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ABSTRACT 

 

 

 

 

Split-type air-conditioners are widely used in residential and commercial 

buildings. The air-conditioning system consumes more than 50% of the total energy in 

buildings. An improvement on the performance of the system will generate a significant 

impact on energy savings. This study introduces a novel cycle using an ejector as 

expansion device in an air-conditioner to improve the performance. This cycle is named 

as a modified ejector cycle (MEC). R22 is widely used as refrigerant in split-type air- 

conditioners, however due to its global warming impact, researchers recommended R290 

as a substitute. Thermodynamic modeling was developed to determine the motive nozzle 

and mixing chamber diameters of the ejector based on the cooling capacity of the air- 

conditioner. In the modeling, the conservation equations of mass, momentum and energy 

were applied. The result shows that the COP improvements of MEC using R290 were 

higher than that of R22 for all ambient temperatures. The COP improvement using R290 

are 34.52, 39.53 and 47.58% at the ambient temperatures of 30, 35 and 40
o
C, 

respectively. Experiments were carried out on a split-type air-conditioner using a 

capillary tube (standard cycle) and MEC with three motive nozzle diameters, i.e. 0.9, 1.0, 

and 1.1 mm. The measurements were carried out at the steady-state condition and 

repeated five times with 2 minutes interval. Experimental results show that the highest 

COP improvement of MEC was achieved with a motive nozzle diameter of 1.0 mm that is 

30.67%. The results also show that the COP improvements of MEC using R22 are 24.69, 

26.06 and 32.12%, whereas using R290 were 27.68, 31.53 and 33.61%, at the ambient 

temperatures of 30, 35 and 40
o
C, respectively. This indicates that replacing the R22 with 

R290 can further enhance the COP improvement of the MEC. Comparison between 

numerical and experimental results showed poor agreement due to large difference in the 

entrainment ratio of the ejector.  
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ABSTRAK 

 

 

 

 

Penghawa dingin jenis-terpisah digunakan secara meluas dalam bangunan 

kediaman dan komersial. Sistem penghawa dingin menggunakan lebih 50% daripada 

jumlah penggunaan tenaga bangunan. Peningkatan kepada prestasi sistem akan  menjana 

kesan yang ketara kepada penjimatan tenaga. Kajian ini membentangkan suatu kitaran 

baharu menggunakan ejektor sebagai injap pengembangan pada penghawa dingin untuk 

meningkatkan prestasi. Kitaran ini dinamakan sebagai kitaran ejektor diubahsuai (MEC). 

R22 digunakan secara meluas sebagai bahan penyejuk dalam penghawa dingin jenis-

terpisah, bagaimanapun disebabkan oleh kesan pemanasan global, para penyelidik 

mensyorkan R290 sebagai bahan penyejuk penggantinya. Pemodelan termodinamik telah 

dibangunkan untuk menentukan garis pusat daripada nozel masuk dan ruang 

pencampuran ejektor berdasarkan kapasiti penyejukan penghawa dingin. Pada 

pemodelan, persamaan pemuliharaan jisim, momentum dan tenaga digunakan. Keputusan 

menunjukkan bahawa peningkatan COP daripada MEC menggunakan R290 adalah lebih 

tinggi berbanding dengan R22 untuk semua suhu sekeliling. Peningkatan COP 

menggunakan R290 adalah 34.52, 39.53 dan 47.58% pada suhu sekeliling 30, 35 dan 

40
o
C. Uji kaji telah dijalankan ke atas kitaran piawai yang menggunakan tiub kapilari dan 

juga MEC dengan tiga garis pusat nozel masuk, iaitu 0.9, 1.0 dan 1.1 mm. Pengukuran 

dijalankan pada keadaan mantap dan  diulang sebanyak lima kali dengan selang 2 masa 

minit. Keputusan uji kaji menunjukkan bahwa peningkatan COP tertinggi dicapai dengan 

garis pusat nozel masuk 1.0 mm iaitu sebanyak 30.67%. Uji kaji menunjukkan bahawa 

MEC dengan menggunakan R22 sebagai cecair penyejuk meningkatkan COP pada kadar 

24.69, 26.06 dan 32.12%, sedangkan menggunakan R290 pula memberikan 27.68, 31.53 

dan 33.61%, pada suhu sekeliling 30
o
C, 35

o
C dan 40

o
C. Hasil ini menunjukkan bahawa 

penggantian R22 kepada R290 boleh meningkatkan lagi COP daripada MEC. 

Perbandingan antara keputusan kaedah berangka dan uji kaji menunjukkan terdapat 

perbezaan di antara dua keputusan tersebut kerana perbedaan yang tinggi pada nisbah 

kemasukan ejektor. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1   Background  

 

 

The air-conditioner uses approximately 57% of the total energy consumption in 

buildings in Malaysia (Saidur, 2009). More than that, in commercial building, such as 

five star hotels in India, air-conditioning systems consumes about 80% of the total energy 

(Ananthanarayanan, 2006). As a result, an improvement on the coefficient of performance 

(COP) of air-conditioner will generate a significant impact on energy savings. The use of 

ejector as an expansion device in the vapor compression refrigeration cycle (VCRC) is a 

method to increase performance and to reduce power consumption system.  

 

Typically, the split-type air-conditioner (A/C) uses a capillary tube device as an 

expansion device. Due to energy loss during expansion process, the pressure drop from 

the condenser and evaporator pressure is considered constant enthalpy (isenthalpic), 

because during the process generates energy losses (entropy generation). To reduce the 

energy losses during throttling are required a process that generates as small as possible 

entropy generation. In other words, the process during expansion is almost entropy 

constant or isenthalpic. An ejector can be used to transform isenthalpic to isentropic in the 

expansion process. The advantages of an ejector as an expansion device to improve the 

COP have been demonstrated by several researchers. Numerical and experimental 

analysis showed that replacing a conventional expansion device with an ejector generates 

COP improvement on the VCRC. In this study, the ejector as an expansion device in 
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refrigeration systems that have been investigated by many researchers called standard 

ejector cycle (SEC). Meanwhile, a novel cycle named modified ejector cycle (MEC) is 

introduced in this research to enhance the COP improvement produced by the SEC. The 

main advantage of MEC compared to SEC is the amount of refrigerant which flows 

through the evaporator. In the MEC, all refrigerant in the system flow through the 

evaporator, while in the SEC, the amount of refrigerant flows through the evaporator 

depending on entrainment ratio of the ejector.  

 

The experimental results of effect of motive nozzle diameter on an ejector as 

expansion device in an air-conditioner were reported by Chaiwongsa and Wongwises 

(2007). In their experiment, they used three diameters of motive nozzle, viz. 0.8, 0.9 and 

1.0 mm with R134a as working fluid. They reported that the motive nozzle with diameter 

of 0.8 mm resulted in the highest COP. However, they did not explain the numerical 

modeling how to determine the motive nozzle diameter. This research will describe a 

numerical modeling how to determine the motive nozzle and mixing chamber diameter 

based on cooling capacity of air-conditioner . A better understanding of geometric 

parameter effect on an ejector is required to obtain the minimum energy losses during the 

throttling process. Also, because the split-type A/C may be installed in geographical areas 

which have outdoor temperature from medium to hot, as a result, the ambient temperature 

on the condenser will be varied, that is, 30
o
C, 35

o
C and 40

o
C. The objective of the 

ambient temperature variation is to investigate its effect to COP improvement.   

 

The working fluid R22 family of HCFCs (hydro-chlorofluorocarbons) is the most 

widely used as the working fluid in split-type air-conditioner s. Because of the negative 

impact on the environment, many countries have accelerated the phase out of using 

HCFC22 (R22) as working fluid. Europe and Japan have banned the import of air-

conditioner s using R22 since January 1st, 2004. In the developing countries, such as 

China, have started to reduce the use of R22 in 2012, and will ban the use of R22 in air-

conditioner s industry from 2040 (Chen, 2008). In addition, in the developed countries, 

the use of HCFCs has already been phased out in new equipment for below 100 kW 

capacities, in 2002. Furthermore, the total phase out of HCFCs is scheduled for 2015 in 

developed countries. Hydrocarbons (HCs) are a refrigerant alternative to replace HCFCs. 
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In addition, replacing R22 with hydrocarbon refrigerant, i.e. propane (R-290) is 

recommended by Loretzen (1995). As a result, there are two working fluids will be used 

in this study, i.e. R22 and R290. Besides as a green working fluid, the use of R290 

replacing R22 in the standard refrigeration system could improve the COP (Lorentzen, 

1995; Urchueguia, 2004; Devotta, et at., 2005).  

 

The geometric parameters of the ejector that used on the experimental are 

determined by thermodynamics modeling. Based on the developed model, the exergy 

analysis will be carried out on the SEC and MEC.  

 

 

 

 

1.2  Problem Statement 

 

Increasing the economic community causes increasing energy use. Because the 

energy consumed by the refrigeration system is quite high, so efforts to enhance the 

performance of the refrigeration system are needed. The ejector as an expansion device is 

one of the alternatives is used to enhance e the performances of the VCRC. 

 

In the SEC, the working fluid that flows out from diffuser enters to a separator. 

From the separator, the working fluid is distributed to the compressor and the evaporator. 

Vapor phase of the working fluid from the separator flows into suction of the compressor, 

whereas liquid phase flows through the separator. Due to not all the working fluid flows 

through evaporator resulting decrease in cooling capacity. Also, because the separator is 

close to the compressor suction resulting in most of the working fluid tends to flow into 

the compressor and only a small portion which flows through the evaporator. As a result, 

the cooling capacity and COP tends to decrease.         

 

To overcome the drawback of the SEC, a novel cycle, that is, the MEC is 

developed. The difference between SEC and MEC is located at the separator. In the SEC, 

the separator has an inlet that flow refrigerant from the ejector and two outlets that flow 

out the vapor refrigerant to compressor suction and liquid refrigerant to the evaporator. 
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Meanwhile, in the MEC, the separator only has an inlet and an outlet. All of the working 

fluid from the separator flow through the evaporator; as a result the cooling capacity 

increases compared to the SEC.  

 

Air-conditioner may be installed in the areas which have medium to high ambient 

temperature. It is well known that the COP of air-conditioner s will decrease with 

increase in the ambient temperature. As a result, besides to determine diameters of motive 

nozzle and mixing chamber of an ejector, the numerical analysis also investigates the 

effect of ambient temperature to the COP improvement on the air-conditioner  using an 

ejector as an expansion device. Thermodynamics analysis in the SEC showed that the 

COP improvement yielded above 20% for certain working fluids (Kornhauser, 1990; Bilir 

and Ersoy, 2009; Sarkar, 2010). However, none of the experimental results generates 

COP improvement over 10% (Wongwises and Disawas, 2005; Elbel and Hrnjak, 2008; 

Elbel, 2011). The present study introduces a novel cycle using ejector as an expansion 

device based on the SEC modification, called the MEC. The novel cycle is to enhance the 

COP improvement of the standard ejector cycle. To obtain optimum results, the 

dimensions of the motive nozzle and mixing chamber are calculated using three 

equations, i.e., conservation of mass, energy and momentum.  

 

 To the best of author’s knowledge, the geometric parameters analysis of an ejector 

based on the cooling capacity of the air-conditioner  is still relatively scarce. This study 

will complete and enhance previous research. In addition, losses energy in each 

component, such as the compressor, expansion valve, ejector, evaporator and condenser 

can be calculated by exergy analysis.   

 

 

 

 

1.3   Objective of Study 

 

There are two refrigerants that will be investigated in this study, namely R22 and 

R290. Working fluid R22 is the most widely used as the working fluid in split-type air-

conditioner s, whereas R290 as a green refrigerant was considered to be long-term 
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alternative refrigerant for replacing R22. Also, it is not yet available in open literature 

data for determining motive nozzle and mixing chamber diameters of an ejector in the 

split-type A/C based on the cooling capacity and ambient temperature. As a result, using 

thermodynamics model and experimental on the split-type A/C, the objectives of the 

study are:    

 

1. To develop a numerical correlation on motive nozzle and mixing chamber 

diameters of an ejector based on the cooling capacity of the air-conditioner.  

2. To investigate the performance of a novel cycle, that is MEC, in a split-type air-

conditioner using R22 and R290 as working fluid.  

3. To validate the thermodynamic modeling of the use of an ejector as expansion 

device in a split-type air-conditioner with experimental data.   

 

 

 

 

1.4  Scope of Research 

 

An ejector is utilized to reduce energy losses during expansion process in a 

capillary tube. Most of split-type air-conditioner use capillary tube as an expansion 

device, as a result, replacing a capillary tube with an ejector will improve the performance 

of the air-conditioner. Thermodynamic modeling is used to determine the motive nozzle 

and mixing chamber diameters which are applied in the experiment. The COP 

improvement of the ejector-expansion system is influenced by geometry of an ejector. 

The motive nozzle and mixing chamber diameters are the most important of ejector 

geometric parameters. In developing the model, conservation laws of mass, momentum 

and energy equations were applied to each part of the ejector. Also, based on the 

thermodynamic modeling, the performances of the air-conditioner using a capillary tube 

and an ejector as expansion device are able to be determined. Experiment will be 

performed to validate the numerical model.  Furthermore, the scopes of this research are: 
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1. Building an experimental rig of a split-type air-conditioner using standard cycle 

(SC), standard ejector cycle (SEC) and modified ejector cycle (MEC) with R22 

and R290 as working fluid.  

2. To collect experimental data to determine the performance of the air-conditioner 

using SC, SEC and MEC with varying ambient temperature.  

3. To validate the developed modeling with the experimental data.     

 

 

 

 

1.5   Thesis Outline 

 

There are five chapters in the present study. Chapter 1 presents the introduction 

that highlights the importance of the study.  

 

Chapter 2 presents the literature review. This chapter describes a comprehensive 

review of two-phase ejector as an expansion device in the VCRC over the past two 

decades. The chapter also covers research opportunities that are still open in the ejector as 

an expansion valve. In addition, the effect of the ambient temperature and working fluid 

on the ejector as an expansion in the VCRC is covered.    

 

Chapter 3 presents the research methodology. This chapter describes a 

thermodynamics modeling and experimental methodology on the SC, SEC and MEC. In 

developing the model, conservation laws of mass, momentum and energy equations were 

applied to each part of the ejector. This chapter calculates diameters of motive nozzle and 

mixing chamber based on the cooling capacity of the A/C. Based on the numerical 

modeling of dimension of the ejector, the COP improvement and irreversibility of each 

component of the SEC and MEC can be determined.  Also, this chapter presents the 

experimental procedure and system characteristic. The development of experiment rig, 

test conditions and procedures of collecting data are also explained.  
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Chapter 4 presents the experimental results and discussion. This chapter explains 

the analysis of experiment results compared to numerical modeling. Statistical analyses 

are performed to calculate the percentages of the experimental uncertainties.  

 

Chapter 5 presents the conclusions and recommendation for the future works.     
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