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ABSTRACT 

The main objective of this study is to develop an ultrasound-assisted 

distillation process that can break minimum boiling azeotropes under various 

operating conditions for enhancing the effectiveness of distillation processes in 

providing solution to high purity separation requirement. As a case study, 

ethanol/ethyl acetate (ETOH/ETAC) separation process was considered. The effect 

of both intensity and frequency of the ultrasonic waves on the vapor–liquid 

equilibrium (VLE) of this system was experimentally studied. The sonication was 

found to affect the VLE significantly in a way which led to an alteration in the 

relative volatility and a complete elimination of the azeotropic point, with the 

preference towards a combination of low frequency and high intensity operation. A 

mathematical model describing the system was developed based on conservation 

principles, VLE of the system and sonication effects. The model, which took into 

account a single-stage VLE system enhanced with ultrasonic waves, was coded using 

the Aspen Custom Modeler. The effects of ultrasonic waves on the relative volatility 

and azeotropic point were examined and the experimental data were successfully 

used in validating the model with a reasonable accuracy. The mathematical model 

was exported to the Aspen Plus to form a model that represents the sonication 

equilibrium stages, which were connected serially to configure an ultrasound-assisted 

distillation (UAD) process for separation of ETOH/ETAC mixture. The simulation 

results revealed that ETAC can be recovered from the azeotropic mixture with a 

purity of 99 mol% using 27 sonication stages. To validate the suitability of UAD 

process for separation of other minimum boiling azeotropes, separation of other 

mixtures were tested such as ethanol/water, methanol/methyl acetate and n-

butanol/water. The developed model was found to have some limitations with respect 

to separation of maximum boiling azeotropes.   
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ABSTRAK 

Objektif utama kajian ini adalah untuk membangunkan proses penyulingan 

berbantukan ultrabunyi bagi memecahkan azeotrop yang mempunyai takat didih 

minimum dalam pelbagai keadaan operasi untuk mempertingkatkan keberkesanan 

proses penyulingan bagi menyediakan penyelesaian untuk keperluan pemisahan 

berketulenan tinggi. Sebagai kes kajian, proses pemisahan campuran etanol-etil 

asetat (ETOH/ETAC) telah dipilih. Kesan keamatan dan frekuensi gelombang 

ultrasonik ke atas keseimbangan wap-cecair (VLE) telah diselidik. Pensonikan 

didapati memberikan kesan yang ketara kepada VLE dengan pengubahan kepada 

kemeruapan relatif dan penghapusan sepenuhnya titik azeotrop, dengan 

kecenderungan kepada gabungan frekuensi rendah dan keamatan tinggi. Satu model 

matematik yang mengambarkan sistem itu dibangunkan berdasarkan prinsip 

keabadian, VLE sistem tersebut dan kesan pensonikan. Model itu mengambilkira 

sistem VLE satu peringkat dan diperkayakan dengan gelombang ultrasonik yang 

dikodkan menggunakan perisian ―Aspen Custom Modeler‖.  Kesan gelombang 

ultrasonik ke atas kemeruapan relatif dan titik azeotrop telah diteliti dan data ujikaji 

telah digunakan bagi tujuan validasi dan telah menunjukkan  ketepatan yang 

berpatutan. Model matematik tersebut dieksport ke perisian ―Aspen Plus‖ bagi 

membentuk model yang mewakili proses keseimbangan satu peringkat ultrabunyi. 

Modul-modul ini dihubungkan secara siri bagi mengambarkan proses penyulingan 

berbantukan ultrabunyi (UAD) untuk pemisahan campuran ETOH/ ETAC. 

Keputusan penyelakuan menunjukkan  bahawa perolehan ETAC dengan ketulenan 

99 % mol dari titik campuran azeotropik telah dicapai dengan menggunakan 27 

peringkat pensonikan. Untuk membuktikan keupayaan proses UAD bagi pemisahan 

campuran azeotrop titik didih minimum, pemisahan beberapa campuran seperti 

etanol/air, metanol/metil asetat dan n-butanol/air telah diuji. Model yang 

dibangunkan didapati mempunyai beberapa batasan terhadap pemisahan azeotrop 

pendidihan maksimum.   
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CHAPTER 1  

1 INTRODUCTION 

1.1 Research Background  

The separation of liquid mixtures is an important task in the process industry, 

and much research has been carried out to meet the requirements of the industry. Of 

all available liquid separation techniques, distillation stands as the most widely 

applied technique, which is at the heart of the separation processes in many chemical 

and petroleum plants. Despite its widespread use in the chemical process industries, 

distillation is known to consume large amounts of energy. The advantages of 

distillation process include: the presence of many products throughput with high 

purity, flexibility to design requirement with heights ranging from 6 to 60 meters and 

diameters that range between 0.65 and 6 meters, and the ability to operate with any 

feed concentration (Richardson et al., 2002). The separation of liquid mixtures by 

distillation process depends on the differences in the volatility between the 

components (Poling et al., 2008). The component having a great relative volatility is 

easier for separation and condensation to form product. Since distillation offers many 

processing advantages and is well-understood, it remains the preferred process 

whenever possible.  

However, distillation has limitation in use when the mixtures to be separated 

exhibit complex phenomena. Such complexity is clearly exhibited when the liquid 
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mixtures involved form azeotropes or possess very low relative volatility. This 

situation led to the development of various distillation techniques, either by pressure 

variation such as pressure swing distillation process (Luyben, 2013), or the addition 

of third component as a separating agent such as azeotropic distillation (Skiborowski 

et al., 2014) and extraction distillation processes (Gerbaud and Rodriguez-Donis, 

2014), that may change the phase equilibrium of the mixture. This makes distillation 

a good candidate for application of process intensification offering strong potential 

for the enhancement the separation of azeotropic mixtures.  

Azeotropes are defined as the mixtures of liquids, which boil at constant 

temperature like a pure liquid and possess same composition of components in liquid 

as well as in the vapor phase (Richardson, et al., 2002). Azeotropes are formed due 

to differences in intermolecular forces of attraction among the mixture components 

(hydrogen bounding and others). The particular deviation from ideality is determined 

by the physiochemical forces between identical and different components (Henley et 

al., 2011). There are two types of azeotropes depending on the boiling point of the 

mixture: maximum and minimum boiling azeotrope. A solution that shows large 

negative deviation from Raoult‘s law forms a maximum boiling azeotrope at a 

specific composition. The boiling point of this azeotrope is higher than the boiling 

points of its components. A solution that shows a greater positive deviation from 

Raoult‘s law forms a minimum boiling azeotrope at a specific composition and the 

boiling point of this mixture is lower than its components (Lei et al., 2005). 

In last decades, many efforts have been studied to find new and more 

efficient processes that improve the azeotropic separation techniques in practice. This 

includes membrane distillation, ionic liquids extraction, hyperbranched polymers, 

friction diffusion. These processes are especially attractive for separation azeotropic 

mixtures because they have a reduction in the process costs by decreasing the total 

energy consumption and simple alterative for many azeotropic separation processes 

(Baker, 2012). In the recent years, several studies have focused on understanding of 

the intensification technology to enhance the separation of azeotropic mixtures and 

improve the performance of the distillation process such as dividing wall column 

which is alternative process for azeotropic distillation and extractive distillation 
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(Yildirim et al., 2011). For example, if the dividing wall column is used as 

alternative process for extractive distillation, it yields the lightest component at the 

top of the column and the heaviest component (solvent) at the bottom. The middle 

component (second component of an azeotropic mixture) is withdrawn at a selected 

stage of the main fractionator where its concentration is at a maximum. 

1.2  Case Study: Ethanol (ETOH)-Ethyl Acetate (ETAC) Mixture 

ETAC is an important environmental friendly solvent and it is one of the 

most popular solvents in chemical industry. Particularly, it is used in a wide range of 

applications such as adhesives, varnishes, cleaning, thinners, inks, coated papers, 

silk, explosives, artificial leather and photographic films. It also finds extensive use 

in the preparation of synthetic fruit essences, flavors and perfumes (Deb, 2006). 

Furthermore, ETAC is an important component in extractants for the concentration 

and purification of antibiotics. It is also used as an intermediate in the manufacture of 

various drugs (SOPO et al., 2007).  

The production of ETAC in industries is using several routes such as 

dehydrogenation of ETOH, oxidation of ETOH, and addition of acetic acid to 

ethylene in the presence of sulfuric acid as catalyst (Deb, 2006). In fact, ETAC is 

usually produced on the large scale from the esterification of  ETOH  with acetic acid 

(Colley et al., 2009). In all cases the reactant components are not totally converted to 

the ester in about 65% yield at 333.15 
o
K and 1 bar. Unfortunately, a mixture of 

ETAC and ETOH is known to form azeotrope at 55 mole % of ETAC at minimum 

boiling point of 71.8 
o
C. Therefore, separation of this mixture introduces a significant 

difficulty which can only be separate under a complex processes (Hassan et al., 

2009). 

The production of ETAC from ETOH was an obvious candidate for a 

commercial process and the initial concept was quickly demonstrated. The 

http://www.icis.com/v2/chemicals/9075284/ethanol.html
http://www.icis.com/v2/chemicals/9074864/acrylic-acid.html
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consumption of ETAC as an industrial solvent has increased in recent years, due to it 

is economic, environmentally compatible and reliable process routes (Gaspar et al., 

2009). During 2004- 2011, the global production of ETAC grew by over 80% and 

exceeded 3 million tonnes in 2011, because strong demand for surface coatings and 

as a replacement for restricted solvents (Oil and Gas, 2000). In 2012, the overall 

ETAC supply registered a 4% increase and touched the 3.12 million - tonne mark. In 

the same year, Southeast Asia and China - Pacific captured the biggest share of the 

global production volume– over 2.44 million tonnes. It is also the largest global 

producer and consumer of ETAC in the world, due to the Southeast Asian paints and 

coatings market was grown rapidly (ICIS, 2007). Figure 1.1 shows China is an 

unrivalled leader of the world ETAC market, accounting for over half of the global 

ETAC production in 2013. It is followed by India, the UK, Japan and Brazil. It is 

forecast that in near future China will maintain its leading  position  in  ETAC 

market, while Europe and North American  countries are not  expected to show 

significant  growth. 

 

Figure 1.1 Global ETAC production in 2013 
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1.3 Problem statement   

A traditional method of producing ethyl acetate is by esterification of ethanol 

with acetic acid as described by the following stoichiometry (Santacesaria et al., 

2012): 

C2H5OH  +  CH3COOH  →  CH3COOC2H5 +  H2O                             (1) 

ETOH unconverted and ETAC product is among the most important mixture 

and difficult separation processes in petrochemical industry. The boiling points of 

ETAC and ETOH mixture are 78.65 and 77.35
o
C, respectively. The separation of 

this mixture by conventional fractional distillation process is impossible due to their 

close boiling points and form azeotrope. 

Several potential processes for separation ETOH/ETAC mixture have been 

investigated such as azeotropic distillation (Skiborowski, et al., 2014), extractive 

distillation (Nieuwoudt and Van Dyk, 2002), pressure swing distillation (Colley, et 

al., 2009) and membrane separation (pervaporation) (Sato et al., 2008). Azeotropic 

distillation and extractive distillation are the main technologies presently available 

for separation of this mixture. However, these processes have some disadvantages 

that can be noted. They include the selectivity of entrainer, complexity of the process 

and a secondary distillation needed for recovery the entrainer. Moreover, the use of 

entrainer leads to environmental pollution due to it is volatile organic compounds. 

Over the few decades, membrane separation processes such as pervaporation 

has received grown interest. Pervaporation process is a suitable alternative candidate 

to separate ETOH/ETAC mixture because it has interesting features such as 

relatively low energy consumption, no requirements for adding chemicals as 

separating agents and no limitation by vapor liquid equilibrium (Uragami et al., 

2014). However, major efforts conducted in universities and research institutes show 

membrane processes are not suitable for separation of this mixture in chemical and 

petrochemical industries (Nagy, 2012). Because it needs a large surface area to 
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process embraces a large amount of the fluxes. Furthermore, membrane modules 

when equipped with ceramic membranes are very expensive. Polymeric membranes 

are also difficult to control because they have a low chemical and thermal stability. 

For all these reasons, the industries have always been eager to look for alternative 

processes for the separation of ETOH/ETAC mixture. Hence, any new separation 

technology that can lead to important improvements in terms of sustainable 

development criteria has an incentive to be researched. Therefore, this work is good 

candidate and potential alternative to traditional separation processes to separate this 

system, because it has the features that are looking for researchers. 

1.4 Objectives of the Study 

The main objective of this study is to develop an ultrasound-assisted 

distillation system that can break minimum boiling azeotropes under various 

operating conditions for enhancing the effectiveness of distillation separation 

processes in providing solution to high purity separation requirement. This shall be 

accomplished by implementing the following detailed objectives: 

i. To study the vapor-liquid equilibrium of the ETOH/ETAC mixture 

experimentally under ultrasonically intensified environment with respect to 

intensity and frequency. 

ii. To develop a mathematical model to describe the system based on 

conservation principles, vapor-liquid equilibrium with presence of ultrasound 

waves. 

iii. To simulate the design of ultrasound-assisted distillation process in order to 

break the azeotrope of a mixture and obtain higher purity product. 
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1.5 Scope of Study 

To achieve all of the objectives, several stages have been outlined, which are: 

i. Using experimental work to estimate the vapor liquid equilibrium (VLE) of 

the ETOH/ETAC mixture with and without the presence of ultrasonic 

equipment. 

ii. Examining the effect of different ultrasonic intensity and frequency values on 

VLE of the ETOH/ETAC mixture. 

iii. Developing a mathematical model to describe a single stage VLE system with 

presence of ultrasound waves using Aspen Custom Modeler simulator version 

8.0, university package, Universiti Teknologi Malaysia. 

iv. Examining the effect of ultrasonic waves on the relative volatility and 

azeotropic point of the mixture and validating this model with the 

experimental data 

v. Exporting this model to Aspen Plus flowsheeting environment to form a 

module (block) represent an intensified equilibrium stages in a distillation 

column. The model block can be linked via streams with all the other blocks.  

vi. Using Aspen Plus (version 8.0, university package, Universiti Teknologi 

Malaysia) to connect the number of sonication stages serially in order to 

design the ultrasound-assisted distillation (UAD) process, for separating an 

azeotropic mixture. 

vii. Determining the performance of the propose design for separation other 

azeotropic mixtures. 

1.6 Significance of Research and Contributions of the Present Study 

Ultrasound-assisted distillation process not likes other processes, which are 

partly carried out by adding a third component to the mixtures. Removal of the third 

component from distillate or residue adds to the complexity of the process. For this 

reason, this technology may offer great benefits in terms of environmental friendly. It 
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also has ability to operate with any feed concentration and different capacity, and 

also it is not affected by chemical components and feed temperature. Moreover, since 

ultrasonic technology is intensification of the distillation process, this process may 

offer a reduction in the equipment size as it reduces the separation requirement by 

altering the VLE. 

The contribution to be made in this study involves:  

1. Introduce experimental results of a VLE study on ETOH/ETAC mixture 

under ultrasonically intensified environment.  

2. A mathematical model representing the VLE of the system under sonication 

has been developed. This model is very important to facilitate simulation 

works for design of the ultrasound-assisted distillation process to separate an 

azeotropic mixture. 

3. An approach in implementing ultrasound-assisted process in separating 

azeotropic mixture is proposed, and supported by results from simulation 

studies. 

4. The proposed mathematical model and distillation design provided the basis 

for the development of a pilot plant for proof of concept on ultrasonic 

distillation process. 

1.7 Thesis Outline 

The present thesis is divided into six chapters. Chapter 1 describes a 

background of the study and motivation for the research is being explained to give a 

basic overview of the problem statement. Significance, contribution, research 

objectives and scope also have been identified in this chapter to explain the objective 

of the whole research. Chapter 2 reviews the conventional and challenge alternative 

separation technologies, used to solve azeotropic problem and provided the 

advantages and disadvantages of these technologies. The examples of azeotropic 
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mixtures found in industries are included in this chapter. Chapter 3 shows the effects 

of ultrasonic waves on VLE of ETOH/ETAC mixture which will be carried out in the 

experimental work. Then develop a mathematical model of a single stage VLE 

system with present of ultrasonic waves and comparison this model with 

experimental data will be described in chapter 4. In chapter 5, the proposed design of 

ultrasound-assisted distillation process for separation minimum boiling azeotropes is 

presented. This is followed by the conclusions and recommendations for future 

works in chapter 6. 
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