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 ABSTRACT  

 

 

 

 

 In recent times, industrial dye effluent has produced adverse effects towards 

human health and the environment, majorly due to its high level of toxicity. Among 

the various techniques for treatment of the dye effluents, photocatalytic 

decolourization proves to be highly promising owing to its safety, low energy 

consumption and high efficiency. Titanium dioxide (TiO2) is the most well-known 

photocatalyst. However, due to its large band-gap and agglomeration tendency, a lot 

of researches such as modification of its morphology have been reported in attempt to 

resolve this problem. In this study, the flower-like titanium dioxide nanoparticle (FTN) 

photocatalyst was prepared under different concentrations (2M-4M) of hydrochloric 

acid (HCl) via hydrothermal method and subsequently tested for decolourization of 

methylene blue (MB). The properties of the catalysts were characterized using x-ray 

diffraction, field emission scanning electron microscope, Fourier transform infrared, 

electron spin resonance, ultraviolet-visible spectrophotometer diffuse reflectance 

spectroscopy and nitrogen adsorption-desorption. The increase in HCl concentration 

was observed to result in more enhancement of the pure crystalline rutile TiO2 with 

the more open structure of its individual nanospindle. The highest distribution of 

hydroxyl group, oxygen vacancy and Ti3+ surface defect was observed for the catalyst 

synthesized using 3M HCl concentration, thereby increasing its potential use in visible 

light irradiation. The photocatalytic activity of the catalysts towards decolourization 

of 10 mg L-1 MB at pH 11 with 0.25 g L-1 catalyst after 1 hour 30 minute under visible 

light irradiation was in the following order: FTN-3M (98%) > FTN-4M (92%) > FTN-

2M (86%). The kinetics study specified that decolourization of MB followed the 

pseudo first order Langmuir-Hinshelwood model. The regeneration study showed that 

the catalyst remained stable after 5 cycles. Lastly, the synthesized catalyst has 

displayed remarkable performance (above 80%) in decolourization of simulated dyes 

which consist of rhodamine B, MB, methyl orange and congo red, and has potential 

use as catalyst for wastewater treatment in textile industry. 
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 ABSTRAK  

 

 

 

 

 Sejak kebelakangan ini, sisa buangan pencelup industri menghasilkan kesan 

buruk terhadap kesihatan manusia dan alam sekitar, terutamanya disebabkan oleh 

ketoksikan yang tinggi. Di antara pelbagai teknik bagi perawatan sisa buangan 

pencelup, penyahwarnaan fotobermangkin terbukti amat berpotensi oleh sebab 

keselamatannya, pengunaan tenaga yang rendah dan tinggi keberkesanannya. 

Titanium dioksida (TiO2) adalah fotomangkin yang amat dikenali. Namun begitu, oleh 

kerana kelemahannya pada jalur-jurang yang besar dan kecenderungan untuk 

bergumpal, pelbagai kajian seperti modifikasi terhadap morfologi telah dilaporkan 

dalam usaha untuk menyelesaikan masalah ini. Dalam kajian ini, fotomangkin 

nanozarah TiO2 berupa bunga (FTN) telah disediakan dengan berbeza kepekatan (2M-

4M) asid hidroklorik (HCl) melalui kaedah hidroterma dan seterusnya diuji untuk 

penyahwarnaan metilena biru (MB). Sifat-sifat fizikokimia mangkin telah dicirikan 

mengunakan pembelauan sinar-x, mikroskop elektron pengimbas pancaran medan, 

spektroskopi inframerah transformasi Fourier, resonans putaran elektron, spektroskopi 

pantulan serakan spektrofotometer cahaya nampak-ultraungu dan penjerapan-

penyahjerapan nitrogen. Kenaikan kepekatan HCl telah diperhatikan menyebabkan 

peningkatan habluran rutil TiO2 tulen dengan struktur yang semakin terbuka daripada 

individu nanospindel. Bilangan tertinggi kumpulan hidroksil, permukaan kekosongan 

oksigen dan kecacatan tapak Ti3+ telah diperhatikan bagi sintesis mangkin yang 

menggunakan kepekatan 3M HCl, dengan itu meningkatkan potensi penggunaannya 

dalam penyinaran cahaya nampak. Aktiviti fotobermangkin bagi mangkin terhadap 

penyahwarnaan 10 mg L-1 MB pada pH 11 dengan 0.25 g L-1 mangkin selepas 1 jam 

30 minit di bawah sinaran cahaya nampak adalah dalam turutan berikut: FTN-3M 

(98%) > FTN-4M (92%) > FTN-2M (86%). Kajian kinetik menunjukkan bahawa 

penyahwarnaan MB mengikut model tertib pertama pseudo Langmuir-Hinshelwood. 

Kajian kebolehgunaan semula menunjukkan mangkin kekal stabil selepas 5 kali 

kitaran. Akhir sekali, mangkin yang telah disintesis menunjukkan prestasi yang unggul 

(lebih daripada 80%) dalam penyahwarnaan pencelup simulasi yang terdiri daripada 

rodamina B, MB, metil jingga dan kongo merah, dan berpotensi sebagai mangkin 

untuk rawatan air sisa dalam industri tekstil.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Dye industry is one of the most important economic sectors that contribute to 

other related industries such as textile, printing, paint and coating, cosmetic, food 

industry and medicine. (Jaganathan et al., 2014; Vaiman et al., 2016). About 100,000 

commercially available dyes with 7x105 tons of dyestuff are produced annually 

(Khataee et al., 2010). Additionally, the synthetic origin and complex aromatic 

structures of dyes make them stable and difficult to be biodecolourized (Srinivasan 

and Viraraghavan, 2010). Dyes can be classified into two types depending on its 

sources which are natural and synthetic, while the latter is more preferred due to its 

attractive colour texture, low cost and tuneable applications (Holme, 2006; Murmann 

et al., 2001).   

 

 

Synthetic dyes are man-made dyes which consists of a vast chromophoric 

group such as azo, nitro, thiazine and rhodamine. Specific wavelengths are absorbed 

by a specific type of chromosphere resulting in the emission of a specific colour which 

is then named as methylene blue, methyl orange, congo red and so on. Among them, 

methylene blue (MB) is widely used in dyeing of textile material, paper, plastic and 

medical application due to its good absorption capabilities onto solid (Chongrak et al., 

1998; Shanmugam, 2005). However, MB has its own drawbacks for instance, it gives 

harmful effects to human health such as rapid heart rate, vomiting, cyanosis, jaundice 
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and tissue necrosis in humans (El-Ashtoukhy et al., 2015). There are some recent 

reports which stated that MB can also cause Central Nervous System (CNS) toxicity 

with only a dose of 1 mg kg-1 (Gillman et al., 2011).  

 

 

The massive dye industry with vast and uncontrollable productions contributes 

to the abundant productions of dye effluent. Direct or indirect discharge of a highly 

toxic effluent into the nearby watercourses can give many negative effects on the 

environment, health and public complain (Noel et al., 2015). Therefore, various 

wastewater treatment has been used for the purification of dye effluents such as 

adsorption, membrane filtration, ion exchange, ozonation and electrochemical 

destruction (Robinson et al., 2001; Karim et al., 2014). Nevertheless, there are several 

disadvantages of the aforementioned techniques that requires extra expenditure on 

operation, unable to treat various types of dyes and productions of sludge and 

secondary pollutant. (Harrelkas et al., 2009; Zhang et al., 2012; Jaafar et al., 2015b).   

 

 

In order to overcome the shortcomings mentioned, the recent technology has 

shifted to the green approach of photocatalytic reaction using heterogeneous catalysts 

which is cost-effective, stable, recyclable, produce a non-harmful end product and 

capable to mineralise the organic compounds (Tian et al., 2012; Jalil et al., 2013). This 

alternative wastewater treatment is also called an advance oxidation process (AOP) 

due to the removal of toxic organic pollutant by the superoxide anion and hydroxyl 

radicals which are generated from the photocatalyst (García-Muñoz et al., 2016; Jusoh 

et al., 2014). This heterogeneous photocatalyst which consist of various types of 

semiconductor such as TiO2, Fe2O3, ZnO and ZrO2 have made progress, owing to its 

capabilities to generate electron-hole pairs under light irradiation (Jusoh et al., 2013; 

Jusoh et al., 2015c; Jaafar et al., 2015a; Sinhamahapatra et al., 2016). 

 

 

Titanium dioxide or titania (TiO2) has been established as an active 

photocatalyst since it was first discovered in 1972 (Fujishima et al., 1972). Thereafter, 

extensive discoveries on the photocatalytic performance of TiO2 have been done due 

to its economic, inert and high chemical and photocorrosion stability. TiO2 consists of 

three types of polymorphs which are anatase, rutile and brookite. Among these, rutile 
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TiO2 is the most thermodynamically stable phases at any temperature, pressure and 

even in the strongly acidic or basic condition, and has been extensively applied in 

batteries and dye-sensitised solar cells (Ge et al., 2011; Kumar et al., 2014). Although 

it receives less attention in photocatalytic reaction compared to anatase, yet in certain 

condition rutile TiO2 can be a potential candidate due to its high refractive index and 

good light scattering efficiency by modifying its morphology, metal ion doping or 

addition of mesoporous support (Kumar et al., 2014). There are several parameters 

that influence the photocatalytic performance of TiO2 such as crystallinity, particle 

distribution, porosity, band gap, surface area and surface hydroxyl density (Ahmed et 

al., 2011b).   

 

 

Furthermore, the designing architecture of TiO2 has been extensively 

developed within the research area starting from a simple into a complex morphology 

aiming the active catalyst under visible light irradiation. There are several types of 

TiO2 morphological modification such as synthesis of nanorod, nanocube, nanosphere, 

flower-like, mesoporous and microsphere (Diebold, 2003). However, an active bare 

flower-like TiO2 nanostructured (FTN) catalyst under visible light is still in less 

number of researches. This flower-like structure may provide better light utilization 

efficiency and more adsorption sites of pollutant thereby resulting in a good 

photocatalytic reaction (Guo et al., 2014). Thus, the objective of this study is focused 

on the synthesis and characterization of flower-like TiO2 using a simple acid 

hydrothermal method and to investigate its performance in photodecolourization of 

MB. The kinetics and mechanism of the photodecolourization process were also 

performed.  
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1.2 Problem Statement and Hypothesis 

 

 

TiO2 is a well-known photocatalyst for the decomposition of organic 

contaminants due to its excellent photoactivity than other metal oxide semiconductor 

(Hashimoto et al., 2005). Although anatase TiO2 is an active photocatalyst compared 

to other TiO2 polymorph, it still has several drawbacks such as wide band gap (3.2 

eV), fast electron-hole recombination rate and easy to agglomerate which hinders the 

catalyst active sites, thus reducing its photocatalytic performance (Zhang et al., 2014). 

The limitation of light-response range allows the catalyst to be active only under UV 

light irradiation thus requires more energy consumption. Therefore, the advantage in 

low band gap energy (3.0 eV), high refractive index, thermodynamically stable and 

good light scattering efficiency of rutile TiO2 may contribute to an improved 

photocatalyst under visible light irradiation (Kumar et al., 2014).   

 

  

Structural design of TiO2 photocatalyst from basic to hierarchical structure 

have been extensively studied due to its widespread potential applications in many 

aspects such as solar cells, catalysis, lithium-ion batteries and drug delivery (Lin et al., 

2014; Jaafar et al., 2015; Liu et al., 2016; Wang et al., 2015). However, the synthesis 

method of complex TiO2 morphology is still facing a great challenge with several 

methods being implemented to solve the problem such as chemically induced self-

assembly, chemical etching and template-assisted (Gao et al., 2015). Among them, 

template-assisted is the most commonly used, however, this method involved quite 

complicated steps such as coating, etching and calcination, as well as difficulty in 

controlling and obtaining the uniform samples (Jia et al., 2015). Therefore, a free-

template method is desired. This method requires in monitoring the pH condition of 

the solution. Acidic solution such as HCl can form a rutile TiO2 due to increase in 

number of H+ ions in the reaction solution will increase the number of OH2
+ ligands 

forming a stable linear TiO2 (Lai et al., 2014). While, Cl- ions have a weaker affinity 

towards Ti atoms resulting in epitaxial growth of 1D rutile TiO2 (Zhou et al., 2012). 

In order to form a well-defined flower-like structure with a multiple 1D rutile extended 

from center, an optimum HCl concentration is needed. Thus, it is hypothesised that the 
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use of HCl with an optimum concentration will form a well-defined flower-like 

structure of rutile TiO2. 

 

 

A basic structure or a single constituent TiO2 nanostructure is the lack of 

necessary properties and tend to agglomerate in the photocatalytic wastewater system 

(Li et al., 2015b). Many efforts focusing on increasing the catalyst surface area have 

been done, yet, further increased in surface area by decreasing the particle size to 

certain nanosize may activate an attractive Van der Waals force, thus resulting in 

agglomeration (Jusoh et al., 2013; Jaafar et al., 2015b; Gao et al., 2015). Therefore, 

flower-like structure is a promising morphology on improving the photocatalytic 

activity due to its unique structure which can enhance the light harvesting from the 

multiple reflection of light on the surface of the extended nanorod structure (Jusoh et 

al., 2013; Yu et al., 2009). Furthermore, the open structure of each individual nanorod 

extended from the center may provide more exposed and assessable active side which 

are limited in other structure. Hence, in this study it is hypothesised that the synthesis 

of flower-like TiO2 nanoparticle (FTN) catalysts can successfully enhance the 

photoactivity on decolourization of MB which is capable to be activated under visible 

light under shorter reaction time.  

 

 

 

 

1.3 Objective of the Study 

 

 

The aims of this study are: 

 

1. To synthesise and characterise the flower-like titania nanoparticle (FTN) 

catalysts.  

2. To evaluate the photodecolourization of MB by the FTN catalysts. 

3. To determine the kinetics and mechanism of the photodecolourization as well 

as the capability of the system for simulated wastewater treatment.  
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1.4 Scope of the Study 

 

 

The scope of this study are: 

 

1. Synthesis and characterization of physicochemical properties of flower-like 

TiO2 nanostructured (FTN). 

FTN was prepared using an acid hydrothermal process by varying the 

concentration of hydrochloric acid (2M, 3M and 4M). All of the catalysts were 

characterised by X-Ray Diffraction (XRD), Fourier Transform Infrared 

(FTIR), nitrogen (N2) adsorption-desorption, Field Emission Scanning 

Electron Microscope (FESEM), electron spin resonance (ESR), and 

ultraviolet-visible diffuse reflectance spectroscopy (UV-vis/DRS). 

 

2. Evaluation of the photodecolourization of MB. 

Photocatalytic testing of the synthesised catalysts on decolourization of MB 

was conducted under various parameters such as pH (3-11), catalyst dosage (0-

0.375 g L-1) and initial concentrations (10-70 mg L-1). The choice for the 

selection of pH, catalyst dosage and concentration levels is based on reported 

literature (Jusoh et al., 2015b; Jusoh et al., 2013; Jaafar et al., 2012; Jalil et al., 

2013; Jalil et al., 2015; Hassan et al., 2015; Sahoo et al., 2012). 

 

3. Study on kinetics and mechanism of photodecolourization of MB as well as 

application on simulated wastewater treatment. 

The kinetics expression modelling was described based on the pseudo-first 

order-Langmuir-Hinshelwood models in order to find the appropriate proposed 

reaction mechanism for photocatalytic decolourization. A simulated 

wastewater treatment was prepared using MB, MO, CR and RhB.   
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1.5 Significant of Study 

 

 

This study was conducted to synthesise FTN based catalysts for 

photodecolourization of MB. A detail investigation on physicochemical properties of 

the catalysts as well as the photocatalytic activity was also conducted. The TiO2 have 

been commonly applied as a photocatalyst concerning its outstanding photoactivity in 

removal of organic pollutant. Nonetheless, it has narrow light-response range, rapid 

electron-hole recombination rate and difficulty in handling process, giving the 

limitation on its application under visible light irradiation. In recent approach, a 

modification on TiO2 morphology can improve its own drawbacks and results in a 

fascinating photocatalytic activity. 

 

 

The preparation method is a critical part in modifying the TiO2 morphology. 

There are several studies on various morphological modifications of TiO2 had been 

done to further improve its photocatalytic performance, however, the detail discussion 

on the catalyst properties related to the structure is still limited. Among the other 

morphological structures, the flower-like TiO2 synthesised by the acid hydrothermal 

method is able to lower the band gap, improve the efficiency of light utilization and 

provide more surface contact between pollutant and the catalyst. Hence, it was 

hypothesised that the synthesis of TiO2 flower-like structure using a simple acid 

hydrothermal method was expected to enhance the photocatalytic decolourization of 

MB and this study will give an advantage for the knowledge transfer and improve the 

efficiency of the wastewater treatment. 
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1.6 Thesis Outline 

 

 

This thesis was divided into five chapters. In chapter 1, general introduction is 

given about the use of dye in various area of industries, types of synthetic dye and the 

risk of the dye effluent especially MB dye towards the environmental and human 

health. Several wastewater treatment for decolourization of MB were also mentioned. 

Besides that, the potential of FTN as a photocatalyst for removal of MB were 

highlighted. The problem statements of the current research were stated to clarify the 

objectives of the present study. The scopes of study covers the research work to meet 

the objectives. The significance of research was also clearly mentioned.  

 

 

Chapter 2 or literature review covers the details on previous studies in order to 

get the better understanding in synthesis, characterization and photoactivity efficiency 

of FTN catalyst.  

 

 

Chapter 3 or methodology describes the materials and chemicals used, catalyst 

preparation, characterization and photocatalytic reaction, including the experimental 

setup and analysis calculation. 

 

 

Chapter 4 focuses on results and discussion which are divided into three parts, 

(i) physicochemical properties of catalysts (ii) photocatalytic activity of the catalyst 

and (iii) potential of catalyst on photodecolourization of simulated dye wastewater. 

 

 

Finally, the conclusion about the study and the future studies were simplified 

in the last chapter which is chapter 5. 
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APPENDIX A 

 

 

Acid-base strength chart 
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APPENDIX B 

 

 

Calculation particle size of FTN using Scherrer’s formula 

 

 By taking 2θ = 25.32°, the particle size of the catalyst can be estimated as 

follows, 
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where τ is particle size, λ is the wavelength of X-ray radiation (Cu Kα = 0.154 nm), k 

is shape factor (k = 0.9), β is the line width at half maximum height in radian and θ is 

the angular position of the peak maximum in radian.  
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Thus, the crystallite size of FTN-3M was 26 nm at 2θ = 27.5° 
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APPENDIX C 

 

 

Calculation of band gap 

 

The band gap of the catalysts were calculated by using the following equation: 
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where E is the band gap energy, h is Planck’s constant  sJ  3410626.6 , c is speed 

of light  sm /10988.2 8  and λ is the wavelength obtained from the extrapolation of 

straight line as shown in the figure of UV-vis/DRS spectra. 
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E = 1240 eV ∙ nm / 520 nm 

   = 2.38 eV 

 

Thus, the band gap of FTN-3M was 2.38 eV 
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APPENDIX D 

 

 

Raw data of MB decolourization profile for FTN-3M 
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APPENDIX E 

 

 

Standard calibration curve 
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Standard Calibration Curve (Continued) 
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Standard Calibration Curve (Continued) 
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APPENDIX F 

 

 

Mass spectra of MB (m/z 284) along the photocatalytic testing starting from 

blank to 45 min of the photoreaction 
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APPENDIX G 

 

 

Mass spectra of MB’s intermediate product from 15 min to 90 min under visible 

light irradiation 
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