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ABSTRACT 

The presence of heavy metal ions in the environment is of major concern due 

to their toxicity to many life forms. Their toxicity affects the ecosystem and presents 

human health risk. Thus, wastes that contain heavy metals ionsmust be well treated 

so on to protect the people and environment.In this study, potential method for 

removal of heavy metal ions (such as: lead(II), cadmium(II), cesium(I), barium(II) 

and iodine(I) ions) from aqueous solution using combined maghemite (γ-Fe2O3) and 

titania (TiO2) nanoparticles embedded in PVA-alginate beads were investigated. In 

addition, control experiments that involved the study of TiO2 nanoparticles in 

polyvinyl alcohol (PVA)-alginate beads and γ-Fe2O3 nanoparticles in PVA-alginate 

beads were also performed. For this purpose, TiO2 and Fe2O3 nanoparticles were 

synthesized by hydrothermal and co-precipitation method, respectively. The average 

size of TiO2 and Fe2O3 nanoparticles was 15 and 9 nm, respectively. The 

nanoparticles and the beads were characterized by x-ray diffraction (XRD), field 

emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) 

and transmission electron microscopy (TEM). These beads were used in batch 

sorption experiments for removal of heavy metal ions and iodine ions from aqueous 

solution under sunlight. Several operating conditions such as initial ion 

concentration, pH and contact time were investigated to evaluate their effects on the 

process. The results showed γ-Fe2O3 and TiO2 PVA-alginate beads could remove 

Pb(II), Cd(II), Cs(I), Ba(II) and I(I) ions, with efficiency of around 100, 100, 93, 99 

and 99%, respectively. Also, the combined γ-Fe2O3 and TiO2 PVA-alginate beads 

showed best efficiency among three types of beads. After sunlight exposure, the 

beads were characterized by x-ray photoelectron spectroscopy (XPS) and energy-

dispersive x-ray (EDX) system.The results revealed the mechanism for ton removal 

of photocatalytic process. These beads can be easily recovered from the aqueous 

solution and they can be recycled for a maximum of seven times before losing their 

original properties. 
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ABSTRAK 

Kehadiran ion-ion logam berat dalam persekitaran adalah menjadi perhatian 

disebabkan oleh ketoksikannya terhadap banyak bentuk kehidupan. Ketoksikannya 

memberi kesan negatif kepada ekosistem dan kesihatan manusia. Oleh itu, sisa yang 

mengandungi ion logam berat mesti dirawat dengan baik untuk melindungi manusia 

dan alam sekitar. Dalam kajian ini, kaedah yang berpotensi untuk penyingkiran ion 

logam berat seperti: ion plumbum (II), kadmium(II), cesium(I), barium (II) dan 

iodin(I) dari larutan akueus dengan menggunakan gabungan maghemite (γ-Fe2O3) 

dan titania (TiO2) nanopartikel terbenam dalam manik  PVA-alginat telah disiasat. Di 

samping itu, eksperimen kawalan yang melibatkan nanopartikel TiO2 dalam manik 

PVA-alginat dan nanopartikel γ-Fe2O3 dalam manik PVA-alginat juga telah 

dijalankan. Untuk tujuan ini, nanopratikel TiO2 dan γ-Fe2O3 telah disintesis oleh 

kaedah hidroterma dan kaedah pemendakan. Saiz purata nanopartikel TiO2 dan γ-

Fe2O3 adalah masing-masing pada15 dan 9 nm. Nanopartikel dan manik telah 

dicirikan oleh belauan sinar-x (XRD), mikroskop imbasan elektron pancaran medan 

(FESEM), spektrofotometer inframerah transformasi fourier (FTIR) dan mikroskop 

transmisi elektron (TEM). Manik ini telah digunakan dalam eksperimen erapan 

kelompok untuk penyingkiran ion logam berat dan ion iodine daripada larutan 

akueus di bawah cahaya matahari. Beberapa keadaan operasi seperti kepekatan ion 

awal, pH dan masa sentuh telah disiasat untuk menilai kesan-kesannya terhadap 

proses. Keputusan menunjukkan bahawa manik maghemit dan titania PVA-alginat 

boleh menyingkir ion Pb(II) dan Cd(II) sebanyak 100%. Kadar penyingkiran ion 

Cs(I), Ba(II) dan I(I) masing-masing kira-kira 93, 99 dan 99%. Juga, gabungan γ-

Fe2O3 dan TiO2 PVA-alginat telah menunjukkan kecekapan terbaik di antara tiga 

jenis manik. Selepas proses cahaya matahari, manik-manik dicirikan oleh sistem 

spektroskopi fotoelektron sinar-x (XPS) dan analisis penyerakan tenaga sinar-x 

(EDX). Keputusan telah mendedahkan mekanisme penyingkiran setiap ion adalah 

proses fotopemangkinan. Manik-manik ini dapat dipulihkan secara mudah daripada 

penyelesaian akueus dan boleh digunakan semula untuk tempoh maksimum selama 

tujuh kali sebelum kehilangan sifat-sifat asal. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The toxic organic and inorganic materials found in soil, water and air via the 

photocatalyst approach is flexible enough to be applied for treatment to a diverse 

range of noxious and non-biodegradable compounds. This technique is reported to 

have the ability to treat and recover the pollutants from inaccessible areas such as in 

wastewater that have occurred recently. The damage that these pollutants may incur 

upon the environment and the economy can be contained by speedy mediation. 

Moreover, alternate power sources, such as solar power, may prove more successful 

in remote areas as opposed to the primary power supply. As a non-binding example, 

nanostructured photoactive films can be mentioned to improve light harvesting and 

charge separation, and to extend the photoactivity into the visible light region by 

altering the band structure of the materials, as well as to develop improved 

photoreactor units using solar light. There is a whole field of research dedicated to 

improving the efficacy of photocatalytic techniques and materials. Reaction 

temperatures are critical and photocatalysis should take place at normal environment 

temperatures.  
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1.2 Research background 

Environmental pollutant by heavy metal ions has become a major issue and 

has sequentially received global attention. Metal ions contaminations are often found 

in industrial and urban aqueous surroundings and they are harmful to health and 

environment. Many metal ions such as Cr(VI), Pb(II), Zn (II), Hg(II), Ba(II) and 

Cd(II) can be found in waste water. Some heavy metals for instance, lead and 

cadmium are classified as toxic materials and their presence in large concentrations 

can create diseases such as anemia, brain damage, kidney damage and anorexia that 

they are dangerous for both adults and children (Agency, 1999). 

Radioactive by-products of nuclear power generation and other nuclear 

technology, for instance, cesium, barium and iodine ions, put all life forms at risk, 

which is why they must be monitored, supervised and regulated by the government. 

The main difference between other toxic waste and radioactive waste is that the latter 

decays over a period of time, depending on the material‟s half-life which is why they 

must be treated with more caution. The period of time radioactive waste must be 

stored depends on the type of waste and radioactive isotopes. The time period that 

radioactive waste must be confined is unique to the half-life of the radioactive 

isotope which may fall anywhere between a number of days to millions of years. For 

example, iodine and barium have a half-life, t1/2 = 8 and 10 days respectively, 

whereas 
137

Cs has a half-life, t1/2 = 30.17 years (Sato et al., 2011). These radioactive 

ions are extremely hazardous as they can easily incorporate themselves into the 

biochemical processes of living organisms.  

There are many treatments methods for removal of heavy metal ions and 

radioactive ions from aqueous solution. However, the selection is very much 

dependent on factors such as economic, surrounding and the chemical synthesis of 

the wastewater to be removed. The common treatment method includes chemical 

precipitation process, ion exchange, osmosis, reverse osmosis, nanofiltration, 

electrolydialysis, adsorption and solvent derivation.  These methods have been used 

for large scale processes (Saeed et al., 2005). Adsorption is a renowned equilibrium 
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separation approach and has attained much success in water treatment applications. 

Adsorption has been found to be superior to other techniques for water reuse in terms 

of initial cost, flexibility and simplicity of design, ease of operation and insensitivity 

to toxic pollutants. Adsorption also does not result in the formation of harmful 

substances (Fu and Wang, 2011). 

In recent years, easy treatment techniques were introduced without secondary 

waste such as photocatalytic process. Some of these technologies include materials 

that can be quickly reused on a large scale for industries. The pursuit for new 

methods for heavy metal removal has resulted in the use of biosorbents and magnetic 

nanoprticles. The use of biosorbents such as calcium alginate and PVA as 

encapsulation materials for nanoparticles such as maghemite is fast becoming 

attractive. The availability of carboxylate functional groups provide sufficient 

binding sites responsible for removal of heavy metals for example Cd(Il), Cu(lI) and 

Pb(I1)  (Grant et al., 1973). A significant amount of research has been conducted on 

the natural polymer, alginate for the elimination of toxic, heavy metal ions due to its 

cost-effectiveness and high capacity for adsorption. The carboxylate function of this 

polysaccharide is found to be responsible in capturing the heavy metals cations such 

as Cd(II), Pb(II), Cu(II).  

Heterogeneous photocatalysis appears to be a very promising technique for 

the destruction of organic pollutants (Evgenidou et al., 2006). It is generally known 

that photocatalytic reduction can be used for the removal of heavy metal ions by 

reducting them to their insoluble forms. In previous studies, the photoreduction of 

Cr(VI) ion (Chenthamarakshan et al., 2000; Idris et al., 2010; Khalil et al., 1998), 

Hg(II) (Huang and Datye, 1996), Cd(II) (Chenthamarakshan et al., 2000) and Ag(I) 

(Khalil et al., 2002) were investigated. The reduction of organic compounds, such as 

benzoquinone (Richard, 1994), 4-nitrophenol (Brezová et al., 1997) and hydrazine 

(Chatterjee, 2000) were also investigated. Semiconductor photocatalysts can be used 

to reduce transition metal ions by photocatalysis. In recent years, efforts have been 

devoted to the study of photochemical processes using semiconductor oxides, such as 

TiO2, CdS, or ZnO, in heterogeneous system (Liu and Chiou, 2005). 
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Titanium oxide is the most common heterogeneous photocatalyst used in the 

photocatalysis process and it showed higher efficiency for the reduction and 

oxidation of organic and inorganic matters. However, commercial exploitation of this 

new technology is limited by the fact that titania is only active with UV light or 

radiation with wavelength below about 387nm, which makes it impossible to wider 

applications. Thus, there is a need to explore other possible photocatalysts for water 

treatment purposes by developing photocatalyst sensitive to sunlight (Hou et al., 

2006). Light can be understood as a chemical reagent that can convey about a wide 

variety of selective transformation, some of which are practically impossible to 

achieve using conventional reactant. An additional advantage is that light is even 

obtained at no cost when it comes from the sun. 

γ-Fe2O3 is an intriguing n-type semiconducting material, with a band-gap of 

2.2 eV, a  suitable condidate for its application as a photocatalyst in the visible light 

region (Akhavan and Azimirad, 2009). Its photocatalytic nature has been thoroughly 

monitored in the photodegradation of organic pollutants, water splitting and 

semiconductor electrode applications. Additionally, by its narrow band-gap, it has 

found application as a sensitizer of TiO2, which is another common photocatalyst. 

The irradiation with visible light, for the γ-Fe2O3 –TiO2 composite film results in the 

excitation of γ-Fe2O3 valence electrons to leave holes and move to the conduction 

band. Using formation of the built-in field in Fe2O3–TiO2 heterojunction, electrons in 

the valence bands of TiO2 are driven into Fe2O3 (while photogenerated holes move 

into the valence band of TiO2 in an opposite direction) (Akhavan and Azimirad, 

2009). Additionally, the charge transport in the γ-Fe2O3 –TiO2 plays an important 

role in improving photocatalytic efficiency as it improves the rate of electron-hole 

recombination (Akhavan and Azimirad, 2009). 
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1.3 Problem Statement 

As an important semiconductor, TiO2 has been extensively investigated for 

degrading organic pollutions and removing heavy metal ions from water due to its 

high photocatalytic activity, chemical or photocorrosion stability, low cost and safety 

to environment (Xu et al., 2011). Due to the large bandgap (3.2 eV), TiO2 is 

activated only by UV light, which constitutes only about 3-5% of the solar spectrum. 

This factor limits the use of the solar spectrum as a light source. Research regarding 

the photocatalytic activity of TiO2 in the visible range is an important topic 

especially regarding its applications in energy storage and environmental pollution 

control. Therefore, TiO2 nanoparticles were used for the removal of heavy metal ions 

under UV light as photocatalyst but its efficiency was rather low. TiO2 nanoparticles 

only capable of removing Pb(II) from aqueous solution, with an efficiency of only 

45% (Recillas et al., 2009). From this standpoint, development of new approaches to 

produce TiO2 with greater visible light adsorption is of great value (Collazzo et al., 

2012).  

 

On the other hand, Maghemite nanoparticles are purposely incorporated with 

alginate and PVA to enhance the ability of bead as a biosorbent, in some case as a 

photocatalyst. Some studies showed the success of magnetic biosorbents using γ-

Fe2O3 as magnetic nanoparticles embedded in alginate or chitosan in removal of 

Ni(II), Co(ll) and Au(lll). These ferrogels were also used for Cd(II) removal but the 

removal rate was slower where 99 % of Cd were removed after four hours 

illumination under sunlight and the removal was due to adsorption. Such magnetic 

biosorbents still require secondary treatment and require a longer duration. Similar 

experiments were performed for Pb(II) (Idris et al., 2012) where the maghemite 

beads behave as adsorbent for Pb(II) removal.  Recently, magnetic nanoparticles are 

embedded in biosorbents such as alginate and PVA to form ferrogels or beads and 

are used for removal of Cr(VI) in a photocatalysis process. Almost 100% of the 

Cr(VI) was reduced to Cr(III) within 30 minutes under sunlight and the beads can be 

reused at least five times (Idris  et al., 2012).  
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Besides Cr(VI), Cd(II) and Pb(II), these ferrogels have not been tested for other 

heavy metals such as: Cs(I), Ba(II) and I(I). Thus the challenge  lies in identifying 

the possibility of removing heavy metals such as: Pb(II), Cd(II), Cs(I), Ba(II) and I(I) 

using photocatalysis process. Based on literature review the removal of the 

mentioned ions from aqueous solution by using the photocatalyst have yet to be 

explored. Thus, the possibility of improving the maghemite PVA-alginate gels by 

combining the TiO2 and γ-Fe2O3 to enhance the efficiency of ions removal was 

investigated. It is hoped that the combination reduces the band gap of TiO2, thus 

improving its photocatalytic performance when applied under sunlight. Thus, in this 

study, maghemite and titania nanoparticles were embedded in PVA- alginate matrix 

in a bead form in order to enhance the photocatalytic removal of Pb, Cd, Cs, Ba and I 

from the aqueous solution under sunlight and to improve its reusability. 

1.4 Research objective 

The aim of the thesis is to combine both the maghemite and titanium oxide 

nanoparticles in PVA- alginate beads and investigate its effectiveness in removing 

heavy metal ions such as: Pb(II) and Cd(II) and radioactive ions such as: Cs(I), 

Ba(II) and I(I) via photocatalysis process. To attain the aim of study the following 

objectives need to be put in place.   

1) To remove heavy metals such as: Pb(II) and Cd(II), Cs(I), Ba(II) and I(I) 

from aqueous solution using the synthesized maghemite and titanium oxide 

nanoparticles embedded in PVA-alginate beads. 

2) To investigate the influence of pH, initial concentration of ions, 

temperature and ratio of maghemite and titanium oxide nanoparticles on the 

photocatalytic removal of mentioned heavy metal and radioactive ions. 

3) To evaluate the kinetic models for the prepared photocatalyst. 

4) To determine the mechanism of process for every ion removal.  

5) To investigate the recycling and regeneration of beads for future use.  
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1.5 Scope of research 

In order to achieve the objectives mentioned, the following need to be 

performed: 

1)  The titanium oxide nanoparticles and maghemite nanoparticles were 

synthesized by hydrothermal and coprecipitation methods respectively.  

2)  The nanoparticles were characterized by FESEM, FTIR, XRD and VSM. 

3)  The Fe2O3 coated with trisodiun citrate and TiO2 nanoparticles prepared     

were then embedded in PVA and alginate in the form of beads. 

4)  Maghemite and titania PVA-alginate beads were characterized by FESEM, 

EDX, FTIR, XRD. 

5)  Photocatalytic experiments to remove heavy metal ions (Pb(II), Cd(II)) 

Ba(II)) and radioactive ions (Cs(I), Ba(II) and I(I)) from aqueous solution 

were performed. The influence of pH (2<pH <12), initial concentration (50, 

100 and 200mg/L), temperature (25, 35 and 45
◦
C) and ratio of TiO2/ γ-Fe2O3 

(1:1, 1:10 and 1:60) of solution on removal rate of heavy metals and 

radioactive ions were investigated. 

6)  The solution of heavy metal ions (Pb(II), Cd(II), Cs(I), Ba(II)) and iodine 

ions were prepared by using deionized water. 

7)  Control of experiments were performed: i) process under sunlight, ii) without 

sunlight, iii) using only maghemite beads and iv) using only titania beads. 

8)  The concentrations of heavy metal ions were measured by using AAS 

analysis and the concentration of iodine ion were measured by using ICP-MS. 

9)  Finally the recycling tests were performed for the various beads. 

10)  The kinetics of photoreduction activity for the various heavy metals and 

radioactive ions were also determined using first and second order model. 

The isotherm kinetic model was also applied.  

11)  The mechanisms of various metals removal were determined using XPS 

analysis.   

The overall experimental approach is summarized in Figure 1.1. 
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Figure 1.1 Schematic diagrams summarizing the overall experimental approach 
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1.6 Significance of study 

The significance of the study is the combination of titanium oxide and 

maghemite nanoparticles in the PVA-alginate beads. The introduction of titanium 

oxide is believed to enhance the removal of heavy metals and radioactive ions from 

aqueous solution due to decrease the band gap of TiO2 nanoparticles.  

Previous studies (Idris et al., 2010; Idris et al., 2012) have shown that γ-

Fe2O3 nanoparticles in PVA-alginate beads have been used successfully as 

adsorbents to remove Pb(II) and Cd(II). The γ-Fe2O3 nanoparticles in PVA- alginate 

beads were only used to reduce Cr(VI) to Cr(III) via photocatalyst. Thus, in this 

research an effort is made to improve the performance in removal of some heavy 

metal ions such as: Pb(II), Cd(II) and Ba(II) and radioactivity ions such as: Cs(I) and 

I(I) by using photo catalyst beads containing both TiO2 and γ-Fe2O3 nanoparticles 

embedded in the PVA-alginate beads. In addition the optimum experimental 

conditions, kinetics of ions removal and reusability of maghemite and titania PVA - 

alginate beads were also determined.  

1.7 Organization of thesis 

This thesis is comprised of five chapters. In the first chapter, the background 

of research and problem statement are presented. The objectives of research, scope 

and significance of the study are also included in this chapter. Chapter two contains 

the literature review on the removal of heavy metal ions using different methods, 

ranging from the traditional to the state of the art technique. Also, semiconductor 

photocatalysts were introduced in this chapter. Chapter three is devoted to the 

detailed account of research methodology. Synthesis of maghemite and titanium 

oxide nanoparticles were explained in this chapter. The process for removal of heavy 

metal ions and iodine ion were explained in this chapter. Some operative parameters 

such as: pH, initial concentration, temperature and ratio of titania to maghemite 
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nanoparticles used to determine maximum metal removal are detailed. Chapter four 

is dedicated to experimental results and discussions; which includes details for 

removal of every heavy metal ions and iodine ion, kinetic of removal and mechanism 

of process for every heavy metal ions and iodine ion. Finally, chapter five highlights 

the conclusions of this research and promising prospects are proposed. 
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