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ABSTRACT

Various enhanced oil recovery (EOR) methods have been studied intensively 

and proven to mobilize, and aid in improving the flow of remaining oil in the 

reservoirs to producing wells, thus leading to better oil recoveries. Gases have been 

commonly used in EOR, such as natural gas, carbon dioxide (CO2), and nitrogen 

while CO2 is the most commonly used gas. Foam flooding has started to gain more 

interests in the field for its promising gas mobility reduction. However, foam 

generated with surfactant suffers instability under harsh reservoir condition, such as 

high pressure, high temperature and high salinity. Nanoparticle has then come into 

play for the role to stabilise foam and several studies on the subject have shown 

favourable results. Nevertheless, nanoparticle-stabilised foam requires more studies 

and understanding. This thesis involved the study of nanoparticle-stabilised 

supercritical CO2 foam in the presence of surfactant. Foams with different 

formulations (supercritical CO2, brine, surfactant and nanoparticles) were generated 

using a customised glass-bead packed column (GBPC) under 1,500 psi pressure, 25 

°C, and a constant flow rate of 6 ml/min. The effect of different nanoparticle 

concentrations (0%, 0.1%, 0.5%, 0.6% and 1%) and brine salinities (0%, 0.5%, 2% 

and 10%) on foam are of the key objectives of the study and were both tested. Foam 

stability and foam mobility tests were carried out quantitatively and qualitatively. 

Pressure difference valued across the GBPC were recorded. Foam structures and 

formations were monitored using a camera to capture the images every three minutes 

throughout the duration of 60 minutes. Nanoparticle-stabilised supercritical CO2 

foam successfully shows significant improvement on foam stability over surfactant 

foam by 27% as well as slight improvement on foam mobility reduction. 

Nanoparticle-stabilised foam stability in the presence of oil was also tested. Sodium 

dodecyl sulfate surfactant foam stabilised with 1.0 wt% nanoparticle concentration 

shows superior foam stability in the presence of oil.
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ABSTRAK

Pelbagai kaedah perolehan minyak tertingkat (EOR) telah dikaji secara 

intensif dan terbukti mampu untuk meningkatkan aliran baki minyak dari reservoir 

ke telaga pengeluaran bagi menambah perolehan minyak. Gas kerap digunakan 

dalam EOR, misalnya gas asli, gas karbon dioksida (CO2), dan gas nitrogen dengan 

CO2 ialah gas yang paling biasa digunakan. Banjiran busa menjadi popular dalam 

bidang ini berikutan kemampuannya untuk mengurangkan pergerakan gas. Walau 

bagaimanapun, busa dihasil yang menggunakan surfaktan mengalami ketidakstabilan 

dalam keadaan melampau misalnya yang tekanan tinggi, suhu yang tinggi dan 

kemasinan yang tinggi. Nanopartikel boleh memainkan peranan dalam menstabilkan 

busa dengan beberapa kajian tentang subjek ini telah menunjukkan hasil yang 

menggalakkan. Busa terstabil nanopartikel memerlukan lebih banyak kajian dan 

pemahaman. Tesis ini melibatkan kajian terhadap busa CO2 supergenting terstabil 

nanopartikel dengan kehadiran surfaktan. Busa dengan formulasi yang berbeza (CO2 

supergenting, kemasinan air, surfaktan dan nanopartikel) telah dihasil menggunakan 

turus padat manik kaca (GBPC) pada tekanan 1,500 psi, suhu 25 °C, dan kadar aliran 

mantap 6 ml/min. Kesan kepekatan nanopartikel (0%, 0.1%, 0.5%, 0.6% dan 1%) 

dan kemasinan air garam (0%, 0.5%, 2% dan 10%) terhadap busa menjadi objektif 

utama kajian dengan kedua-duanya diuji. Ujian kestabilan dan pergerakan busa telah 

dilaksanakan secara kuantitatif dan kualitatif. Perbezaan tekanan merentasi GBPC 

telah direkod. Struktur dan pembentukan busa pula dipantau menggunakan kamera 

bagi merakam imej setiap tiga minit untuk tempoh kajian selama 60 minit. Busa CO2 

supergenting terstabil nanopartikel berjaya memantapkan kestabilan busa secara 

ketara sebanyak 27% berbanding busa surfaktan dan sedikit pembaikan dalam 

pengurangan pergerakan busa. Kestabilan busa terstabil nanopartikel dengan 

kehadiran minyak juga telah diuji. Busa surfaktan natrium dodekil sulfat yang 

distabilkan dengan 1.0% berat kepekatan nanopartikel menunjukkan kestabilan 

terbaik busa pada keadaan terbabit.
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CHAPTER 1

INTRODUCTION

1.1 Background

Since the mid 1980s, EOR gas injection projects have been globally 

implemented and a growing trend has been evident since year 2000, especially with 

the increasing number of CO2 projects. Indeed, since year 2002, EOR gas injection 

projects have outnumbered thermal projects for the first time in the last three decades 

(Manrique et al., 2010). CO2 flooding projects are in steady growth in recent years -  

in contrast to other EOR methods. The method is poised to become an even more 

popular oil recovery implementation in the foreseeable future. The distinctiveness of 

CO2 flooding is its ability to sweep the oil. Most optimistically, it could recover 

virtually all the remaining oil where it sweeps. The wide application of CO2 flooding 

for enhanced oil recovery is also due to its availability at low cost. However, there are 

three problems that causing the poor efficiency in CO2 gas flooding, which are viscous 

fingering, gravity segregation and early gas breakthrough. Water-alternating-gas 

(WAG) flooding has been introduced to counter especially viscous fingering of gas 

flooding. In fact, WAG shows better sweep efficiency, but it could not overcome the 

existing problems such as gravity segregation and reservoir heterogeneity. The very 

low viscosity of CO2 is the factor causing preferential channeling of the CO2 through 

high-permeability layers, and low density of CO2 has resulted in gravity segregation. 

Extensive studies have been then carried out to remedy the problems by reducing the 

CO2 mobility.
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Over the last three decades, surfactant has been used to stabilise CO2 foams in 

numerous approaches. A conclusion can be drawn that adding surfactant to the water 

injected along with CO2 flooding would reduce its mobility and improve sweep 

efficiency, both in areal and vertical by impeding viscous fingering as well as flow 

through the higher permeability zones. However, weaknesses of surfactant-stabilised 

CO2 foams have also been identified. Surfactant has high retention rate in porous 

media and it is unstable under reservoir with high-temperature conditions. Surfactant 

foam is ultimately unstable and it is challenging to keep up a long-term stability during 

field application. When it is in contact with residual oil, surfactant foam appears to be 

unstable. Surfactants tend to degrade under high-temperature reservoir conditions 

before they manage to perform better sweep efficiency.

At 21st century, nano-science has been under progressive development and 

alternative of nanoparticle-stabilised supercritical CO2 foam emerges as one of the new 

technologies. Extensive research efforts regarding nanoparticle-stabilised air/water 

foams are being carried out. There are many research efforts related to nanoparticle- 

stabilised air/water foams (e.g., Binks, 2002; Binks and Horozov, 2005). There are 

supercritical CO2-in-water emulsions as well as water-in-supercritical CO2 emulsions. 

Under reservoir of high pressure and relatively low temperature CO2 will be in 

supercritical condition. Being able to use nanoparticle to stabilise and generate foam 

in supercrtitical CO2 is therefore a crucial breakthrough. Nanoparticles have higher 

adhesion energy to the fluid interface than the surfactant, which gives the potential for 

nanoparticles to stabilise longer lasting foams, as nanoparticles would require more 

energy to destabilise the foam. The foams made by solid nanoparticles are stable over 

long periods (up to a year), in contrast with foams stabilised by surfactant molecules 

whose lifetime is in the order of a few hours (Alargova et al., 2004).

Nanoparticle-stabilised foams have its characterization in various aspects, 

including foam type, stability, size of droplet, interfacial properties and bulk viscosity. 

Furthermore, the impacts of conditions during experiments such as concentration of 

nanoparticle, aqueous phase salinity, pH and wettability are determined systematically 

under ambient conditions. In comparison with the studies on nanoparticle-stabilised- 

air/water foams, the studies relating to nanoparticle-stabilised CO2 with water foams
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are much less. A pressure releasing method has been demonstrated by Dickson et al. 

(2004) to study the effects of particle concentration, particle hydrophilicity, dispersed 

phase volume fraction and CO2 density on foam stability. The results showed that the 

foam stability increased with decreased hydrophilicity and increased particle 

concentration, at the designed pressure and ambient temperature. Espinosa et al. (2010) 

reported on nanoparticles stabilised supercritical CO2 foams for potential mobility 

control applications by using the commercial surface modified nanosilica dispersion. 

Their results concluded that the supercritical CO2 foams stabilised with nanoparticle 

concentrations as low as 0.05 wt%, and that larger particle concentration was required 

to maintain foam stability at greater salinities. Experiments that have been carried out 

by (Jianjia Yu et al., 2012) revealed that stable CO2 foam was generated in nanosilica 

dispersions at static conditions, with the particle concentration in the range of 4000 to 

6000 ppm in the experiments reported. Mixing surfactant and nanoparticles to 

stabilised foam is a new area for research. Preliminary tests have been initiated and 

showing positive results (Worthen et al., 2013). In this study, based on the results of 

static experiments, a series of flow experiments of the simultaneous injection of CO2 

and nanosilica with surfactant dispersion through glass bead packed column were 

conducted to investigate nanosilica stabilization of CO2 foam in different nanoparticle 

concentrations. Sodium dodecyl sulphate was selected as the base surfactant in this 

study due to its ionic formulation that is also widely used for different industrial 

purposes. Primary focus of this study was to enhance surfactant foam by adding foam- 

stabilizing nanoparticles under high pressure condition. The effects of brine salinity 

on apparent foam viscosity and total foam mobility were investigated. Effect of oil on 

nanoparticles stabilised foam was also tested.

1.2 Problem Statement

The application of foam generated by surfactant in EOR has been an excellent 

solution to the problems yielded by water-alternating-gas, such as viscous fingering, 

gravity segregation and reservoir heterogeneity. Foam generally has better mobility 

control which is important for miscible flooding. However, surfactant-stabilised has
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poor stability especially under harsh reservoir condition of high pressure as well as 

high temperature. Several initiatives aim at identifying and exploiting the capabilities 

to use nanoparticles to stabilise foam for EOR have been identified. Numerous 

researchers have been focusing on the identification of nanotech potentialities applied 

to Enhanced Oil Recovery (EOR) issues. Although there have been promising 

preliminary laboratory scale studies, this technology still suffers from requirement of 

high shear rate for generating foam and high amount of retention of nanoparticles in 

the porous media. In order to achieve polymer nanocomposite foams which is with 

high-dimensional stability, high surface quality, good mechanical properties, and 

excellent thermal still requires a lot of future work (Livi and Duchet-Rumeau, 2013).

Previous research show that agglomeration would take place in particle- 

stabilised foams (Kaptay and Babcsan, 2012). The concentration of nanoparticle is a 

significant factor that would affect the rate of agglomeration. In this study, different 

concentrations of nanoparticle (ppm) are used to stabilise CO2 foams. Effect of brine 

salinity on foam stability has arguable results from previously done research. 

Therefore, the effect of different brine salinity was tested in this study. There were 

studies done on CO2 foam but the CO2 used was not in supercritical condition. For 

high pressure and relatively low temperature condition of the reservoirs, CO2 will be 

in supercritical condition. Thus, it is significant to conduct the study in supercritical 

CO2 condition due its significance.

There are also limited studies suggesting that surfactant working in synergy 

with nanoparticles in stabilising supercritical CO2 foam. In this study, surfactant was 

included in order to study the performance of nanoparticles to stabilise surfactant 

foam. Sodium dodecyl sulfate (SDS) was selected as the surfactant due to its wide 

application in the industry. The stability of foam in porous media relies essentially on 

the stability of the foam films (lamellae). The oil may influence the foam performance 

by affecting lamellae stability being a de-foaming agent. The foam performance in the 

presence of oil is needed to be identified. nanoparticle-stabilised CO2 foam 

specifically, when it contacts with oil were yet to be identified. Using these foams for 

EOR means the foam stability needs to remain in the presence of oil. Experiments that
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test the effects of oil contact when the three phases are present are therefore essential. 

The foam stability of nanoparticle-stabilised supercritical CO2 needs to be tested in the 

presence of oil to study its potential to be applied in EOR. Experiments were run to 

observe as well as identify the effect of oil - normal hexadecane (n-C16) on 

nanoparticles and surfactant stabilised foam. Hexadecane was selected due to its 

properties that is of intermediate oil that could well represent oil.

1.3 Objectives

Three main objectives of this research are identified:

1. To study the stability and mobility of nanoparticle-stabilised supercritical 

CO2 foam at various nanoparticle concentration.

2. To determine the nanoparticle-stabilised supercritical CO2 foam stability 

under high pressure at various brine salinity.

3. To study the stability of nanoparticle-stabilised foam in the presence of oil.

1.4 Scope

The foam stability of nanoparticle-stabilised CO2 foam in different 

nanoparticle concentration was tested. A packed glass-bead column was used as a 

medium to generate nanoparticle-stabilised CO2 foam, the foam was flowed into a 

view cell to be observed. Temperature, pressure, type of nanoparticle, type of 

surfactant, injection rate, water/CO2 volume ratio and nanoparticle surface wettability 

remains constant. Brine salinity and nanoparticle concentration were the key 

parameters to be studied during the experiments. Method to identify foam stability was 

foam height versus time. The foam was therefore being observed for an hour with 

camera to capture its image in an interval of 3 minutes.
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The main objective of ensuring the constants and manipulated variables was to 

achieve optimum recovery of nanoparticle-stabilised CO2 foam injection. SDS was 

selected and used due to its wide range of implementation in CO2 foam applications.

The reaction of foam in the presence of oil was analyzed with the help of 

Dynamic Foam Analyzer DFA 100. Nanoparticle-stablized SDS foam was generated 

using atmospheric air using Dynamic Foam Analyzer DFA 100. The foam stability 

and bubble counts were recorded.
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