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ABSTRACT 

Cross-flow ventilation is the most effective strategy for providing thermal 

comfort and ensuring air quality in buildings, while minimizing the required energy 

cost. In hot and humid climate, the high-rise building plan configuration incorporates 

different types of lightwell, either in the core or perimeter of the building, that allow 

for opening the windows in different directions and thus enables better cross-

ventilation. The lightwell space is subjected to produce a suction effect along its 

space and thus adjoining indoor spaces. Lightwell at the core with opening at top 

trapped unwanted gases and thus reduce the fresh air flow in its space and reduce the 

cross flow ventilation in adjoining units. Nevertheless, having a lightwell may not be 

enough to provide adequate natural ventilation in high rise buildings. This study 

examines the internal lightwell connection to the outside through different horizontal 

voids as inlets. A Computational Fluid Dynamics (CFD) technique employing 

ANSYS Fluent code is used to predict airflow characteristics for eighteen (18) 

alternative ventilation configurations of a full-scale building model. The full-scale 

model was developed according to common configurations of high-rise residential 

(HRR) buildings in Kuala Lumpur, as well as referring to the minimum requirements 

of the Malaysian Uniform Building By-Law (1984). The results show that the 

existence of a direct connection of the internal lightwell through a horizontal void 

affects the air change per hour (ACH) and the thermal comfort in the lightwell space 

and adjoining units, respectively. Although the existence of double-level voids 

increases ACH by up to 67 % along the lightwell, it reduces the air velocity by 70 % 

in adjoining units compared to the lightwell without direct connection. In order to 

reduce such contrast and to optimize the cross-flow ventilation in the lightwell and 

its adjoining units, the study recommends giving more attention to the lightwell inlet 

design. This study provides proper guidelines to predict ventilation performance and 

to improve the design of naturally ventilated HRR buildings.  
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ABSTRAK 

Pengudaraan aliran silang adalah strategi yang paling berkesan untuk 

memberikan keselesaan terma dan memastikan kualiti udara di dalam bangunan serta  

meminimumkan kos penggunaan tenaga yang diperlukan. Di negara beriklim panas 

dan lembap, konfigurasi pelan bangunan bertingkat tinggi menggabungkan pelbagai 

jenis telaga cahaya, sama ada pada teras atau sempadan bangunan, yang  

membolehkan bukaan tingkap dari arah yang berbeza dan seterusnya membolehkan 

pengudaraan silang yang lebih baik. Ruang telaga cahaya tersebut berfungsi 

menghasilkan kesan sedutan udara di sepanjang ruang tersebut dan seterusnya 

bersambung dengan ruang dalam bangunan. Telaga cahaya pada teras bangunan 

dengan bukaan di bahagian atas memerangkap gas yang tidak dikehendaki, oleh itu 

mengurangkan aliran udara segar ke dalam ruang telaga cahaya tersebut dan 

mengurangkan pengudaraan aliran silang di dalam unit-unit yang bersambung. 

Bagaimanapun, satu telaga cahaya mungkin tidak memadai untuk memberikan 

pengudaraan semula jadi yang mencukupi bagi bangunan bertingkat tinggi. Kajian 

ini menguji sambungan ruang dalaman dan luaran telaga cahaya melalui lowong 

mendatar yang berbeza sebagai  salur masuknya. Satu teknik Perkomputeran 

Dinamik Bendalir (CFD) menggunakan  kod aliran ANSYS telah digunakan untuk 

meramalkan ciri-ciri aliran udara untuk lapan belas (18) konfigurasi pengudaraan 

alternatif  bagi sebuah model bangunan berskala penuh. Model berskala penuh 

tersebut telah dibangunkan mengikut konfigurasi umum bangunan-bangunan 

kediaman bertingkat tinggi di Kuala Lumpur dan juga merujuk kepada keperluan 

minimum Undang-undang Kecil Bangunan Seragam (1984). Keputusan 

menunjukkan bahawa kewujudan sambungan langsung antara ruang dalaman telaga 

cahaya dengan lowong mendatar memberi kesan kepada perubahan udara per jam 

dan keselesaan terma dalam ruang telaga cahaya dan unit-unit yang bersambung. 

Walaupun kewujudan lowong berganda meningkatkan perubahan udara per jam 

sehingga 67% di sepanjang ruang telaga cahaya, tetapi ia mengurangkan halaju udara 

sebanyak 70% dalam unit-unit yang bersambung, berbanding dengan ruang telaga 

cahaya tanpa sambungan langsung. Untuk mengurangkan perbezaan tersebut dan 

mengoptimumkan pengudaraan aliran silang di dalam ruang telaga cahaya dan unit-

unit yang bersambung, kajian ini mencadangkan perhatian yang lebih perlu diberikan 

kepada rekabentuk salur masuk ruang telaga cahaya. Kajian ini menyediakan garis 

panduan yang tepat untuk meramal prestasi pengudaraan dan menambah baik 

rekabentuk pengudaraan semula jadi bagi bangunan-bangunan kediaman bertingkat 

tinggi. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Tropical cities in Southeast Asia are encountering the rapid growth of urban 

population, which has increased the demand for residential units. The increasing 

income level of people in most of these cities has led to an increasing demand level 

in both quantity and quality aspects  of housing (Yuen and Yeh, 2011). In order to 

meet this growing demand, many countries in the region of Southeast Asia have 

adjusted their housing policies to include the construction of high-rise residential 

(HRR) buildings. This is particularly prevalent in capital cities such as Kuala 

Lumpur, Bangkok and densely populated cities with insufficient area of land such as 

Singapore and Hong Kong. For instance, in the last decade the number of high-rise 

buildings in Singapore has increased by three times and the number has doubled 

within the same period in Kuala Lumpur and Bangkok (Rimmer and Dick, 2009) 

according to updates by www.emporis.com. Most of these buildings are utilized for 

housing, particularly in Singapore due to the high population density (Yuen and Yeh, 

2011). In Malaysia, for instance, census statistics for 2010 recorded a significant 

increase in the apartment housing numbers, which has increased by about 7.3% in the 

last decade. During this same period, only a rise of 3.8 % was recorded for terraced 

houses, whereas there was no increase in the number of detached and semi-attached 

houses (Population and Housing Census of Malaysia 2010).  

The significant rise of housing projects, particularly apartment housing, 

demands more energy for lighting or cooling and running other utilities in houses. 

According to statistics reports in Malaysia (2011), the energy consumption in the 

http://www.emporis.com/
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building sector (residential and commercial) has doubled. About 67% of the total 

energy consumed in residential building is used only for cooling and refrigeration 

(CETDEM, 2006). The General Report of the Population and Housing Census in 

Malaysia, 1970, 1990 and 2000 shows that the number of households using air-

conditioners dramatically increased from 13,000 in 1970 to 229,000 in 1990 and 

775,000 in 2000. Kubota et al. (2009) found that the increase in using air-

conditioners was mainly due to the increase in household income.  

In order to cut down the energy consumption in the building sector, some 

Southeast Asian countries have established guidelines and codes, particularly those 

countries with high rates of energy consumption. In addition, these countries have 

developed criteria that adapt to the local environment when assessing energy 

consumption. In Malaysia, for instance, standards and checklists have been 

formulated to evaluate buildings’ performances. The Green Building Index (GBI), 

Overall Thermal Transfer Value (OTTV) and Building Energy Indicator (BEI) are 

commonly used in Malaysia today (Rahman, 2010). In order to meet the criteria of 

these standards and checklists, minimizing energy consumption by applying 

bioclimatic principles and energy efficiency techniques in buildings is required. 

Natural ventilation is considered one of the most fundamental low-cost 

passive cooling strategies in buildings (Jiang and Chen, 2002; Zhai, 2006). Thus, it 

could contribute to the reduction of energy consumption without compromising 

thermal comfort (Kubota et al., 2009) and air quality inside the buildings. Many 

previous researchers recommended naturally ventilated buildings as being the 

preferred strategy in hot and humid climates (Aynsley, 1980; de Dear et al., 1991; 

Feriadi and Wong, 2004; Givoni, 1994; Kubota et al., 2009; Rahman et al., 2011; 

Rajapaksha et al., 2003). Therefore, the present research is directed towards naturally 

ventilated buildings, giving attention to high-rise residential (HRR) buildings in 

Malaysia. The result of the study will contribute to the knowledge related to this 

area, and is aimed at saving energy and thus reduction of household expenses as well 

as considering the environmental dimension.   
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1.2 Problem Background 

Bioclimatic principles were first applied to large-scale buildings, e.g. high-

rise buildings, in the last decade of the last century. These principles have been noted 

in some works of pioneering architects e.g., Yeang and Foster. Bioclimatic high-rise 

buildings could play an important role in reducing energy consumption, particularly 

the energy required for running air-conditioning. Based on a mixed mode of 

ventilation (hybrid ventilation), it can cut down 63% of the energy required for fully 

running air-conditioning in high-rise non-residential buildings in tropical climatic 

conditions (Wood and Salib, 2013). In Malaysia, the UMNO high-rise non-

residential building is designed to be fully naturally ventilated (Wood and Salib, 

2013). However, it cuts down on about 25% of the energy that is required for running 

air-conditioning as measured in post-occupancy evaluations of the building. The 

most famous international example is the high-rise building of   Commerzbank,  

which relies on mixed mode ventilation and can be naturally ventilated 80% of the 

year, thus saving about 63% of energy compared to a fully air-conditioned building 

in Germany (Lambot, 1997; Wood and Salib, 2013). Table 1.1 clearly illustrates the 

dramatic increase of the number of naturally ventilated high-rise non-residential 

buildings during the last three decades.  

In fact, the naturally ventilated high-rise non-residential building is not a new 

concept, but one that was introduced in the 19
th

 century. Although the first high-rise 

air conditioned office building was built in 1928 (Milam in USA), many office 

buildings are still depend on natural ventilation, and thus the plans of such buildings 

are very limited in depth to induce cross-ventilation. The required energy to run such 

air conditioning systems was initially expensive and this also limits the depth of most 

high-rise office buildings’ plans (Wood and Salib, 2013). The lightwell was 

integrated into the building in different configurations, e.g. internal and semi-

enclosed (u-shaped). However, these configurations changed in the middle of the 20
th

 

century when the plan of the building became deeper. This is because these buildings 

started to rely on air-conditioned systems in office buildings once the energy  became 

more affordable than before (Wood and Salib, 2013).  In addition, operable windows 

disappeared and curtain walls were used in order to mechanically control the indoor 
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environment i.e. totally using air-conditioned systems.  As a result, bioclimatic 

design strategies found in old high-rise buildings gradually disappeared.  

Table ‎1.1: High-rise non-residential buildings in different climatic regions that used 

natural ventilation (Source: after Wood and Salib (2013)) 

Building 

name 

 

Plan depth 

/  floors 

number 

Climate  Ventilation 

type / (%) of 

year natural 

vent.  used 

Natural 

ventilation 

Strategy 

Design 

strategies  

Commerzbank 

Germany, 1997 

11.5m 

(from the 

central 

atrium)  / 

56 

Temp. Mixed-mode 

 / 80%   

Cross & 

stack  

(connected 

spaces) 

DSF, full-

height  

central atrium, 

void  

UMNO,  

Malaysia, 1998 

14m  /   

21   

Trop. Mixed-mode  

/ 0-100 %  

depends on 

users  

Wind-driven 

cross 

(isolated 

spaces) 

Vertical wing-

wall wind,  

aerodynamic 

form 

Liberty Tower, 

Japan,  

1998 

20 m  /   

23 

Temp. Mixed-mode  

/  29 % 

Cross & 

stack 

(connected 

spaces) 

18-floors height 

atrium,  void  

GSW 

Headquarters 

Germany, 1999 

11 m  /  

22  

Temp. Mixed-mode  

/ 70%  

Cross & 

stack 

(connected 

spaces) 

20-floors height 

DSF, Venturi, 

aerodynamic 

form 

Post Tower, 

Germany, 2002 

12m (from 

central 

atrium)  /   

41 

Temp. Mixed-mode / 

unpublished 

Cross & 

stack 

(connected 

spaces) 

DSF, atrium, 

void, wing-

wall, 

aerodynamic  

Torre Cube,   

Mexico,  

2005 

9-12m 

(from 

central 

atrium)  / 

16 

Temp.  

&  

Trop.  

Full natural 

ventilation (no 

mechanical) 

Cross & 

stack 

(connected 

spaces) 

Lightwell, void, 

wing-wall, 

aerodynamic 

form 

Manitoba 

Hydro Place,  

Canada,   

2008 

11.5 (from 

central 

core)  /  

21 

Cold Mixed-mode  

/  35% 

Cross & 

stack  

(connected 

spaces) 

DSF, atrium, 

void, solar 

chimney 

1 Bligh Streets, 

Australia, 2011 

23.5(from 

atrium)    /  

30 

Mild  Mixed- mode: 

zoned/lobby 

full natural 

vent. 

Cross & 

stack  

(connected 

spaces) 

DSF, full-

height atrium, 

void, 

aerodynamic  

Mixed-mode: switches between mechanical and natural ventilation daily or seasonally; DSF: 

double skin façade; Temp.: temperate climate; Trop.: tropical climate 

Since the interest of the present study is the configuration of high-rise 

residential buildings, it is possible to rely on some developments trends in high-rise 

non-residential buildings, particularly the high-rise non-residential buildings that 
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existed before HRR buildings. As a result, bioclimatic high-rise non-residential 

buildings have been the area of interest to many researchers (e.g. (Busch, 1992; 

Chang et al., 2004; Daghigh et al., 2009; Ismail, 1996; Ismail, 2007; Liu, 2012; Liu 

et al., 2012; Wood and Salib, 2013)).  

In Malaysia, house types were divided into four groups based on cost, these 

being low-cost, low-medium cost, medium-cost and high-cost (Ministry of Housing 

and Local Government, MHLG). Although most previous Malaysian Government 

plans have encouraged increasing the number of units for the first two groups to 

provide low-income household, the achievement is relatively low compared to the 

medium-cost and high-cost housing types (Shuid, 2004). Most of the low-cost HRR 

buildings were built by government e.g., Kuala Lumpur City Hall (DBKL). Since the 

housing policy in the present plans are directed towards achieving adequate, quality 

and affordable houses to all Malaysians, many passive design strategies are 

incorporated into this type of housing to provide quality. Sapian (2004) defined five 

configurations in low-cost HRR buildings of DBKL. These configurations are 

rectangular, rectangular with courtyard, compact rectangular, L-shape and U-shape 

plans. All of these configurations were built to promote daylight and cross-

ventilation flow either using a single-loaded corridor, or providing lightwells. Figure 

1.1 shows the plan configurations of non-lightwell HRR buildings utilizing a single-

loaded corridor in a rectangular plan (a), internal-lightwell in rectangular plan with 

courtyard (b), semi-enclosed lightwell in double-loaded corridor, U-shape and L-

shape, (c, d,& e, respectively). Therefore, the low-cost HRR buildings in Malaysia 

rely on different lightwell configurations as they are totally based on natural 

ventilation or low cost mechanical means such as fans.  
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Figure ‎1.1  Plan configurations of low-income HRR buildings built by DBKL- 

Malaysia (Source: Sapian, 2004) 

On the other hand, most of the medium-cost HRR buildings in Malaysia were 

built by the private sector (Shuid, 2004). This type of housing is more preferred by 

households and thus this encourages the private sector to build numerous units. For 

example, based on the Ninth Malaysian Plan (2006-2010), the achieved percentage 

of medium-cost units is 227.8 % of the targeted units in this plan. 

The high-cost housing type considered the highest percentage in terms of 

implementation in Malaysia for the last three plans (MHLG). This type of housing is 

not affordable for Malaysian households as it is high-cost and thus it is only used by 

a limited section of the population. Although naturally ventilated high-rise buildings 

are implemented for low-income households as stated above, there are good 

examples of high-cost HRR buildings built in Kuala Lumpur. They are incorporated 

with architectural and aerodynamic elements to provide natural ventilation. For 

example, Hamzah and Yeang, who began to design naturally ventilated high-rise 

non-residential buildings (e.g. the UMNO building) at the end of the last century, 

introduced naturally ventilated HRR buildings at the beginning of this century. Well-

known HRR building projects in Kuala Lumpur are the Idman Residence (2008), The 

Plaza (2006) and The Residences (2006) (Figs., 1.4 -1.6). These buildings 

incorporated architectural and aerodynamic elements such as wing-wall wings, and 

internal, attached and semi-enclosed lightwells (Richards, 2007). Some of these 

design strategies played an important role in avoiding deep plan and thus encourage 

cross-ventilation flow for most units (Hart and Littlefield, 2011; Richards, 2007).  

a) b) c) 

d) e) 
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These architectural and aerodynamic elements implemented in pioneering 

high-rise buildings (residential and non-residential) in hot and humid region are 

presented in Table 1.2. It is noted from the table that the high-rise non-residential 

buildings are integrated with several aerodynamic elements more than those in high-

cost HRR buildings. In addition, the table shows that these architectural and 

aerodynamic elements of HRR buildings were started to be implemented in the last 

decade (at least in tropical cities) and was limited to luxury or high-cost housing as 

extra cost was required. However, some of these architectural elements could be used 

to improve airflow characteristics due to their multi-functions.  

Those multi-function elements could be found in other types of HRR 

buildings i.e. low-cost and medium-cost HRR buildings. Some of these design 

elements such as corridors, balcony, void, lightwell and staircase could be feasible in 

terms of adaptation to provide indoor natural ventilation (Ismail, 1996). For example, 

the void can be used as car parks, entrance to the lifts hall and at the same time 

provide shadow and so it can be employed to induce the airflow into the units of the 

building (Sapian, 2004). In addition, lightwell can be used to induce ventilation and 

admit daylight into the units or rooms, which are far from the perimeter of the 

building and at the same time it can be used for some vertical installations. These 

architectural elements usually have a large space that could be adapted as thermal 

buffer zones to control the indoor thermal performance of HRR buildings (Ismail, 

1996).  
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Table ‎1.2 : Vertical and horizontal architectural elements and aerodynamics 

elements in some pioneering naturally ventilated high-rise residential and non-

residential buildings and highlighted elements of the present study  

 Vertical  

elements  

Horizontal  

elements  

Aerodynamic elements and 

forms 

 

L
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h
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l 

A
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B
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n
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W
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g
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N
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3
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V
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tu
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-e
ff

ec
t 
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n

o
v
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e 

w
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d
o

w
s 

H
ig

h
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is
e 

N
o

n
-R

es
id

e
n

ti
a

l 
B

u
il

d
in

g
  

Commerzbank 

Germany, 1997 
            

UMNO,  

Malaysia, 1998 
            

Liberty Tower 

Japan, 1998 
            

GSW  

Germany, 1999 
            

Post Tower 

Germany 2002 
            

Torre Cube  

Mexico 2005 
            

Manitoba Hydro 

Canada, 2008 
            

1 Bligh Streets, 

Australia, 2011 
            

H
ig

h
-r

is
e 

R
es

id
e
n

ti
a

l 
B

u
il

d
in

g
s 

 Idman Residence 

Malaysia, 2008 
            

The  Plaza 

Malaysia, 2006 
            

The Residences 

Malaysia, 2006 
            

The Troika,  

 Malaysia,  2012 
            

D’Leedon, 

Singapore, 2014 
            

Moulmein, 

Singapore, 2003 
            

The Met, 

Thailand, 2013 
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Figure  1.2  Commerzbank - Frankfurt, 1997, shows aerodynamic configuration, 

open-able segmented atrium and sky gardens (Source: Lambot (1997), 1997 and PC. 

Liu, 2012) 

 

 

  

Figure  1.3  Torre Cube, Mexico, 2005, 100 % naturally ventilated throughout the 

year (Source: Wood and Salib, 2013) 
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Figure  1.4 The Residence - Kuala Lumpur by T. R. Hamzah & Yeang (2006), 

attached lightwell, wind corridor and wing-wind wall (Source: 

http://www.propwall.my) 

 

  
Figure  1.5  The Idaman Residence - Kuala Lumpur by T. R. Hamzah & Yeang 

(2008), using semi-enclosed lightwells as funnels to capture wind, wind corridor and 

attached lightwells (Source: http://www.skyscrapercity.com) 

 

http://www.propwall.my/
http://www.skyscrapercity.com/
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Figure  1.6  The Plaza - Kuala Lumpur by T. R. Hamzah & Yeang (2006), using 

attached lightwells for upward flow, wind corridor and wing-wind wall (Source: 

EAG website http://eag.my/) 

 

 

Figure  1.7  D’Leedon – Singapore by Zaha Hadid, (under construction), semi-

enclosed lightwell as funnel to capture wind (Source: Feng (2012)) 

 

 

Figure  1.8  The Met – Bangkok by WOHA (2013), view looking down through the 

semi-enclosed lightwell between the towers, (Source: Feng (2012))  

http://eag.my/
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1.3 Problem Statement  

From the environmental design point of view, the building configuration in 

hot and humid climate incorporating different types of lightwell either in the core or 

perimeter of the building (Givoni, 1998; Nutalaya, 1999) affords large external 

facades and thus allows the opening of windows in different orientations, which 

provides cross-ventilation for most indoor spaces. The internal lightwell is 

commonly implemented in the core of high-rise building to maintain daylight and 

natural ventilation. Physically, the position of the internal lightwell means that it is 

totally separated from the surrounding outdoor environment. However, it connects 

directly to outside through sky openings at the top which act as outlets and horizontal 

spaces such as corridors and voids acts as inlets. It also connects indirectly to the 

outdoor through its adjoining spaces, i.e. rooms have external and adjoining window 

(Fig. 1.9).  

The internal lightwell is subjected under the Malaysian building code 

(UBBL) to improve its performance in terms of providing natural ventilation and 

daylight. However, the code determines the minimum area for the outlet (sky 

opening) of the lightwell space and links with its height. In order to guarantee better 

performance of the lightwell in terms of providing natural ventilation to adjoining 

rooms, the code also stipulates the minimum area of the adjoining windows, as later 

presented in Section 3.1.5. Based on the results of a survey conducted in Kuala 

Lumpur (Farea et al., 2012), the stipulated minimum area of the lightwell outlet by 

UBBL is achieved in most surveyed HRR buildings (see Table B.1 in Appendix B). 

However, the survey results found that the lightwell connected to outdoors through 

several methods, which are categorized into four groups (see Table B. 2 in Appendix 

B). This indicates that the inlet of the lightwell space was left for the designer to 

select the method of the connection. Thus, the provision of the regulations may not 

be enough to guarantee indoor natural ventilation into adjoining units through only 

stipulating criteria for the outlet and adjoining windows areas. 

A literature survey demonstrates that the lightwell space is subjected to 

produce a suction effect along the lightwell by either upward or downward cross-

flow (Chiang and Anh, 2012; Etheridge, 2012; Ghiaus and Roulet, 2005; Ismail, 
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1996). Thus, the method used to connect the lightwell to outside through different 

locations of the inlet certainly affects the suction force along the lightwell. If the 

lightwell does not connect to the outdoor appropriately, unwanted gases may become 

trapped in the lightwell and thus reduce the fresh air flow in its space and reduce the 

cross flow ventilation in adjoining units. In other words, lightwell outlet and 

windows size (as stated above) may not be adequate to achieve the target of 

providing natural ventilation. This leads to use of mechanical ventilation to extract 

the unwanted gases from the lightwell space (e.g. exhaust fans) and to provide 

thermal comfort to the adjoining room. Although the direct inlet of the internal 

lightwell space is an important parameter that affects the airflow pattern along its 

space and adjoining indoor spaces, there is lack of exploration on the ventilation 

configuration between lightwell and horizontal void and its performance. 

Consequently, it is important to understand the aerodynamics characteristics in the 

internal lightwell connected, whether directly or indirectly, to the outdoor in HRR 

buildings for improving natural ventilation. 

              

Figure  1.9  Ventilation configuration of the internal lightwell connected indirectly to 

the outdoor through its adjoining units  

1.4 Research Hypothesis  

This research hypothesises that connecting the internal lightwell to the 

outdoor through horizontal voids (Fig. 1.10) in an appropriate ventilation 

configuration will achieve the following; 
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a) Improve air quality through increased air changes per hour (ACH) and thus 

supply fresh air  which is important to discharge the CO2 and other 

contaminants from the lightwell space, 

b) Improve the cross- flow ventilation in the adjoining units and thus provide the 

required indoor thermal comfort without total dependence on mechanical 

means. 

This is applicable to climatic conditions of Kuala Lumpur, and to satisfy the 

minimum dimensions of the lightwell ratio and adjoining windows as subjected by 

UBBL. It should be noted that the term “ventilation configuration” refers to the 

configuration of the connection between the lightwell and the outdoor through the 

void or no-connection i.e. no void. 

 

                  

Figure  1.10  Ventilation configuration of the lightwell connected to the outdoor 

through horizontal voids, which may affect upward flow and indoor air velocity 

1.5 Research Questions  

This thesis addresses the following questions: 

 

1) Does the connection of the lightwell to the outdoor environment through 

horizontal void affect the cross-flow ventilation in the lightwell space and 

thus the adjoining units? 
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2) What is the most effective ventilation configuration of the lightwell and void 

to increase air velocity and reduce temperature in order to obtain adequate 

indoor thermal comfort? 

3) What is the optimum ventilation configuration for providing adequate fresh 

air in the lightwell, while at the same time providing adequate thermal 

comfort to the adjoining units? 

4) Are the level and position of the adjoining unit significant parameters in 

increasing air velocity and thus reducing indoor air temperature? 

5) Is the CFD model acceptable and reliable as a tool to predict the air velocity 

and temperature in high-rise buildings with an internal integrated lightwell? 

1.6 Research Aim and Objectives 

The primary goal of this research is to investigate the effect of the horizontal 

void existence and its position on the cross-flow ventilation in the lightwell and thus 

adjoining units in HRR buildings. The investigation includes a wide range of 

alternative ventilation configurations of the lightwell connected to the outdoor 

environment through different void positions and directions. The objectives are as 

follows: 

a) To identify alternative physical configurations of the lightwell connection to 

the outdoor with special reference of the HRR buildings in Kuala Lumpur. 

b) To validate the performance of CFD in terms of predicting the temperature 

gradient and the upward airflow velocity driven by combined wind and 

buoyancy forces in the lightwell.  

c) To evaluate the ventilation configurations of the lightwell in terms of 

providing adequate indoor thermal comfort of adjoining units and adequate 

fresh air in the lightwell space. This is achieved by following the sub 

objectives: 

 To examine the effect of proposed ventilation configurations on the 

air velocity and temperature in the lightwell space and adjoining units. 

 To examine and compare the adjoining unit position (lower and 

upper) effect on the indoor air velocity and airflow pattern. 
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1.7 Research Scope 

The study focuses on common configurations of the lightwell high-rise 

residential building with special reference to the hot and humid climate of Kuala 

Lumpur in Malaysia. The lightwell in HRR buildings can be divided into three types 

based on its location in the plan and the configuration of the building, namely 

internal, semi-enclosed and attached (Farea et al., 2012; Ismail, 1996). The present 

study only focuses on the internal lightwell as representative of the worst case in 

terms of driving external wind flow into the building. The internal lightwell is also 

totally separated from the outdoor surrounding environment. 

The connection of the lightwell to the outdoor environment through the void 

does not only affect the air quality in the lightwell and thermal comfort in the units 

but it also plays an important role in cooling the building fabric and outdoor 

environment (Givoni, 1998). However, the effect of cooling down the building 

construction and outdoor flow are not included in the output of the present study.    

Since the study focuses on air quality in lightwell and thermal comfort in 

adjoining units, the air change per hour (ACH) and air temperature in the lightwell 

and the air velocity and air temperature in the units are the output of this study. 

Thermal comfort data applicable to tropical cities in general, and specifically to 

Kuala Lumpur, were used in order to evaluate the acceptable thermal comfort for 

different ventilation configurations of the lightwell. Thermal comfort is determined 

based on neutral temperature, which was derived by two approaches, namely field 

studies and the adaptive approach. The neutral temperature method is based on the 

previous field work in several tropical cities, while the adaptive approach is based on 

the outdoor average air temperature of Kuala Lumpur. Since neutral temperature 

estimations considered only those studies based on operative temperature (the 

combination between average air temperature and mean radiant temperature), the 

humidity variables are not considered in the output of the thermal comfort estimation 

(see Section 2.3.2.). 
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1.8 Research Limitations 

The limitations of the research are discussed in three main categories as 

follows:  

a) Building model configuration:  

From the perspective of building design, it is difficult to involve all possible 

configurations in one study. Therefore, a systematic method is used in order to 

develop the building model, which is based on a survey for selected HRR buildings 

in Kuala Lumpur in addition to the data obtained from the literature. In the process of 

developing the building model and the parameters of the ventilation configurations 

(combination between the lightwell and void), the functional approach rather than 

aesthetic is employed. For example, the horizontal void is usually used on the ground 

floor as a car park or used on the middle level for building services or a refuge floor.  

In order to reduce the number of variables in the numerical proposed building 

model that represents the common configurations of the lightwell high-rise 

residential building, an isolated and generic building model is used in this study. This 

is because the nature of the wind is varied with time (wind direction and magnitude 

variable per second) and thus it is difficult to predict its characteristics with complex 

configurations and more architectural details of the building model.  

 

b) Methods: 

There are many methods available to predict the airflow characteristics based 

on theoretical, experimental and numerical models. The numerical model is the 

primary method used in this study, which is based on CFD simulations. However, the 

small-scale building model in wind tunnel experiments available in the literature is 

used to validate the CFD. Similarly, the validation study was used in order to 

examine the performance of the CFD code for predicting the non-isothermal airflow 
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(combination between wind and stack forces) in high-rise buildings. The results of 

CFD simulation of the small-scale model are compared with wind tunnel 

experimental data for validation. In addition, the small-scale model simulation is 

used to examine different wind direction, and further discussion on this issue is 

provided below. 

Full-scale building model simulations are conducted in an atmospheric 

boundary layer (ABL), closer to the realistic environment than possible in small-

scale model simulations. However, simulation results of the full-scale building model 

still need further realistic conditions because the effects of the existing surrounding 

buildings are neglected. Since HRR buildings are usually surrounded by lower 

buildings rather than high-rise buildings (Ismail, 1997), the absence of the 

surrounding environment in simulation could not have a significant effect on the 

results of CFD simulations, particularly at upper stories where the wind is free flow 

(Burnett et al., 2005). The present study examines the natural ventilation in the 

lightwell and higher floor units so the effect of surrounding buildings will be less 

significant. Therefore, the study concentrates only on isolated and generic buildings, 

which helps to reduce the time of calculations. 

The objective of the parametric study is to examine and compare the 

performance of different ventilation configurations in terms of providing thermal 

comfort and air quality in the units and lightwell. Therefore, reproducing the actual 

transient conditions (i.e. for specific days) is out of the scope of this study. This is 

because reproducing  the actual transient of the thermal behavior of the building 

under realistic transient conditions (i.e. Kuala Lumpur boundary condition)  is 

difficult in CFD (van Hooff and Blocken, 2010). However, the realistic building and 

climatic conditions complexity can be reproduced either by using transient 

simulation which is very costly and time consuming or by coupling the CFD with 

building energy simulation software e.g., (Wang and Wong, 2009).  

Based on CFD applications, modelling airflow in the built environment can 

be distinguished under two categories; coupled and de-coupled simulation 

(Etheridge, 2012; Ramponi and Blocken, 2012a). Coupled simulations are between 

external wind flow and internal airflow and have a single computational domain, 
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while the de-coupled simulation involves either outdoor wind flow or indoor airflow 

and thus includes two computational domains. Since the cross-flow ventilation is the 

main objective of this study, the interaction between the external wind flow and 

internal airflow in units and the lightwell are considered a coupled simulation, as is 

selected in this study.    

As is commonly known in CFD simulation studies, there is a lack of high 

computational performance for modelling large-scale environments. Therefore, the 

performance of computer sources available in the market is considerably the greatest 

limitation of the present study. For example, in order to decrease the computational 

time, all simulations are isolated and the building model is simplified with only two 

units representing lower and upper levels. 

The wind direction is an important parameter to determine the airflow 

characteristics in the lightwell and its adjoining units. However, different wind 

directions require large sizes of computational domain and thus increase the 

computational time. This problem increases with full-scale model simulation when it 

exceeded the maximum length of the CFD pre-processing software. As a result, three 

different wind directions of 0
o
, 45

o
 and 90

o 
are examined in small-scale models.  

 

c) The output of the study (Ventilation Functions) 

The acceptable air velocity range for providing indoor thermal comfort is 

based on previous field studies in Kuala Lumpur. The estimations of the most 

appropriate air velocity in naturally ventilated HRR buildings applicable to Kuala 

Lumpur still lack real field studies. In general, the output of the study is applicable to 

hot and humid climate conditions. 
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1.9 Research Significance 

Assessing airflow in the lightwell as a semi-open space, which is common in 

HRR buildings, is important in order to improve the upward flow in the core of the 

building and thus: 

a) Removing the heat from the core of the building and providing better air 

quality and thermal comfort which are important for human health and 

occupants’ activities;   

b) Providing cross-flow ventilation for the adjoining units may contribute to 

reducing indoor thermal discomfort time, which leads to saving the household 

extra expenditure on electrical appliances, cost of running, maintenance and 

electricity bills. 

c) Contributing towards the development of design guidelines for naturally 

ventilated HRR buildings. This guideline could be also used by policy makers 

to improve the building code in Malaysia (UBBL).   

1.10 Thesis Outline 

This thesis contains seven chapters, including the present chapter which 

covers the introduction, background, problems and the objective of the study while 

the rest is organized as follows (Fig. 1.11): 

Chapter 2 covers the natural ventilation principles in buildings and wind 

environment in hot and humid region. Benefits of natural ventilation and models 

which are used to predict both air quality and acceptable thermal comfort are also 

presented in this chapter. The overview of methods used to predict ventilation 

performances in buildings are also outlined. 

Chapter 3 reviews transitional spaces in buildings with further detail on semi-

open spaces in high-rise buildings. Most of the studies conducted for natural 

ventilation through the lightwell and horizontal void in high-rise buildings are 

presented here. This chapter concludes by presenting the research gap in the study.    



21 

The most appropriate models that are used to achieve the objective of the 

present study are discussed in detail in Chapter 4. The settings and sensitivity 

analysis results of the CFD validation for small-scale model are presented in this 

chapter. The procedures used to collect data for several HRR buildings in Kuala 

Lumpur are also presented here. The important aspects relating to Kuala Lumpur 

boundary conditions e.g. acceptable thermal comfort and main wind reference speed 

are determined. The chapter concludes with the presentation of the full scale model 

CFD simulation settings. 

Chapter 5 presents the results of the air temperature, airflow velocity and 

airflow pattern in the lightwell and hypothetical units in each configuration. The 

averages of temperature and air velocity in the units and ACH for all configurations 

are compared in terms of air quality in the lightwell and thermal comfort levels in 

hypothetical units according to Kuala Lumpur boundary conditions. This chapter is 

concluded with the important findings of the study.  

The summary of the study and conclusions are presented in Chapter 6. 

Further research and recommendations in design of naturally ventilated high-rise 

buildings are outlined in this chapter. 
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Figure  1.11  The flow of the research process and thesis chapters 
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