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ABSTRACT 

 

 

 

 

 A servo control system in Electrical Discharge Machining (EDM) system is a 

control system with an appropriate control algorithm to position electrode on a 

particular distance from workpiece during machining process. The gap between the 

electrode and the workpiece is in the range of 10 – 50 µm. This ideal gap is achieved 

by applying an appropriate control algorithm to the servo control system of the 

EDM, and maintaining this gap will improve the Material Removal Rate (MRR) 

during the machining process. A considerable number of unique methods were 

proposed in the control algorithm in order to bring the electrode to the optimum 

position. This research proposes a new method called Integrated Control Mechanism 

(ICM) to improve the MRR of the EDM system. A rotary encoder is used as an 

additional mechanical sensor for the feedback control system in order to limit the 

electrode movement. Modelling of EDM is further investigated to predict the MRR 

parameter and optimization of electrode control position. A Neural Network system 

is used to predict MRR where Particle Swarm Optimization (PSO) and Differential 

Evolution (DE) are studied and simulated to optimize the Proportional Integral 

Derivative (PID) control parameters for the EDM system. Research conducted shows 

that the proposed Feed Forward Artificial Neural Network improves the accuracy of 

prediction in determining MRR by 2.92% and PID parameter optimization is 

successfully applied either using PSO or DE. The ICM is successfully implemented 

and the result shows that MRR is higher when compared to the normal machining 

process. 
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ABSTRAK 

 

 

 

 

 Sistem kawalan servo dalam sistem Pemesinan Nyahcas Elektrik (EDM) 

adalah sistem kawalan dengan algoritma kawalan yang sesuai untuk meletakkan 

elektrod pada jarak tertentu dari bahan kerja semasa proses pemesinan. Jarak antara 

elektrod dan bahan kerja adalah dalam lingkungan 10 - 50 μm. Jarak ideal ini dicapai 

dengan menggunakan algoritma kawalan yang sesuai untuk sistem kawalan servo 

daripada EDM, dan dengan mengekalkan jarak ini akan meningkatkan Kadar 

Hakisan Bahan (MRR) semasa proses pemesinan. Sebilangan besar kaedah unik 

telah dicadangkan dalam algoritma kawalan untuk membawa elektrod ke kedudukan 

yang optimum. Kajian ini mencadangkan satu kaedah baru yang dikenali sebagai 

Mekanisme Kawalan Bersepadu (ICM) untuk meningkatkan MRR sistem EDM. 

Pengekod putar digunakan sebagai pengesan mekanikal tambahan bagi sistem 

kawalan maklum balas bagi menghadkan pergerakan elektrod. Pemodelan EDM 

seterusnya dikaji guna untuk meramalkan parameter MRR dan mengoptimumkan 

kedudukan kawalan elektrod. Sistem Rangkaian Neural digunakan untuk 

meramalkan MRR di mana Pengoptimuman Kerumunan Zarah (PSO) dan Evolusi 

Pembezaan (DE) dikaji dan disimulasi untuk mengoptimumkan parameter kawalan 

Kadar Kamir Pembeza (PID) untuk sistem EDM tersebut. Penyelidikan yang 

dijalankan menunjukkan bahawa Jaringan Saraf Buatan Suap Depan yang 

dicadangkan dapat meningkatkan ketepatan ramalan dalam menentukan MRR 

sebanyak 2.92% dan pengoptimuman  parameter PID berjaya digunakan sama ada 

menggunakan PSO atau DE. ICM berjaya dilaksanakan dan keputusan menunjukkan 

bahawa MRR adalah lebih tinggi jika dibandingkan dengan proses pemesinan biasa. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

 Along with the rapid growth in the industrial machining processes, Electrical 

Discharge Machining (EDM) has gained widespread recognition as a spark erosion 

machine which can provide important practical and economic advantages in many 

fields, notably in production engineering and tool making. An EDM system is a 

significant machining technique used for finishing parts, for example, in an 

automotive industry, aerospace and other commercial components [1]. This 

technique allows for processing high strength alloys and ceramics polycrystalline 

diamond ultra-hard conductive material because the machining process is not directly 

affected by the substance of the workpiece. Ceramic (ultra-hard conductive material) 

also can be machined using this method. In addition, with the use of hard material in 

Biomedical Engineering, the EDM process contributes greatly to this field. 

 

 

 The machining performance indicator of EDM machines, which includes 

Material Removal Rate (MRR), Tool Wear Rate (TWR) and Surface Roughness 

(SR) are important values in order to enhance the capability of the EDM machine. 

Many studies have been carried out in order to discuss and discover a suitable 
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approach to improve the performance of EDM machines. Efforts have also been 

made to enhance the performance of the power generator, controller to adjust the 

position of the electrode gap, materials which are suitable for use as an electrode and 

workpiece, the flushing system, engineered dielectric materials, and vibrating 

electrodes.  Researchers have also studied methods of implementing the multi-spark 

in EDM to increase the MRR [2-5]. Furthermore, several studies have reported 

various simulations and models for MRR prediction [6-9]. Among the three 

parameters above, the most dominant is MRR, since MRR directly affects the 

production cost even though the value of MRR is not the only indicator that 

measures the performance of EDM machines. Higher MRR means the faster the 

machining process, that will save time and production cost. The value of MRR is 

strongly influenced by the performance of the control system to position the 

electrode towards the workpiece during the machining process. Therefore, using a 

control mechanism in order to increase the MRR is very challenging. In the EDM 

process, electrical parameters such as current, frequency, and duration of injected 

pulse (Ton and Toff) influence the MRR, while mechanical movement of the electrode 

position also has a significant effect on machining output, MRR. Estimating 

electrical parameters to predict MRR is possible by modelling, however, the 

available models from previous studies need to be improved. On the other hand, the 

challenge in research is to maintain the distance of the electrode towards the 

workpiece, therefore a shorter machining time could be achieved with better MRR. 

 

 

 

 

1.2 Problem Statement 

 

 

 Material removal rate (MRR) is an important parameter in determining the 

performance of an Electrical Discharge Machining (EDM) System. MRR is 

determined by the ability of the controller to position the electrode to the workpiece 

or, in other word, to regulate the gap between the electrode and the workpiece. 

Currently controllers rely on the feedback voltage as an input to the controller that 

has a stochastic process in nature, so sometimes the position of the electrode will be 
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too far away from the workpiece. This situation causes the ignition delay time 

becoming too large and eventually resulted in missing spark, thus reducing the MRR. 

To overcome this problem, an additional feedback sensor is proposed that monitors 

the electrode movement mechanically which is not affected by the stochastic nature 

of the gap voltage. When the electrode is moving upwards and too far away from the 

workpiece, the retraction movement will be forced to stop as to maintain the gap. By 

maintaining a suitable gap, an appropriate delay time is achieved while machining 

take place.  

 

 

 

 

1.3 Objectives 

 

 

 Based on the current issue of EDM, there is a demand to research designing 

EDM’s servo control system. The expected outcome of this work would be to 

maintain the electrode position towards the workpiece that increases the material 

removal rate during the machining process. During the research work, several 

objectives are listed as follows: 

(i) To develop an EDM model to predict MRR using Artificial Neural 

Network (ANN). 

(ii) To optimize the PID (Proportional Integral and Derivative) controller 

by application of Particle Swarm Optimization (PSO) and Differential 

Evolution (DE)  

(iii) To improve Material Removal Rate (MRR) by applying additional 

mechanical sensor to control the electrode movement within the 

acceptable limit. 
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1.4 Scope of Research 

 

 

Scope of research for this study is outlined as follows:  

(i) A critical literature review of the effort to improve MRR by 

considering several EDM systems. In this regard, fundamental theory, 

control mechanism and EDM performance are reviewed. 

 

(ii) An attempt to predict the MRR by considering related parameters is 

carried out by developing a model based on the Artificial Neural 

Network. The related parameters become an input to the model and 

MRR is the output.  In this modelling process, experimental data are 

obtained from past research to train and investigate the capability of 

the MRR prediction. 

 

(iii) An optimization process to achieve optimum PID parameters is 

carried out by PSO and DE algorithms. Several PID controller 

formations, i.e., P, PD, PI and PID are optimized using Integral 

Absolute Error as an objective function.  

 

(iv) The implementation of ICM is applied to the laboratory scaled EDM 

machine. The limitation is activated when the electrode retraction is 

too wide. This forces the gap to be around 10 – 50 microns. During 

the experimental work Copper is used as the electrode, whereas Brass 

and Steel are used as the workpieces. MRR and ignition delay time 

are measured for comparison and analysis.   

 

(v) Experimentation of machining process for Copper-electrode and Brass 

or Steel-workpiece in order to measure MRR and ignition delay time. 
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1.5 Significance of Study 

 

 

 Higher MRR is the key performance of the EDM process in order to 

accomplish faster machining. The study of MRR is important as it directly affects the 

duration of the time processes and consecutively influences the cost of production. 

Moreover, the study to predict MRR is significant in estimating the time of the EDM 

process based and based on the experimentation parameters, the ANN is expected to 

accurately predict the MRR    

 

 

 The value of MRR is essential to the selection of suitable control systems for 

positioning the electrode accordingly. Therefore the study of the acceptable distance 

between the electrode and the workpiece is necessary. An incremental rotary encoder 

as a sensor to limit the electrode movement is proposed as part of the Integrated 

Control Mechanism (ICM) to keep retraction in an effective range. The application 

of Particle Swarm Optimization (PSO) and Differential Evolution (DE) in order to 

gain maximum optimization of PID is crucial to ensure the best performance of PID 

as a controller to govern the DC motor.     

 

 

 

 

1.6 Summary of Methodology 

 

 

 During this research work, some activities are arranged in order to reach the 

main objective of this research and generally the flow is described as shown in 

Figure 1.1. 
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Figure 1.1 Flow of research work. 

 

 

Generally, this research work is conducted through modelling, simulation and 

implementation. The following methodology will be implemented in order to 

accomplish the objectives of this research: 

 

(i) Literature review of EDM systems 

A study of previous EDM work, especially servo mechanics used for 

controlling electrode positions is reviewed. Their strong points and 

limitations based on several evaluating factors are emphasized. In 

addition, finding a gap in this field becomes the main concern of this 

review, particularly on the issue of controlling electrodes during 

machining in EDM systems. 

 

(ii) Modelling and predicting MRR of EDM system using the Artificial 

Neural Network. 

In order to achieve a deep understanding of EDM systems, designing a 

proper and accurate model of the EDM control system is essential. A 

simulation is conducted to determine a suitable model which affects the 

machining performance. The Artificial Neural Network (ANN) is used to 

model the EDM system, especially in terms of the determination of MRR. 
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(iii) Optimization of PID controller gain using Particle Swarm Optimization 

PSO) and Differential Evolution (DE) Algorithms. 

Once a functional EDM model is developed, it can be used to simulate the 

EDM control system which describes the dynamic of the EDM process. 

The PID controller, which is used in this control system, will be tuned in 

order to get an optimum result. Particle Swarm Optimization and 

Differential Evolution algorithms are applied and compared. This 

optimization process will provide a reference when implementing the 

integrated servo mechanics methods throughout this research. 

 

(iv) Integrated Control Mechanism of the EDM system 

An Integrated Control Mechanism (ICM) of the EDM system will be 

implemented to improve the machine’s capability. Its performance is 

evaluated through comparing machining results between the existing 

control system and the proposed method. The proposed technique uses an 

incremental rotary encoder as an additional sensor to control the electrode 

movement within the acceptable limit. The effectiveness of this proposed 

controller is validated through some experiments conducted using Copper 

electrode and Brass and/or Steel workpieces. 
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