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ABSTRACT

Pure iron (Fe) and its alloys have been recently emphasized as potential 

biodegradable metals due to their good mechanical properties that are close to those 

of stainless steel 316L. This research was focused more on the study of cell-material 

interaction and to analyze the effect of corrosion product on cell behavior by 

performing degradation study. In this study, samples were prepared by coating 

hydroxyapatite (HA) and hydroxyapatite/poly (s-Caprolactone) (HA/PCL) onto 

porous iron using dip coating method. Biosafety and biofunctionality of the sample 

were evaluated by using human skin fibroblast (HSF) and mesenchymal stem (MSC) 

cells. Analysis by Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) 

revealed that concentration of ion Fe was decreased in the medium containing HA- 

coated Fe. However, the weight loss of the sample is high compared to pure porous 

iron and HA/PCL-coated Fe. A positive cell response to the Fe ions was revealed 

during the first 21 days of the cell toxicity study using indirect method. After 21 days 

the HSF cell viability decreased due to acidic eluates and the increase of Fe ions 

concentration that promoted the formation of the reactive oxygen intermediates 

(ROI). From the results obtained, it showed that the HSF and MSC cells exhibited 

higher viability when in contact with the Fe-HA and Fe-PCL/HA than with the Fe 

specimens. However, there is a significant decrease (p<0.05) of cells when cultured 

on three different samples after 3 days of incubation. HA-coated porous Fe also 

provides support for attachment of the cells. Observation under Scanning Electron 

Microscope (SEM) reveals that the filopodia of the mesenchymal stem cells 

preferred to develop onto irregular surface of HA-coated Fe. This study provided 

evidences of a good cell-material interaction on the porous Fe that may confirm the 

feasibility of using porous biodegradable ferum as hard tissue scaffolds.
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ABSTRAK

Ferum tulen dan ferum berasaskan aloi telah dikenal pasti mempunyai potensi 

sebagai material terbiodegradasi kerana ciri mekanikalnya yang seakan-akan 

menyerupai stainless steel 316L. Namun begitu, kadar terdegradasi metal ini 

mengambil tempoh masa yang lama. Dalam kajian ini, sampel ferum yang poros dan 

disaluti dengan hidroksiapatit (HA) serta campuran hidroksiapatit/poly s-kaprolakton 

(HA/PCL) menggunakan kaedah celup penyalutan (dip coating) telah disediakan. 

Hasil analisis menggunakan ICP-MS menunjukkan bahawa kepekatan ion Ferum 

yang diukur dalam medium yang direndam dengan ferum bersalut HA adalah rendah 

walaupun mempunyai pengurangan berat yang ketara berbanding sampel Ferum 

tulen yang poros dan sampel Ferum bersalut HA/PCL. Kajian ketoksisitan sel 

melalui kaedah tidak langsung ke atas ion ferum memberikan respon yang positif 

sehingga 21 hari. Selepas itu, viabiliti sel HSF menunjukkan penyerosotan 

disebabkan oleh elut medium yang berasid dan peningkatan kepekatan ion ferum 

yang menggalakkan pembentukan reactive oxygen intermediate (ROI). Seterusnya, 

ujian biokompatibiliti material dilaksanakan ke atas sel dengan menggunakan sel 

fibroblas manusia (HSF) dan sel stem mesenkimal manusia (MSC). Kedua-dua sel 

ini memberikan peningkatan dalam peratusan viabiliti apabila diuji menggunakan Fe- 

bersalut HA dan Fe-bersalut HA/PCL. Namun begitu, terdapat penurunan yang 

signifikan apabila sel dibiarkan selama tiga hari dengan semua sampel secara 

langsung. Pemerhatian di bawah SEM menunjukkan filopodia sel stem mesenkimal 

lebih mudah berkembang ke atas permukaan tidak rata pada ferum bersalut HA. Hal 

ini membuktikan bahawa sampel tersebut memberikan sokongan yang baik untuk 

pelekatan sel dan mengesahkan kebolehan material ferum terbiodegradasikan yang 

poros sebagai templat (scaffold) untuk tisu keras.
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CHAPTER 1

INTRODUCTION

1.1 Background

In a case of organ function failure, biomedical implant made as a scaffold is 

needed to augment, repair and replace the function of affected tissue for 

reconstruction. The three-dimensional (3-D) scaffold should be porous, have a good 

mechanical strength and able to provide a necessary support for cells to perform its 

function [1]. Recently, biodegradable biomaterials are becoming interesting research 

topics due to its ability to support the healing process of a tissue and subsequently 

degrade on the site of implantation. Thus, degradable material represents a promising 

future in implant studies as they eliminate the risk of secondary surgeries. 

Furthermore, it will reduce the risk of refracture and stress shielding.

Studies on degradable materials such as polymer have shown excellent 

biocompatibility and an optimum degradation rate. However, polymer could not 

withstand a high strength application [2] which makes it less competence to use in 

the orthopaedic sector. Currently, metallic materials such as iron (Fe) and 

magnesium (Mg) have been introduced into the biomedical field and have received
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incredible interest. Iron has mechanical properties similar to bone and its degradation 

product is non-toxic to a human body [3].

Hydroxyapatite (HA) is a well known bioactive ceramics with nearly same 

chemical composition as a human bone. It has excellent biocompatibility and great 

bonding ability with bone structure [4]. However, shaping and implanting HA are 

difficult because of its weak and brittle mechanical properties. The use of HA 

coatings on metallic implants have been reported to stimulate bone healing. During 

the early stage of implantation, the coating shows improvement in the aspect of rate 

and strength of the metallic implant. It would speed up the rehabilitation of patients 

by decreasing the insertion time of implant to final reconstruction [1, 4-7]. To 

overcome the brittleness issue, double coating of HA with poly (s-caprolactone) 

(PCL) were introduced by previous research [8]. Reportedly, the coating will become 

stable and flexible without experiencing crack or delamination compared to the 

hydroxyapatite single coating [8].

The relevant test is necessary to study the biosafety and biofunctionality of 

new devices by biomaterialists. Cell attachment is one of a vital part in determining 

the biocompatibility of a material upon implantation into the human body. This role 

will further gives information on the cell migration, differentiation and proliferation, 

thus making the iron based implant is suitable to be used in bone repair and 

regeneration.

So far, new interest of HA coatings on biodegradable metallic material was 

increasing in recent years. However, the rapid corrosion rate of Mg is the main 

restriction for biomedical application. HA has been shown to have the ability to 

decrease the corrosion rate and improve the bioactivity of Mg alloy [9-10]. Previous 

research demonstrates that coating of iron foam with calcium phosphate/chitosan 

gives mechanically remarkable results as it mimics human bone, which can minimize 

the stress-shielding effects [11]. Therefore, this research is going to be focused more
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on the study of cell-material interaction in porous iron. The porous iron was also 

coated with HA to see its effect on the cell behavior and its degradation study.

1.2 Problem Statement

Iron has been proposed as the potential biodegradable implant due to its 

mechanical properties that are similar to stainless steel. However, even it is 

considered as biocompatible, the range of application is limited by its toxicity at 

maximum concentration [3, 12]. Hydroxyapatite often stated as an osteoconductive 

material because of its ability to support bone tissue progression surrounding the 

implants and to induce fixation via chemical bonding [13]. At this point, this research 

explored the possibility of using iron for bone applications, whereas its bulk was 

minimized by forming porous structure. Hydroxyapatite (HA) and poly (s- 

caprolactone)/hydroxyapatite (PCL/HA) coating was then applied to improve cell 

attachment and growth. HA-coated degradable implant with interconnected pores is 

expected to promote osseointegration without reducing its mechanical properties.
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1.3 Objectives

In this study, porous Fe was coated with HA using dip coating, a simple and 

cost effective method. PCL was also used as polymeric binder to improve HA 

coating on the surface of the porous Fe. The cytocompatibility and degradation 

behaviour of those materials were investigated in vitro. Therefore, the objectives of 

this research are as follow:

1) To develop HA-coated porous Fe, HA/PCL-coated porous Fe and evaluate 

their degradation behaviour.

2) To analyse the cell-material interactions on the developed material by a 

series of cytocompatibility testing using two types of different cells; human 

skin fibroblast and human mesenchymal stem cells.

1.4 Significance of Study

Previous studies on iron underlining its degradation behaviour, mechanical 

properties and its biocompatibility have demonstrated its potential to be developed as 

degradable metallic biomaterials. Most of them were performed on solid Fe samples. 

This work was done on porous Fe samples with surface modification. The aims were 

to explore the biocompatibility of porous Fe, the way cells react and attach to the 

surface of the porous Fe structure. In addition, the effect of HA coating was 

investigated based on the behaviour of two different cells.
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1.5 Scope of Study

Four scopes have been drawn to achieve the objectives of the research, that is:

1) Preparation of sample, where porous Fe coated with HA and PCL/HA by 

using dip coating method.

2) Characterization of material and coating by using SEM and EDX.

3) Determination of the degradation behaviour by measuring weight change 

and concentration of Fe release during immersion tests in cell culture 

medium.

4) Investigation of the effect of degradation towards cell viability, proliferation 

and morphology by using several assays and microscopic observation.
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