (Malhotra et al., 2012, Klaus et al., 2005). A 

composite material is composed from the primary phase which is the polymer matrix 

materials, while the secondary phase is the reinforcing materials which is used to 

fortify the matrix in terms of strength and stiffness. These combined materials work 

together to give the superior properties to the properties of the individual components 

(Heinrich and Vilgis, 2002). 

  

 

 

 

1.4 Synthetic composite 

 

 

The synthetic composite is a part of man’s technology which has been 

produced thousands of years before, for examples mud bricks and concretes. One of 

the examples of the first modern man-made composite is fiberglass. The primary 

phase in the fiberglass is plastic, whereas the secondary phase is glass. The glass was 

made into fine threads and often woven into a sort of cloth and wool as to be used in 

the fabrication process of fiberglass. While the plastic matrix holds the glass fibers 

together and protects them from damage by sharing the applied force on them. 

Fiberglass has been widely used in many applications such as in building panel, 

roofing, pipes and automobiles (Kieronski et al., 2004).  With further development in 

the composite technology, the advanced composites are now made by using carbon 

fibers instead of fiberglass. This microscale carbon material is much lighter and 

stronger than fiberglass and is practically used in expensive sports equipment such as 

golf sport accessories and in the vehicle body parts in the automotive industry 

(Allhoff and Moore, 2009, Szeteiová, 2010). Since then, the carbon-fiber-reinforced 

polymer composites (CFRP) have remained as the major standard for polymer 

composite based materials in high performance applications.  

 

 

Recently, carbon nanotubes (CNTs) are one of the desired carbon materials to 

be use in the composite since they have the ability to serve as multifunctional 
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nanofiller (Fiorito, 2008). The demands of having CNTs as the nanofiller have 

captured huge interest among the researchers to study the insertion of this carbon 

material in the composite. The prospect of carbon nanotubes in making advanced 

composite was blooming as they are even lighter and tougher compared to the carbon 

fibers (Ajayan et al., 2000). 

 

 

 

 

1.5 Carbon nanotubes as multifunctional filler 

 

 

Carbon nanotubes are one-dimensional carbon allotropes which have 

outstanding characteristics based on its tensile strength, elastic modulus and 

flexibility. In general, carbon nanotubes can be visualized as a rolled nanoscale 

graphene layers in a form of cylinders of micrometer length (Bokobza, 2007). Figure 

1.3 shows the illustration of the carbon nanotubes structure. 

 

 
Figure 1.3 (a) Illustration model of cabon nanotubes by rolling sheets of 

graphene into a cylinder of nanometer size diameter (b) The structure of CNTs 

explored by high-resolution transmission electron microscopy. This figure is adapted 

from Endo (2010) 

 

 

The utilization of carbon nanotubes as multifunctional filler has opened a new 

dimension for the development of nanocomposite at present. A shift to nanoscale 

fillers offers the potential for lower filler content (as low as 2-5 wt %) compared to 
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the traditional microscale fillers. Based from the previous study, the percentage 

composition of the microscale filler in the composite was formulated in the range of 

10-70 wt% (Ma et al., 2010). Besides of offering lower content of filler consumption, 

carbon nanotubes also has excellent flexibility and strength to control structural 

deformation of the composite. Therefore, the nanosized dimension of carbon 

nanotubes might improves the physical properties of the nanocomposite, by blocking 

the micro-cracking occurence, even at the lower percentage loading of carbon 

nanotubes (Barraza et al., 2002, Borowski et al., 2015).  

 

 

Apart from the above mentioned of carbon nanotubes characteristic, they are 

also have high aspect ratio properties, according to the proportional relationships 

between the width and the length of its tubular structures. As their aspect ratio is 

high, the van der Waals forces among the carbon-carbon atoms which build the 

hexagonal structure framework of carbon nanotubes become stronger, caused to the 

agglomeration of carbon nanotubes floss. Therefore, controlling the amount loading 

of carbon nanotubes is a critical aspect in the manufacturing of carbon nanotubes-

polymer composite as they are not easily dispersed in any medium or solvent due to 

the van der Waals forces. Thus, the uniform dispersion of carbon nanotubes in a 

viscous polymer matrix is extremely difficult to be prepared. However, the best 

possible processing technique in assisting carbon nanotubes dispersion still remains a 

challenge.   

 

 

 

 

1.6 Surfactant assisted dispersion of carbon nanotubes  

 

 

Shi et al., (2013) and Moniruzzaman and Winey (2006) highlighted the 

significant challenges on the dispersion of carbon nanotubes that must be overcome 

for the effective use of carbon nanotubes. Carbon nanotubes dispersion can be 

improved over prior processing techniques known as surface activation. These are 

including the use of strong oxidant such as concentrated acid and strong oxidizing 

agent. The surface activation using strong oxidant is known as the most frequently 

used technique for dispersing carbon nanotubes (Martínez-Hernández et al., 2010). 
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However, this oxidizing treatment normally caused severe damages to the structure 

of carbon nanotubes (Matarredona et al., 2003).  

 

 

Since carbon nanotubes lack in active groups and has high surface energy 

(Lau et al., 2003), the use of wetting agent in the surface activation is probably the 

best method for dispersing carbon nanotubes. Surfactant is an excellent wetting agent 

which is able to preserve important properties of carbon nanotubes. Despite of 

scissoring the length of carbon nanotubes as the oxidizing treatment, the surfactant 

molecules, will be attached to the surface of carbon nanotubes by non-covalent 

interaction, making this technique as a better strategy for dispersion of carbon 

nanotubes in smaller aggregates (Angelikopoulus and Bock, 2012). The mechanism 

for the dispersion is expected to be primarily due to hydrophilic and hydrophobic 

interactions, where attraction between the surface of carbon nanotubes and the 

hydrophobic segment of surfactant facilitates adsorption, while the hydrophilic group 

of surfactant associates with water, forming a stable suspension of carbon nanotubes 

aggregates (Blanch et al., 2010). The stabilization of carbon nanotubes floss in 

smaller aggregates is vital for controlling the rheological of the carbon nanotubes-

polymer composite especially in controlling the structural formation of the 

electrospun polymer composite nanofibers by electrospinning.  

 

 

 

 

1.7 Electrospinning in nanofibers technology 

 

 

Electrospinning is a technique use for the making of nanofibers by utilizing 

electrostatic interaction, which was discovered and patented by Formhals in 1934. 

Through the discovery, he pointed out that as when a polymer solution is subjected to 

an electric field, the consistent electrostatic forces will gradually cause the polymer 

solution to be drawn into a fibrous form (Formhals, 1934, Formhals, 1939). This 

technique has the ability to transform polymer solution into nanofibers structure in 

the form of interconnected web, which is in similar to the spider web-like structure as 

depicted in Figure 1.4.  
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Figure 1.4 Photograph of (a) spider web (b) electrospun nanofiber web 

 

 

Electrospun nanofibers are also considered as one-dimensional materials 

according to the high aspect ratios of this material, which related to the huge 

difference of the nanofibers width compared to its length. Since electrospun 

nanofibers are a small-scale filament with high surface area, they have great potential 

to be used in many applications such as chemical resistance materials, filtration 

materials, biomedical and surgical materials and also high-strength protective fabric 

materials. However, there are challenges in optimizing the production of electrospun 

nanofibers polymer composite using electrospinning technique especially with the 

presence of carbon nanotubes as the nanofiller.  

 

 

 

 

1.8 Problem statement 

 

 

 Obtaining stable aqueous dispersions is one of the main challenges 

obstructing an effective use of carbon nanotubes. These are the result of 

hydrophobically driven van der Waals force interactions, which are an inherent 

consequence of their carbon sp2 hybridization network. This, combined with 

extremely high aspect ratios and strong surface energy, causes to strong adhere into 

tightly agglomerates form of carbon nanotubes floss. Thus, the major problem in 

dealing with carbon nanotubes as nanofiller is to overcome the poor dispersion of the 

carbon nanotubes.  
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The dispersion technique via non-covalent interaction between surfactant and 

carbon nanotubes surface has the advantage of preserving the conjugated π system of 

carbon nanotubes, upholding their electrical and mechanical properties. Affecting 

factor in the dispersion using surfactant is surfactant concentration, as there will 

always be an optimum surfactant concentration for a specific loading of carbon 

nanotubes. At very low surfactant concentration, the dispersion quality will be poor 

because carbon nanotubes are still in a form of entangled bundles. While, at very 

high surfactant concentration, dispersion quality becomes poor, as the surfactant are 

starting to form micelles. Besides, the other factors such as the influence of 

surfactant affinity towards the formation of surfactant-carbon nanotubes aggregates, 

the size of carbon nanotubes aggregation and the preferred orientation of 

accumulated surfactant molecules on the surface of carbon nanotubes also need to be 

investigate.  

 

 

Another importance of having well dispersed form of cabon nanotubes is to 

avoid the problem of clogging during electrospinning. Clogging of the spinneret tip 

through gelation of the spinning solution can be very disruptive to the spinning 

process as it causes production losses. This issue is more apparent when higher 

concentration spinning solution with filler addition is used, which is likely due to 

higher viscosity, contributes to the clogging of the spinneret tip. The other problems 

arises in electrospinning process are including the formation of beads, the 

uncontrolled of nanofibers diameter size, the jet discontinuity and the instability of 

nanofibers structure retention. As a results, both of mechanical and physical 

properties of electrospun nanofibers composite would be poor. Besides, the effect of 

polymer concentration, solvent used and amount of carbon nanotubes filler loading 

towards the formation of the electrospun composite nanofibers has been few and 

inconclusive. Hence, appropriate sets of electrospinning process parameters are 

necessary to identifiey the significant factors in optimizing the fabrication of 

electrospun composite nanofibers with the infusion of carbon nanotubes as 

nanofiller. 
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1.9      Objectives of the research  

 

 

The aim of this research is to determine the fundamental principle in the 

electrospinning technology for the fabrication of nanofibrous materials of 

electrospun nanofibers composite of poly (L-lactide)-co- ε-caprolactone) (PLCL) 

infused with multiwalled carbon nanotubes (MWCNTs). The objectives that will 

fulfill the aim of this research are listed as follows: 

 

 

1. To synthesize the surface activated-MWCNTs using surfactant with 

different affinity. 

2. To investigate the surfactant behavior on the surface of the MWCNTs by 

various characterization instruments.  

3. To customize a lab-scale electrospinning system and optimization of the 

operational parameters for the production of PLCL-MWCNTs nanofibers 

composite.  

4. To investigate the effect of solvent and amount of surfactant surface 

activated-MWCNTs loading in the formation of PLCL-MWCNTs 

nanofibers composite.  

5. To study the physical and mechanical properties of the electrospun 

PLCL-MWCNTs nanofibers composite using various characterization 

instruments.  

 

 

 

 

1.10      Scope of the research  

 

 

 The first scope of this research is modification of the MWCNTs hydrophobic 

properties through MWCNTs surface activation process via non-covalent interaction 

using surfactants. The purpose of the modification process is to have smaller size of 

stabilized MWCNTs aggregates as nanofiller in the polymer composite. Three types 

of surfactants with different ionic character, which are anionic, cationic and non-

ionic, were utilized for the surface modification of the MWCNTs. The conceptual 

arguments on the surfactant structure and behavior of the hydrophobic tails, head 
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charged and its polarity effect towards the dispersion of carbon nanotubes were 

studied in depth using various spectroscopic techniques and particle size analyzer. 

 

 

The analysis studied was chemical characterization by Fourier Transform 

Infrared (FTIR) spectroscopy and Raman spectroscopy.  The thermal stability of 

MWCNTs after surface activation was investigated using Thermal Gravimetric 

Analysis (TGA). While, the morphology of MWCNTs upon surface modification 

was analysed using X-ray Diffraction (XRD), and Field Emission Scanning Electron 

Microscope (FESEM).  Atomic Force Microscope (AFM) was used to examine the 

MWCNTs aggregation size upon surface modification process, and then roughly 

determine the smallest size of MWCNTs colloidal among the different surfactant 

used in surface activation process.  

 

 

Besides, this research is working on the customization of the lab-scale 

electrospinning reactor system by assembling the basic component for a low-cost 

electrospinning set-up. Since there are few arrangements in the electrospinning 

reactor, the customized electrospinning system in this study is arranged in vertical 

position especially to reduce the applied voltage by following the gravitational field.  

 

 

The optimization of the operating parameters involves in the electrospinning 

process was part of the scope in this research study. In this research, the preparation 

of the spinning solution using various solvent mixtures was explored. The binary 

solvent system comprised of DCM, DMF and acetones were used to investigate the 

suitability of solvent for the electrospinning of PLCL. The control steps over the 

electrospinning operating parameter by stabilizing the jet formation is also part of 

this research study. The influence of the related operational parameters for the 

electrospinning processing including the spinneret-to-collector distance, applied 

current voltage and flow rate on the electrospun nanofiber structure are 

alsoinvestigated in this research study. The use of surface activated MWCNTs as the 

nanofiller in the electrospun nanofibers composite was investigated. The effect on 

the different loading of MWCNTs on the physico-chemical and mechanical 

properties of the MWCNTs-PLCL nanofibers composite was explored and for this 
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part, the smallest MWCNTs aggregates upon the surface activation is utilize in the 

electospinning of the nanofibers composite. 

 

 

Lastly, this research also is focused on the evaluation and characterization of 

the electrospun nanofibers composite produced. Morphological study of PLCL 

nanofibers and the infusion of MWCNTs within the MWCNTs-PLCL nanofibers 

composite were analysed using the Transmission Electron Microscope (TEM), 

Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). The 

mechanical testing based on tensile measurement of the nanofibers sample was 

pursued to study the mechanical properties enhancement of the electrospun 

composite nanofibers reinforced with MWCNTs.  

 

 

 

 

1.11 Significance of the research  

 

 

The significance of this research is the contribution in the optimization of 

carbon nanotubes dispersion technique using various type of surfactants, as an 

alternative to replace the conventional surface activation technique using oxidants. 

The influence of surfactant affinity in altering the dispersibility of carbon nanotubes 

has contributed an added value to the limited discussion in articles for established 

publications. An in depth discussions on the chemistry of the surfactant-MWCNTs 

interaction, cluster formation of MWCNTs aggregation and surfactant orientation on 

MWCNTs surface were highlighted in this study. The knowledge from the 

fundamental point of view has provided better insight to a better understanding 

towards the surfactant assisted in the dispersion of carbon nanotubes.  

 

 

Another significant finding of this research is the establishment in the 

fabrication of nanofibrous materials of electrospun nanofibers composite of poly (L-

lactide)-co-ε-caprolactone) (PLCL) infused with multiwalled carbon nanotubes 

(MWCNTs) using electrospinning technology. By the end of this research, an 

optimized lab-scale electrospinning reactor system is fabricated for the production of 

electrospun nanofibers purposes. A different structural form of PLCL-MWCNTs 
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electrospun nanofibers also can be spun by manipulating the optimized operational 

parameters of the electrospinning technique, using the right formulation of the 

specific nanofibers features needed. The difference in the solvent properties and their 

dielectric constant values in the three different binary solvent mixtures have 

contributed to the evolution of the PLCL nanofibers morphologies. 
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