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ABSTRACT 

 

 

 

 

Flameless combustion is a novel combustion mode that is also to achieve 
ultra-low emissions of NOx and CO while producing a uniform temperature 
distribution and a stable combustion. In this work, a newly designed Internally 
Preheated Swirling Flameless Combustor (IPSFC) has been developed at the High 
Speed Reacting Flow Laboratory (HiREF), Faculty of Mechanical Engineering, 
Universiti Teknologi Malaysia (UTM) to achieve high performance combustion and 
low emission. The study examines the sequential development of a low emission 
swirling flameless vortex combustor operating from a thermal load of 7 kW to 15 
kW. The swirling flameless combustor has been modified to include preheating 
where the fresh air passes through a helical tube that is fixed inside the combustion 
chamber before being injected into the flameless combustor for some experiments. 
The objective of this study is to investigate in detail the role of air inlet geometry 
with and without air preheating on the performance of the swirling flameless 
combustion without the addition of diluted gas. Investigation on the effect of 
multiple air–fuel injection configuration found that the case of SFR42 to be the best 
configuration for optimum flameless combustion performance. SFR42 is a swirling 
combustor with 4 inlets of tangential air and 12 inlets axial air with 11 inlets coaxial 
fuel. The lowest NOx and CO emissions are observed at the equivalence ratio of 0.8 
with the value of 4 ppm and 24 ppm, respectively. In general temperature uniformity 
which is an important characteristic of flameless combustion is observed to vary 
from 0.03 to 0.06 at the different equivalence ratio. This work also demonstrated the 
achievement of swirling flameless combustion with and without preheated tangential 
air. Overall, preheated air has contributed to the increase of 5% thermal efficiency 
compared to the non-preheated case at the expense of 4 ppm maximum increment of 
NOx emission. In this thesis some simulation study is also performed to investigate 
the detail flow field inside the swirl combustor. The numerical investigation confirms 
the experimental finding on the outstanding performance of SFR42 configuration. It 
is found that in this configuration the bulk swirling motion was produced in the 
combustor for good mixing between fuel and oxidizer which in turn lead to complete 
combustion at low peak temperature. This results in the combustion process with low 
emission. 
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ABSTRAK 

 
 
 

 
Pembakaran tanpa api adalah mod pembakaran baru yang boleh menghasilkan 

pelepasan NOx dan CO rendah di samping mendapatkan taburan suhu yang seragam dan 
pembakaran yang stabil. Dalam kajian ini, Internally Preheated Swirling Flameless 
Combustor (IPSFC) telah direka dan dibangunkan di Makmal Aliran Tidakbalas Berkelajuan 
Tinggi (HiREF), Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia (UTM) 
bagi menghasilkan pembakaran yang berprestasi tinggi dengan pelepasan emisi yang rendah. 
Kajian ini memfokuskan pelepasan pembakar berpusar yang rendah beroperasi dari beban 
haba 7 kW kepada 15 kW. Pembakar berpusar tanpa api telah diubahsuai untuk 
prapemanasan di mana udara segar melalui satu tiub heliks yang diletakkan di dalam kebuk 
pembakaran lalu memanaskan udara tersebut sebelum dimasukan kedalam kebuk 
pembakaran dalam beberapa eksperiment. Objektif kajian ini adalah untuk menyiasat secara 
terperinci peranan geometri salur masuk udara dengan dan tanpa prapemanasan udara ke atas 
prestasi pembakaran berpusar tanpa api tanpa penambahan gas sebagai pencair. Siasatan ke 
atas kesan konfigurasi suntikan berganda udara-bahan api mendapati bahawa kes SFR42 
adalah konfigurasi terbaik untuk prestasi pembakaran optimum. SFR42 adalah pembakar 
berpusar dengan 4 salur masuk udara tangen dan 12 salur masuk udara paksi dengan 11 salur 
masuk bahan api sepaksi. Pelepasan NOx dan CO paling rendah direkodkan pada nisbah 
kesetaraan 0.8 dengan masing-masing bernilai 4 ppm dan 24 ppm. Secara umum 
keseragaman suhu yang merupakan satu ciri penting dalam pembakaran tanpa api didapati 
berubah dari 0.03-0.06 pada nisbah yang kesetaran berlainan. Kajian ini juga menunjukkan 
pembakaran berpusar tanpa api dengan dan tanpa udara tangen yang diprapanaskan telah 
dicapai. Secara keseluruhan, udara yang diprapanaskan telah menyumbang kepada 
peningkatan sebanyak 5% kecekapan haba berbanding dengan kes udara yang tidak 
diprapanaskan tetapi dengan peningkatan pelepasan NOx maksima settingi 4 ppm. Dalam 
tesis ini beberapa kajian simulasi dijalankan untuk menyiasat medan aliran terperinci dalam 
pembakar pusaran.  Kajian numerikal didapati menghalkan penemuan yang hampir sama 
dalam mempastkan prestasi tinggi yang dicapai oleh eksperiment pada konfigurasi SFR42. 
Dalam konfigurasi ini sebahagian besar gerakan berpusar dihasilkan dalam pembakar dan ini 
membantu pencampuran yang baik antara bahan api dan pengoksida yang seterusnya 
membawa kepada pembakaran lengkap pada suhu puncak rendah. Keadaan tersebut 
seterusnya menyebabkan proses pembakaran berlaku dengan pelepasan emisi yang rendah.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Heat and power, which are integral parts of our daily lives, are generally 

produced via combustion processes. Excessive heat production and elevated global 

warming are consequences of the process. Global warming is a topic of great 

importance. According to the Intergovernmental Panel on Climate Change, averaged 

over all land and ocean surfaces, temperatures warmed roughly 0.85 degrees Celsius 

from 1880 to 2012 (IPCC 2013). Due to the gradual increase in the average 

temperature of the earth, a permanent change of the earth's climate is expected. This 

change poses a significant threat to human civilization.  Combustion of fossil fuels 

which is the primary cause of global warming. Fossil fuels are hydrocarbons, primarily 

coal, fuel oil or natural gas, formed from the remains of dead plants and animals. The 

fossil fuels is the main source of energy production in the world. It is related to the 

emissions of potential pollutants and green-house gases. Hence, reducing combustion 

emissions and improving the thermal efficiency of combustion systems are critical 

challenges in designing thermal energy and power systems. Several combustion 

techniques were developed to reduce emissions of pollutant gases.  
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Flameless combustion is one of these techniques. The main feature of flameless 

combustion is the absence high temperature of flame front. The reaction takes place 

uniformly throughout the combustion chamber well below the dissociation 

temperature of N2, hence minimizing NOx formation. This form of combustion 

features a low concentration of oxygen around 5% (Lezcano 2013). Therefore, the 

ignition process of flameless combustion is characterized by slower chemical reaction 

rates, uniform temperature distribution, wider reaction zones, and invisible flame. The 

main operation principle for this technique lies in the concept of exhaust gas and heat 

recirculation. The heat from the exhaust gases is used to raise the temperature of the 

oxidant stream while, the exhaust gases are used to dilute the oxidant stream and hence, 

reduce the oxygen concentration to maintain low temperature in the combustion zone. 

As a result of this technique, less NO is formed (Dally, Riesmeier et al. 2004). The 

name flameless refers to a negligible visible signature from the flames as compared to 

conventional ones. 

 

 

The recirculation of flue gas means that combustion products are recirculated 

and mixed with fresh fuel and air streams. It is a key parameter in flameless 

combustion. Recirculation is divided into two categories: internal and external. The 

former category depends on burner design, while the latter is based upon the returned 

flue gas to the combustor by an external pipe. In the internal, the flue gases are 

circulated back to the combustion due to the burner aerodynamics. Recirculation and 

superior mixing of air and fuel are highly significant in combustion processes. 

Common procedures are used to create the recirculation and stabilization of the 

combustion during swirl flow. This plays a critical role to recirculate the section of the 

hot combustion product back toward the flame origin. Several approaches are used for 

that process; the generation of swirling combustion by a tangential air entry in a 

cylindrical combustor is one of them. 

 

 

Swirling flameless combustion is employed in a direct injection of both air and 

fuel, without any need for a flame stabilizer. To generate an auto swirling process, the 

air is injected tangentially and axially to impart swirling without the use of swirlers 

that are typically used in conventional combustors. Benefits of flameless combustion 
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technology are the ultra-low pollutant emissions, homogeneous temperature inside the 

combustion chamber, and stable combustion. 

 

 

Flameless is a promising combustion technology that can achieve the 

combination of high efficiency and ultra-low emissions. It is based on mixing of fuel 

and oxidizer and high flue gas recirculation. The separated fuel has high momentum, 

and air flows entrain the flue gas through internal recirculation. Thus, the oxygen 

concentration in the combustion zone is diluted. This leads to a more distributed heat 

release rate of the chemical energy, thus avoiding the high peak temperatures and 

reducing the pollutant emissions. 

 

 

 

 

1.2 Problem Statement 

 

 

In the nowadays strict emission regulations, environmental issues of power 

generation play an important role in the economic viability of modern power plants. 

To reduce harmful emissions, the current trend is to design industrial combustion 

devices that operate with high efficiency and low emissions. One of these harmful 

emissions is NOx from combustion processes. One of the most effective method of 

reducing NOx is the design and implementation of flameless combustion.  To achieve 

flameless combustion, there are two fundamental requirements to be achieved 

(Wünning and Wünning 1997, Lille, Blasiak et al. 2005). 

1. The combustion temperature within the chamber should be greater than the 

auto ignition   temperature of the mixture (E.g.,  800 °C for natural gas/air) 

(Wünning and Wünning 1997, Cavigiolo, Galbiati et al. 2003). 

2. The flue-gas recirculation ratio (Kv) between fuel, oxidizer and diluted gas   

(flue gas, N2 or CO2) should be greater than ‘three’ (>3) (Wünning and 

Wünning 1997, Flamme 2001). 
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A key point necessary for efficient design of a flameless combustor is to ensure good 

mixing between the incoming fresh fuel/air mixture and the re-circulated hot burnt 

gases.  Adequate and fast mixing between the injected air and the internally re-

circulated hot reactive gases to form hot and diluted oxidant is critical for flameless 

combustion, followed by rapid mixing with fuel. Many researchers used diluted gases 

like CO2 and/or N2 that are injected into the combustion chamber to achieve high 

circulation required for flameless combustion. Swirl is a phenomenon known to help 

combustion.  Many researchers used vanes or tangential entry to generate swirl.  Some 

researcher proposed introduction of swirl with tangential entry using asymmetric 

vortex combustor. In this study asymmetric vortex combustion (AVC) concept is used 

as the basic design for the flameless combustion system (Saqr 2011). However the 

(AVC) by Saqr has some problem regarding the low temperature region near the 

center.  In vortex combustion, where there are no axial air such as in AVC, the process 

of flame stabilization and mixing in AVC is concentrated near the circumferential wall 

of the combustor. The temperature at the center of the combustor is to be relatively 

low compared with wall combustor. This is justified by the presence of CRZ which 

entrains ambient air into the combustor (Saqr 2011). This situation is not good for 

flameless combustion. The axial component of the reacting flow within the combustor 

is essential, and this is normally achieved by introducing a swirl motion generated by 

the interaction between axial and tangential air velocity components. 

 

 

This study focuses on a new combustor that solves the problem by achieving a 

swirling flameless combustion with high recirculation, and without gas dilution. A 

modified design is proposed for a flameless combustor with a high recirculation for 

fast mixing. This combustor configuration adopts the previous asymmetric vortex 

geometry proposed by Saqr (Saqr 2011). The concept of vortex flame provides flame 

stability by stabilizing the reaction zone on the boundary of a forced vortex field, which 

allows rapid mixing between air and fuel upstream of the reaction zone. Therefore, the 

vortex flame demonstrates the visual characteristics of a premixed flame, although it 

is a non-premixed flame. Therefore, the stability is radically enhanced while avoiding 

the typical drawbacks of premixed flames.  
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This involves the investigation of the effects of burner geometry, air preheating 

and swirling on flameless combustion efficiency as well.  Current research focuses 

also on the development of combustion technology, aiming at reducing NOx emission 

while increasing combustion efficiency. 

 

 

 

 

1.3 Research Objectives 

 

 

This study focuses on the newly designed asymmetric swirling flow 

combustion system. The objectives of this present work are:  

1.  to analyze experimentally the effects of multiple air-fuel injection 

configurations on swirling flameless. 

2. to evaluate the effect of air preheating on thermal efficiency of 

swirling flameless combustion. 

3. to investigate numerically the gas recirculation and fuel-air mixing 

characteristics for different flow configuration swirling flameless 

combustion. 

 

 

 

 

1.4 Significance of Research 

 

 

In this study a new design of a flameless combustor called the Internally 

Preheated Swirling Flameless Combustor (IPSFC) has been proposed, developed, 

fabricated and investigated.  This study has practical applications in production 

industries in general. It also has a significant contribution in solving the problem of 

global warming and reduction of depletion of ozone layer. It also contributes in 

supporting the relevant industries such as gas turbines, to obtain more efficient 

combustion process. A new combustor configuration is designed to achieve a swirling 
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flameless combustion without the addition of gas dilution (e.g N2, CO2 etc.). To the 

best of author’s knowledge, the present study is the first study of its kind, in swirling 

flameless combustion. 

 

 

 

 

1.5 Research Scope 

 

 

The research scope covers the design and manufacture of a laboratory scale 

flameless combustor called HiREF Internally Preheated Swirling Flameless 

Combustor (IPSFC-HiREF).  Computational and experimental approaches are used in 

this research. The experimental component is focused on the characteristics of swirling 

flameless combustion under different locations of axial air inlets. Three types of 

hydrocarbon gases are utilized: natural gas, propane, and diluted methane. Nitrogen 

oxides (NOx), carbon monoxide (CO), carbon dioxide (CO2) emissions, and oxygen 

(O2) concentrations are measured in the exhaust gas during the experiments. The effect 

of axial to tangential air ratio induction on the swirling flameless combustion 

performance for natural gas is studied. Effects of the equivalence ratios on the pollutant 

emissions are determined. These equivalence ratios are in the range between 0.5 and 

1.2. The effect of diluted methane (CO2 diluted) on the swirling flameless combustion 

process is also investigated. Numerical investigations are performed to calculate the 

recirculation ratio and swirling number of the combustor in each case study. In the 

study, swirling flameless combustion was investigated for two cases: with and without 

tangential air preheating. 
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1.6 Thesis Outline 

 

 

This thesis consists of five chapters. Chapter one introduces the present study. 

Chapter two is a twofold literature review covering: (i) pollutant emissions with an 

emphasis on nitrogen oxides (NOx), and (ii) a review of past and current studies on 

flameless combustion. In chapter three, the design criteria for swirling flameless 

combustion are listed with emphasis on reactive gas recirculation and recirculation 

enhancement, swirl generation, and mixing fuel and air. Chapter 3 also presents a 

discussion of the equipment, as well as the methodology employed in all phases in the 

present study. A thorough discussion of the results then follows in chapter four. The 

thesis finishes with chapter five, which contains the conclusion that precedes 

recommendations for future research based on our findings. 
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