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ABSTRACT 

 

 

 

 

The aim of the study was to develop an optimized design multi-cyclone fine 

particulate emission control system named as MR-deDuster to fulfil the stringent 

environmental regulatory requirement of Malaysia Clean Air Regulation 2014. This 

is due to the existing multi-cyclones used do not effectively reduce the emissions 

level within the legislative limit at all times. The theoretical background of the unit 

was developed based on the modifications of established design equations available 

in the literature. The modified Lapple model with different definitions of maximum 

radial distance travelled by a particulate designated as W, as well as Leith and Licht 

model were used to predict the collection efficiency of the unit. Meanwhile, the 

modified Shepherd and Lapple model was used to predict the pressure drop across 

the unit. The predictions were later compared with the actual data obtained 

experimentally and the best method to represent the actual performance of the unit 

was identified. The computational fluid dynamics (CFD) model template in ANSYS-

Fluent software was used to predict the flow pattern within the MR-deDuster unit to 

assist in understanding its fluid flow and the particulate collection mechanism.  The 

actual pilot plant of the unit was fabricated based on the optimum design 

configurations and tested experimentally under various volumetric gas flow rates 

ranging from 0.13 to 0.21 m3/s. To verify the theoretical findings, two different types 

of particulates samples, palm oil mill boiler fly ash (POFA) and PreKotTM were 

tested. The result showed that the unit was able to attain high collection efficiency at 

a relatively low pressure drop based on the theoretical and experimental findings, 

which highlighted the ability of the unit as an efficient particulate emission separator. 

Both theoretical and experimental studies also demonstrate that the increase of 

volumetric gas flow rate results in a reduction of cut diameter with an increase of 

fractional and overall collection efficiency as well as pressure drop of the MR-

deDuster. However, as observed in the experimental study, the collection efficiency 

reduced at a volumetric gas flow rate of 0.21 m3/s due to saltation velocity 

phenomenon. The modified Lapple model of W = D-De/2 was identified as the 

closest model to represent the actual collection efficiency of MR-deDuster. 

Meanwhile, the modified Shepherd and Lapple model with constant K = 3.7 was 

accepted as the model to represent the actual pressure drop of the unit. In conclusion, 

the development of MR-deDuster unit is able to offer a better multi-cyclone unit in 

capturing the fine particulate for many industries as well as providing new theoretical 

analysis on multi-cyclone. 
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ABSTRAK 

 

 

 

 

Tujuan kajian ini adalah untuk membangunkan satu rekabentuk berbilang 

siklon yang dioptimumkan sebagai sistem kawalan pelepasan zarah halus yang 

dinamakan sebagai MR-deDuster untuk memenuhi keperluan peraturan alam sekitar 

yang ketat iaitu Peraturan Udara Bersih Malaysia 2014. Ini adalah kerana berbilang 

siklon sedia ada yang digunakan tidak berkesan untuk mengurangkan pelepasan 

dalam had yang ditetapkan pada setiap masa. Latar belakang teori unit dibangunkan 

berdasarkan persamaan rekabentuk terubahsuai yang terdapat dalam rujukan. Model 

Lapple yang terubahsuai dengan takrifan berbeza jarak perjalanan jejarian 

maksimum oleh zarah yang dilabelkan sebagai W, serta Model Leith dan Licht telah 

digunakan untuk meramalkan kecekapan pengumpulan unit. Manakala, model 

Shepherd dan Lapple yang terubahsuai telah digunakan untuk meramalkan kejatuhan 

tekanan yang merentasi unit. Ramalan tersebut kemudiannya dibandingkan dengan 

data sebenar yang diperolehi secara ujkaji dan kaedah terbaik untuk mewakili 

prestasi sebenar unit dikenal pasti. Pengiraan dinamik bendalir (CFD) seperti dalam 

perisian ANSYS-Fluent telah digunakan bagi meramal corak aliran dalam unit MR-

deDuster untuk membantu dalam memahami aliran bendalir dan mekanisme 

pengumpulan zarah. Loji pandu telah dibina berdasarkan rekabentuk tatarajah 

optimum dan diuji secara ujikaji menggunakan pelbagai kadar aliran isipadu gas dari 

0.13 hingga 0.21 m3/s. Untuk mengesahkan penemuan teori, dua jenis sampel zarah 

berbeza, abu terbang dandang kilang kelapa sawit (POFA) dan PreKotTM telah diuji. 

Keputusan menunjukkan unit ini telah dapat mencapai kecekapan pengumpulan yang 

tinggi pada kejatuhan tekanan yang rendah berdasarkan penemuan teori dan ujikaji 

yang mengetengahkan keupayaan unit sebagai pemisah pelepasan zarah yang cekap. 

Kedua-dua teori dan kajian ujikaji juga menggambarkan bahawa peningkatan kadar 

aliran isipadu gas mengurangkan potongan garis pusat dengan meningkatkan 

pecahan dan keseluruhan kecekapan pengumpulan serta kejatuhan tekanan MR-

deDuster. Walau bagaimanapun, seperti yang diperhatikan dalam kajian ujikaji, 

kecekapan pengumpulan berkurangan pada kadar aliran isipadu gas 0.21 m3/s 

disebabkan fenomena halaju rayap-lompat. Model Lapple yang terubahsuai,             

W = D-De/2 telah dikenal pasti sebagai model yang paling tepat mewakili kecekapan 

pengumpulan sebenar MR-deDuster. Manakala, Model Shepherd dan Lapple yang 

terubahsuaisuai dengan nilai K = 3.7 telah diterima sebagai model mewakili 

kejatuhan tekanan sebenar unit. Secara kesimpulannya, pembangunan unit MR-

deDuster mampu menawarkan unit berbilang siklon yang lebih baik dalam 

menangkap zarah halus untuk pelbagai industri serta menyediakan analisis teori baru 

untuk berbilang siklon. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION AND OVERVIEW 

 

 

 

 

1.1 Introduction  

 

 

Issues in connection with air pollution such as global warming, climate 

change, greenhouse gas (GHG) emissions and human health deterioration has 

become an international concern of the 21st century. Air pollution refers to the 

presence of any substance such as chemical, particulate matter (PM) and biological 

materials that is harmful or injurious to human health or welfare, animal or plant life, 

or property which has been acknowledged since industrial revolution. The famous 

incident such as London Smog Episode had changed the perspective of many 

countries towards the importance of air pollution. Such incident is less experienced 

in developed countries but unfortunately it is still occurring in developing countries 

especially in the Asia region (Autrup, 2010).  

 

 

In Malaysia, there are three main sources of air pollution, these are mobile 

sources, stationary sources, and open burning sources (Afroz et al., 2003). The 

emission of unburned hydrocarbons from motor vehicles is one of the most serious 

sources of air pollution in this country (Awang et al., 2000; DOE, 2010). However, 

the main source of PM emission is from stationary sources including industries such



 2 

as palm oil mill and power plant (DOE, 2010). The PM is likely to be prominent 

especially in urban environment. It is not only produced by mechanical processes due 

to construction activities and road dust resuspension but also from combustion 

sources (WHO, 2005). Combustion of biomass and agriculture materials may in fact 

contributes to the significant quantities of fine PM emission along with others gases 

such as carbon monoxide (CO), sulphur dioxide (SO2) and nitrogen oxides (NOx) 

(Lewtas, 2007). 

 

 

PM is significant air pollutant which initially was not recognized as a hazard 

to public health and only acknowledged harmful to human health due to the 

increasing of mortality associated with acute (daily) and chronic (decades) exposures 

(Dockery, 2009). In both developed and developing countries, the evidence on 

airborne PM to cause adverse health effects upon exposures by urban population is 

consistently experienced throughout the world (WHO, 2005). Many studies have 

linked the PM exposure with the deterioration of human health especially the fine 

particulate size fraction. Numerous epidemiological studies reported that fine 

particulate is responsible as one of the causes contributes to respiratory and cardio-

pulmonary disease (Fenger, 1999). In Malaysia, 2.4 per 10,000 population reported 

to be hospitalized each year associated to the PM exposure during haze days which 

representing an increase of 31% from normal days (Othman et al., 2014).   

 

 

Realising the negative impact of PM emission on human health and 

environment, the new Clean Air Regulation 2014 was promulgated early June of the 

same year. In order to meet the regulation limit, all industries generate PM are 

required to install particulates collector to restrict the emission of PM from 

deteriorating the atmosphere. As a result, air pollution control system such as fabric 

filter, scrubber, electrostatic precipitator (ESP) and multi-cyclones are installed in the 

industry as the particulates emission arrestor. 

 

 

Multi-cyclones is the most widely used control technique especially in the 

palm oil mill industry due to its advantages such as simplicity of design, lower 
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operating and maintenance cost as well as the ability to work in harsh operating 

conditions. However, the current multi-cyclones used are not effective enough to 

reduce the emission level within the legislative limit at all time. Thus, a study on the 

development a fine particulate emission control system was carried out seeking to 

provide a better performance multi-cyclones to meet more stringent emission limits. 

The study includes design and development of a prototype unit of the system to 

validate on its actual performance. A brief overview and significance of the study are 

presented in the following section. 

 

 

 

 

1.2 Problem Statement 

 

 

 Combustion is one of the main sources of PM released into the atmosphere. 

Furthermore, combustion of biomass such as agriculture waste materials may 

actually be a main contributor to the outdoor air pollution especially in the fine 

particulate size fraction (WHO, 2005). For example; in Malaysia, palm fiber and 

shell are mainly used as fuel in the palm oil mill boiler to generate steam and energy 

for its daily operation. This generates a significant amount of particulates emission 

also known as palm oil mill boiler fly ash or POFA along with others pollutant gases 

like carbon monoxides (CO), sulphur dioxide (SO2) and nitrogen oxides (NOX). This 

activity contributes approximately 3.5 tons particulate emission per boiler per day, if 

it is not controlled (Chong et al., 2011). The fluctuation of particulate emission from 

biomass burning especially in palm oil mill plant continued to become a big 

environmental issue in the industry as well. 

 

 

Studies on the characteristics and control of particulate in the mills (Chong et 

al., 2011; Rashid et al.., 1993; Rashid et al., 1998) showed the particulate emission 

concentration in stack gas of a palm oil mill industry varied from 2.0 to 13.0 g/Nm3 

@ 7% O2 with relatively high coefficient of variation (CV) of 84%. Preliminary 

study indicates that the particulate emission concentration emitted from the boiler 
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was 5 to 33 times higher than the limit imposed on the facility. Worst still, none of 

the sample collected was able to meet its emission limits. Based on the finding, 

approximately 1.4 ton per mill of particulates are released into the atmosphere on a 

daily basis. The high concentration of PM will obstruct the industry to comply with 

the stringent regulation of new Clean Air Regulation 2014.  

 

 

Generally, it was found that the collection efficiency of the existing multi-

cyclones stood at 68% only which indicate the inefficient of the existing unit in 

capturing particulates especially the fine size fraction (Chong et al., 2011). Thus, 

there is a considerable room for improvement in the design of a newly proposed 

control unit for the industry. In addition, most of the multi-cyclones installed in the 

palm oil mills are treated as the main air cleaner instead as pre-cleaner where 

generally it is meant as a latter. However, miniaturized cyclones arranged in a 

compartment known as a multi-cyclones have the potential to be an excellent 

particulate arrestor itself which is in line with this study.  

 

 

In addition, studies on multi-cyclones are very limited and lacking. On the 

contrary, studies on a single cyclone already evolved more than 50 years. The current 

studies on multi-cyclones mainly discussed on the performance as well as flow 

pattern, and none of them discussed on the design configurations (Liu et al., 2014; 

Masnadi et al., 2010; Peng et al., 2007).  The design configurations of a multi-

cyclones is hardly available in literature merely due its confidentiality and 

commercial reason. Thus, this study is an attempt to offer a new improved multi-

cyclone particulate emission control system with original first-hand dimensions and 

better performance even for fine particulate size fraction for all industries generate 

PM especially palm oil mill industry. In addition, the study will provide a better 

understanding of the design parameters affecting its performance and operation.   

 

 

 

 

 



 5 

1.3 Objective of the Study 

 

 

In general, the purpose of the study is to develop a new particulate control 

system which help to reduce fine particulate emission from industrial sources. Thus, 

in order to accomplish the purpose of the study, the following specific objectives 

have been identified:  

 

 

i. To configure a design for a new multi-cyclone fine particulates 

emission control unit known as MR-deDuster. 

ii. To theoretically evaluate and predict the performance of the proposed 

MR-deDuster. 

iii. To experimentally validate the performance of the MR-deDuster in a 

pilot plant scale by comparison to the theoretical findings.   

 

 

Each of the study objectives is addressed accordingly in a separate chapter (4 

5 and 6) of this thesis.  

 

 

 

 

1.4 Scope of the Study 

 

 

The scope of work involved in this study are divided into three different 

phases which are; i) configuration and designing of the MR-deDuster unit, ii) 

theoretical evaluation and prediction of MR-deDuster performance and iii) 

comparison on the performance of the unit of theoretically and experimentally. The 

configurations and design of the proposed multi-cyclone unit was based on 

established cyclone dimensions by Stairmand (1951), Swift (1969) and Lapple 

(1951) which mathematically modified to obtain six new sets of dimensions. The 

performance of six new set dimensions were later predicted based on modified 
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Lapple (1951) model for collection efficiency prediction as well as modified 

Shepherd and Lapple (1940) model for pressure drop prediction. The dimension 

selection of the unit was based on the most suitable criteria of high predicted 

collection efficiency and low pressure drop. The selection of MR-deDuster design is 

also based on axial dimension, whereas the optimum axial dimensions with excellent 

prediction performance was selected as the design of MR-deDuster unit.     

 

 

The performance (which include collection efficiency and pressure drop) of 

MR-deDuster unit that adopted the dimensions selected previously was predicted 

using the Leith and Licht (1972) model and modified Lapple (1951) model with 

different definitions of maximum radial distance travel by the particulate, W as well 

as modified Shepherd and Lapple (1940) model. The collection efficiency and 

pressure drop was predicted using various volumetric gas flow rate ranging from 

0.13 to 0.21 m3/s. In addition, a CFD modelling software was also used to predict 

fluid flow of the unit which used to understand the flow characteristic, as an essential 

step to understand the collection efficiency and pressure drop of a cyclone. 

 

 

The study also tested the actual performance of MR-deDuster which the 

output was later compared to the theoretical performance prediction. The actual data 

collection was obtained to verify and validate predicted performance of the unit. The 

comparison of MR-deDuster performance experimentally and theoretically also aids 

in identifying the most suitable theoretical approach to represent the actual 

performance of the unit and to develop the new semi-empirical model of MR-

deDuster performance.   The actual performance of MR-deDuster was evaluated via 

developing the pilot plant scale of MR-deDuster prototype. The pilot plant of MR-

deDuster was composed of four prototype cyclones with each cyclone adopted the 

selected dimensions and assemble in parallel arrangement. The operating conditions 

of the prototype MR-deDuster in a pilot plant scale set up was also evaluated in term 

of volumetric gas flow rate and flow velocity.  The pilot plant was tested to obtain 

the actual collection efficiency and pressure drop of the unit at various volumetric 

gas flow rate range from 0.13 to 0.21 m3/s for two types of different particulates, 

POFA and PreKotTM.    



 7 

1.5 Significance of Study 

 

 

The development of a new fine particulate emission control device as the air 

pollution system, which is developed to decrease the particulate emission from 

industry. The study offers a new construct multi-cyclones with original first-hand 

dimensions and improved performance. In turn, this will provide an alternative 

solution for industry to overcome particulate emission problem. In addition, the MR-

deDuster designed with easy maintenance features. Therefore, the developed multi-

cyclones has a positive potential for commercialization due to its new added values 

as well as the demand of multi-cyclones usage in Malaysian industry in controlling 

particulate emission. 

 

 

The study predicted the performance of MR-deDuster using several 

approaches and later the performance was validate via comparing with the actual 

data obtain from pilot plant testing. This provides a better understand of the 

performance and operation of multi-cyclones in general. The comparison of 

theoretical and experimental data also provide the theoretical background (semi-

empirical equation) for newly developed MR-deDuster specifically and multi-

cyclones in general. The theoretical background also can be used as design 

consideration for developing other multi-cyclones in the future. 

 

 

The development of MR-deDuster as high efficient multi-cyclones (with 

more than 95% collection efficiency of PM10) also improved the ability of multi-

cyclones as main air cleaner device instead of only being air pre-cleaner device. The 

industry prefer to choose cyclone as air cleaner because of its low cost compared to 

other particulate collector technologies. Therefore, the development of MR-deDuster 

offers a new particulate collector that low in cost but high efficiency for industry. 
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Lastly, the study serves as an important basis for future research work on air 

pollution control system in Malaysia especially in dry centrifugal collector 

technology.  

 

 

 

 

1.6 Outline of the Thesis 

 

 

 The thesis consists of seven chapters with Chapter 4 to 6 arranged as 

independent journal papers suitable for publication submission. In fact, some of 

results of the study have been published in Sains Malaysiana, Jurnal Teknologi, 

Journal of Environmental Research and Development as well as in Advance Material 

Research. Each of the respective objective is addressed in Chapter 4 to 6 of the 

thesis. 

 

 

 Chapter 1 presents an overview of the study. It describes the background and 

the basis of the research. The problem statement as well as the significance of the 

study also present in this chapter. More importantly, the objectives of the study are 

stated along with the scope of study to give the reader the clear view of the main aim 

of the study. 

 

 

 Chapter 2 consist of literature review related to the study. It briefly describes 

particulate emission issue in general including its adverse effect towards human 

health. This chapter also describes the particulate emission control device available 

such as electrostatic precipitators (ESP), fabric collectors, wet collectors and dry 

centrifugal collectors. However, literatures on dry centrifugal cyclone collectors are 

emphasised in this chapter which include its operating principles, types as well as its 

performance. In addition, studies on the modification cyclone to improve the unit 

performance are also present in this chapter. 
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 Chapter 3 presents the methodology of the whole study activity involved in 

the configuration and designing of the MR-deDuster unit, as well as evaluation, 

prediction and validation of its performance. Description of the development of MR-

deDuster, theoretically and experimentally is described in detail in this chapter.  

 

 

 Chapter 4 reports on the selection of the configurations of the MR-deDuster. 

In this chapter a new cyclone dimensions and its design consideration on developing 

the unit is discussed where the final selected configurations are presented at the end 

of the chapter.  

 

 

 Chapter 5 presents the theoretical prediction performance of MR-deDuster 

and its fluid flow prediction using CFD modelling software. The predicted 

performance which consist of cut-diameter, fractional and overall collection 

efficiency as well as pressure drop of several theoretical approaches were evaluated 

and are reported in the chapter.  

 

 

 The actual performance of MR-deDuster is presented and discussed in 

Chapter 6. The observed cut-diameter, fractional and overall collection efficiency 

along with its pressure drop across the unit obtained from the pilot plant scale of the 

system is presented in the chapter. The comparison of theoretical and experimental 

performance of the unit also discussed in this chapter. The best theoretical method to 

represent the actual performance of the unit is also identified. Lastly, the new semi-

empirical equation to represent the performance of MR-deDuster is introduced. 

 

 

 Finally, Chapter 7 gives the overall conclusion of the study and 

recommendations for possible research work in the future. 
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