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ABSTRACT 

 

 

 

 

 SMART Industrialised Building System (IBS) is the invention of Universiti 

Teknologi Malaysia (UTM) researcher. The system is targeted to resist earthquakes 

up to 6.0 Richter scale. However, the damage based reliability of one storey SMART 

IBS system may become a serious concern before the product is commercialised to 

the countries that prone to earthquakes. In this research, scaled 1: 5 model was 

developed according to the Buckingham Pi Theorem and Similitude Theory. 

Therefore, the experimental results of scaled 1:5 model are representing the real 

behaviour of full scaled model and then damage based reliability of one storey of 

SMART IBS system on seismic performance were studied. Four types of laboratory 

tests with scaled 1:5 were conducted which were beam flexural test, single column 

pushover test, two bay frames with wall panels pushover test and vibration test of 

one model of residential unit. In comparison between experimental test and nonlinear 

finite element analysis, the results were proven to have similarities in linear and 

nonlinear behaviour in terms of failure modes and strength profiles. The structure 

was assessed based on three different performance levels that were Immediate 

Occupancy (IO), Life Safety (LS) and Collapse Prevention (CP). Five damage ranks 

ranges from 1 to 5, five damage index ranges from 0 to 1 and five damage states that 

were Slight, Light, Medium, Heavy and Collapse were proposed based on the 

damage intensities of the components. The damage based reliability procedure and 

equation were developed to obtain a structural damage based reliability index. The 

proposed damage based reliability analysis starts with the determination of weighting 

factor of part in a component. Then, the weighting factor was multiplied with 

damage ranking score to obtain the damage score. The probability of failure of a 

component was determined by total damage score of component in the cumulative 

distribution function of the damage score. The damage based reliability index was 

obtained by one minus the probability of failure of component. One storey SMART 

IBS system was proven very reliable with damage based reliability index of 1 for 

earthquake peak ground acceleration (PGA) ranges from 0.05g to 5.3g.  
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ABSTRAK 

 

 

 

 

 SMART Industrialised Building System (IBS) adalah ciptaan penyelidik dari 

Universiti Teknologi Malaysia (UTM). Sistem ini adalah direka untuk menahan 

gempa bumi sehingga skala 6.0 Richter. Walau bagaimanapun, kebolehpercayaan 

yang berasaskan kerosakan terhadap sistem satu tingkat SMART IBS ini boleh 

menjadi satu kebimbangan yang serius sebelum produk itu dikomersialkan kepada 

negara-negara yang terdedah kepada gempa bumi. Dalam kajian ini, model berskala 

1: 5 telah dibuat berdasarkan Teorem Buckingham Pi dan Teori Perumpamaan. Oleh 

itu, keputusan eksperimen untuk model berskala 1: 5 adalah mewakili tingkah laku 

sebenar model berskala penuh dan kebolehpercayaan yang berasaskan kerosakan 

untuk sistem bangunan bertingkat satu SMART IBS telah dikaji dari segi prestasi 

struktur terhadap kesan gempa bumi. Empat jenis ujian makmal yang berskala 1: 5 

telah dijalankan termasuk ujian lenturan, ujian sesaran terhadap tiang tunggal, ujian 

sesaran terhadap dua rangka dengan dinding, dan ujian gegaran terhadap satu model 

rumah kediaman. Dalam perbandingan antara ujian eksperimen dan analisis unsur 

terhingga tak lelurus, keputusan telah terbukti bahawa terdapat persamaan dalam 

tingkah laku lelurus dan tak lelurus dalam mekanisme kegagalan dan profil kekuatan. 

Struktur ini telah dinilai berdasarkan tiga tahap prestasi yang berbeza iaitu 

Penghunian Segera (IO), Keselamatan Hayat (LS) dan Pencegahan Keruntuhan (CP). 

Lima peringkat kerosakan yang berjulat 1 hingga 5, lima indeks kerosakan yang 

berjulat 0 hingga 1 dan lima keadaan kerosakan iaitu sangat sedikit, sedikit, 

sederhana, teruk dan runtuh telah dicadangkan berdasarkan keamatan kerosakan 

komponen. Prosedur kebolehpercayaan yang berasaskan kerosakan dan persamaan 

telah ditubuhkan untuk mendapatkan indeks kebolehpercayaan yang berasaskan 

kerosakan. Analisis kebolehpercayaan yang berasaskan kerosakan seperti yang 

dicadangkan adalah bermula dengan penentuan faktor pemberat bahagian dalam 

komponen. Kemudian, faktor pemberat ini didarab dengan markah peringkat 

kerosakan untuk mendapatkan markah kerosakan. Kebarangkalian kegagalan 

komponen telah ditentukan oleh jumlah markah kerosakan komponen dalam fungsi 

taburan terkumpul markah kerosakan. Indeks kebolehpercayaan yang berasaskan 

kerosakan telah diperolehi dengan satu tolak kebarangkalian kegagalan komponen. 

Sistem SMART IBS satu tingkat telah terbukti sangat dipercayai dengan indeks 

kebolehpercayaan yang berasaskan kerosakan adalah 1 untuk puncak pecutan bumi 

(PGA) antara 0.05g hingga 5.3g. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

 The period between First and Second World War had witnessed a mass home 

destruction that leads to high demand of replacement and renewal of housing. The 

shortages of skilled labour and essential materials for construction were greatly 

affecting the built of building. Then, an industrialised building system was 

introduced and it became a solution for house renewal. It also provides low cost 

housing and an improvement of construction processes through an exploration of 

component size and the prefabrication of standard components. Now, precast 

structures have been widely accepted for residential construction in both 

undeveloped and developing countries to meet the rapid growth of population.  

 

 

In Malaysia, the demand of housing is increasing especially provide a 

residential building to the low and medium income group. Industrialised buildings 

were chosen to fulfil the demands using an advancement of technology in 

construction industry to produce high quality construction products at a low cost of 

construction operation. The conventional construction method is not able to meet the 

housing demand due to the step by step of conventional built and higher activity cost.  

 

 

 According to Construction Industry Development Board Malaysia (CIDB), 

Industrialised Building System (IBS) is defined as a construction system which 

components are manufactured in a factory, and assembled to become a structure with 

minimal site work. The main reason to recommend the use of IBS in Malaysia is 
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the high availability of raw construction materials for IBS and to complement the 

shortages of unskilled labours for the construction industry.  

 

 

 However, the main disadvantages of IBS in Malaysia are the highly capital 

investment and design expert, manufacturing factory, tools and skills for the 

assembly of components at the construction site. Even so, the IBS still becomes the 

main solution engaged by the Ministry of Housing and Local Government of 

Malaysia to overcome the high number of demand of buildings. Nevertheless, IBS is 

still in early stage of use with a few or limited guidelines in design of IBS 

components especially when the seismic effect is to be taken into consideration. 

 

 

 Structural seismic performance must be known for IBS building to be built in 

earthquake area. Poor structural seismic performance will lead to the significant 

fatalities and property losses without a mandatory codes strength requirement. 

Previous earthquake cases in 1988 Spitak Earthquake in Armenia, 1994 Northridge 

Earthquake, 1995 Kobe Earthquake, 1999 Kocaeli Earthquake and 2008 Wenchuan 

Earthquake in China had revealed the actual performance of all the precast buildings 

that inflicted massive damage, tragic casualties and reputation of precast industries.  

 

 

 Failures of precast structures are due to several factors that are the continuity 

of the whole structural system, insufficient ductility of the columns to beam joints, 

and inadequate diaphragms action that causing a failure of primary structural 

elements. Due to the lack of research and precise design of precast components, the 

safety of seismic resistant structure is unknown and indirectly causes low confidence 

levels of the customers toward the precast products. Hence, many researches are 

needed to improve the use of precast concrete in all aspects from planning, design, 

manufacturing and assembly in order to compete with the conventional 

constructions.  

 

 

 Structural reliability is an important tool to measure the level safety of 

building structures. Damage model is used to predict the reliability index based on 

damage intensities of IBS system. Structure with a high-risk of damage will endanger 
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human lives due to catastrophic failure when subjected to earthquake loads. 

However, until now the damage based reliability research has not been conducted in 

Civil Engineering field especially to SMART IBS. Thus, damage based reliability 

research on industrialised building should be carried out to mitigate the damages and 

to ensure that the designed and commercialised structure is safe for living.  

 

 

 

 

1.2 Statement of the Problem 

 

 

 Malaysia is situated at the peripheral of the Pacific Ring of Fire and it is 

surrounded by area that experienced earthquakes. Peninsular Malaysia is close to the 

Sumatra and the Andaman Sea while Sabah and Sarawak is close to the South 

Philippines and North Sulawesi. The earthquakes could affect Malaysia anytime 

soon.  

 

 

 The Borneo Post has reported an earthquake of 5.5 magnitude occurred in 

northern Sumatera, Indonesia on 14
th

 June 2011. From the event, tremors were felt in 

several areas on the west coast of peninsular Malaysia such as Melaka, Selangor and 

south of Perak. In 2012, six earthquakes in Sabah and two earthquakes in Sarawak 

between 2 and 4.5 Richter scale were detected by Malaysian Meteorological 

Department. On 6
th

 June 2013, earthquake of 4.9 Richter scale hit Sabah and other 

parts of Borneo. The Star newspaper reported that on 11
th

 July 2013, an earthquake 

measuring 4.7 Richter scale rocked northern Sumatra in Indonesia and tremors were 

felt in several areas in Selangor, Kuala Lumpur and Putrajaya. However, 5.8 Richter 

scale of earthquake in Lahat Datu, Sabah in 1976 is the strongest earthquake so far 

felt in Malaysia.  

 

 

 The buildings in Malaysia are normally designed for gravity loads and hence 

they cannot resist the force of an earthquake. Even medium earthquakes strike is 

strong enough to damage a large part of buildings throughout the nation. Since IBS is 

taken as an alternative method to solve the housing shortage, thus its building 
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performance must to be taken into assess to prevent damages and casualties in the 

future.  

 

 

 The seismic performance of SMART IBS, a new prefabricated hybrid 

Industrialised Building System (IBS) with patent name as Building Assembly 

System PCT/MY2010/000182 PI2010003779 need to be investigated to study its 

structural mode of failure and its connection behaviour at the extreme maximum 

earthquakes lateral load capacity. The performance of SMART IBS is evaluated 

based on Federal Emergency Management Agency 356 (FEMA 356).  

 

 

Full scale model is not prescribed as it is not practical for laboratory 

experiments. Therefore, the scale of 1:5 model is chosen to assess the whole house 

system in an earthquake experimental test. Obviously, the ultimate capacity of small 

model cannot be scaled up to represent exactly the performance of full scale model. 

However, the obtained structural performance, damages and cracks of small model 

can indicate the characteristics of structural performance for damage reliability 

assessment.  

 

 

 Then, the research was further explored to facilitate its performances to 

customers in terms of structural seismic safety index. Structural damage reliability 

research was conducted to assess the performance of SMART IBS building using 

Damage Based Reliability Index. Consequently, the procedure of damage based 

reliability analysis has been proposed for SMART IBS residential building. The 

indices give illustrations to the house owner on the level of damage at different 

earthquake peak ground acceleration (PGA).  

 

 

 Since UTM IBS house can be easily assembled and dissembled, the house 

owner can replace the damage component instantly after earthquakes as compared to 

rebuilt the conventional houses. Therefore, the research is to provide a Damage 

Based Reliability Index for SMART IBS residential building at different levels of 

earthquake PGA.  
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1.3 Purpose of the Study 

 

 

 The purpose of the study is to obtain a damage based reliability index of 

SMART IBS residential building subjected to earthquake peak ground acceleration 

(PGA) ranges from 0.05g to 5.3g through experimental tests and nonlinear finite 

element analyses.  

 

 

 

 

1.4 Objectives of the Study 

 

 

The objectives of the study are: 

 

 

i) To examine the modes of failures and flexural strength of scaled 1:5 beam, 

lateral strength of scaled 1:5 single column and lateral strength of scaled 1:5 

two frames assembly through nonlinear finite element analysis and 

experimental tests. 

(ii) To assess the structural performance level using structural seismic demand 

parameters such as story drift, ductility and energy dissipation.  

(iii) To propose and assess damage ranking, damage index and performance level 

based on degree of damage of scaled 1:5 SMART IBS structure through 

various intensity of vibration test. 

(vi) To develop damage based reliability procedure and equation to obtain a 

structural damage based reliability index for earthquake peak ground 

acceleration (PGA) ranges from 0.05g to 5.3g for SMART IBS. 

 

 

 

 

1.5 Scope of the Study 

 

 

 The scope is to assess the reliability index based on damage of scale 1:5 of 

one storey SMART IBS residential structure using surface visual damage assessment 

method.  
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 A scale of 1:5 of one frame for flexural test, two single columns for single 

degree of freedom pushover test, two frames assembly for pushover pseudo-dynamic 

cyclic load test and one storey SMART IBS residential model were built and tested 

to fail in laboratory. All the structural failures were recorded during the tests. The 

pushover two frames assembly test was assessed for a story drift, ductility and 

energy dissipation. The performance of the pushover frames was then evaluated 

using FEMA 356 and categorized by three different performance levels that was the 

level of Immediate Occupancy (IO), Life Safety (LS) and Collapse Prevention (CP).  

 

 

 Nonlinear finite element software, Abaqus/CAE 6.12 was used to analyse one 

beam frame in flexural test, two single columns of a single degree of freedom of 

pushover tests and two frames in pushover analysis. Heavy duty finite element 

analysis of one-storey SMART IBS residential unit was not conducted in this 

research due to limited computing facilities such as high performance computer The 

obtained data from Abaqus/CAE were compared with the experimental result for 

conformance. The obtained data were the ultimate capacity and maximum 

displacement. The locations of concrete crack and crush were detected via maximum 

and minimum principal stresses while the deformation of steel connections was 

assessed as a von Mises stress.  

 

 

 SAP 2000 v15 was used to perform modal analysis on scaled of 1:5 of one 

storey residential unit in order to obtain its mode of shape, natural frequencies and 

natural periods. 

 

 

 Vibration test was performed for a scale of 1:5 of a complete one storey of 

residential building on vibrating table in Structure Laboratory, UTM. The procedure 

of damage based reliability analysis was then proposed for SMART IBS residential 

building. The individual damage ranking score for each component of IBS was 

recorded to calculate the probability of failure of the whole house system. From there, 

the damage based reliability index (DBRI) was calculated. 
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1.6 Significance of the Study 

 

 

 The findings of research are important to provide reliability index for scaled 

of 1:5 of one storey SMART IBS residential unit when subjected to earthquake peak 

ground acceleration (PGA) ranges from 0.05g to 5.3g using damaged values of the 

structure. The probability of failure of the system is then calculated to further 

improve the design of the failed components so that the structure will achieve better 

quality and performance in the future as well as minimize the casualties rate and loss 

of properties. This research provides supportive evidences on SMART IBS 

performances to give a pre-engineered building for the future. With the evidence on 

hand, owners or stakeholders are more confidence in decision making for adopting 

IBS for mass housing construction.   
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