DESIGN AND ANALYSIS OF EJECTOR AS AN EXPANSION DEVICE IN A SPLIT-TYPE AIR CONDITIONER

SUMERU

A thesis submitted in the fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > FEBRUARY 2015

Dedicated to:

My beloved wife Retno Dewi Setyawati, and my sons: Husain Akbar Sumeru, Hamzah Kalam Sumeru, Hassan Muhammad Sumeru and Hisyam Albana Sumeru

> My parents: Kasni and Ning Soeharti

My brothers and sisters: Haryono, Agus Suharyanto, Susilowati and Sri Supeni

ACKNOWLEDGEMENT

All praise due to Allah the Almighty, the Beneficent the Merciful, for all His bounties and blessings throughout my life and in particular during the course of preparing the thesis. Blessings and peace of Allah be upon Prophet Muhammad and his families, through his teachings and examples I learn and gain success in this life and in the hereafter.

I am also very appreciative of my wife Retno Dewi Setyawati for her understanding and support throughout the duration of my study in PhD program. I would also like to thank to my brothers and sisters who have given me their support throughout all along.

This work would not have been possible without the help and support of many people. I would also like to acknowledge Universiti Teknologi Malaysia, Faculty of Mechanical Engineering and Thermodynamics Laboratory for allowing me to use the research facilities.

I would like to express my deepest appreciation and gratitude to my thesis advisors Prof. Dr. Farid Nasir Ani and Dr. Henry Nasution. Sheriff for their respective valuable guidance, advice, discussion and feedback throughout the years of working together. I would like to also thank all technicians from Thermodynamic Laboratory of UTM especially Mr. Abdul Halim Bin Abdul Rahman who helps in installing the experiment rig. Also, my thanks goes to my friends and collecgues, namely Dr. Shodiya Sulaiman, Dr. V. Ashokkumas and Abioye Adekunle Moshood. My gratitude to all of them and I pray may Allah bless each and every one of them.

ABSTRACT

Split-type air-conditioners are widely used in residential and commercial buildings. The air-conditioning system consumes more than 50% of the total energy in buildings. An improvement on the performance of the system will generate a significant impact on energy savings. This study introduces a novel cycle using an ejector as expansion device in an air-conditioner to improve the performance. This cycle is named as a modified ejector cycle (MEC). R22 is widely used as refrigerant in split-type airconditioners, however due to its global warming impact, researchers recommended R290 as a substitute. Thermodynamic modeling was developed to determine the motive nozzle and mixing chamber diameters of the ejector based on the cooling capacity of the airconditioner. In the modeling, the conservation equations of mass, momentum and energy were applied. The result shows that the COP improvements of MEC using R290 were higher than that of R22 for all ambient temperatures. The COP improvement using R290 are 34.52, 39.53 and 47.58% at the ambient temperatures of 30, 35 and 40°C, respectively. Experiments were carried out on a split-type air-conditioner using a capillary tube (standard cycle) and MEC with three motive nozzle diameters, i.e. 0.9, 1.0, and 1.1 mm. The measurements were carried out at the steady-state condition and repeated five times with 2 minutes interval. Experimental results show that the highest COP improvement of MEC was achieved with a motive nozzle diameter of 1.0 mm that is 30.67%. The results also show that the COP improvements of MEC using R22 are 24.69, 26.06 and 32.12%, whereas using R290 were 27.68, 31.53 and 33.61%, at the ambient temperatures of 30, 35 and 40°C, respectively. This indicates that replacing the R22 with R290 can further enhance the COP improvement of the MEC. Comparison between numerical and experimental results showed poor agreement due to large difference in the entrainment ratio of the ejector.

ABSTRAK

Penghawa dingin jenis-terpisah digunakan secara meluas dalam bangunan kediaman dan komersial. Sistem penghawa dingin menggunakan lebih 50% daripada jumlah penggunaan tenaga bangunan. Peningkatan kepada prestasi sistem akan menjana kesan yang ketara kepada penjimatan tenaga. Kajian ini membentangkan suatu kitaran baharu menggunakan ejektor sebagai injap pengembangan pada penghawa dingin untuk meningkatkan prestasi. Kitaran ini dinamakan sebagai kitaran ejektor diubahsuai (MEC). R22 digunakan secara meluas sebagai bahan penyejuk dalam penghawa dingin jenisterpisah, bagaimanapun disebabkan oleh kesan pemanasan global, para penyelidik mensyorkan R290 sebagai bahan penyejuk penggantinya. Pemodelan termodinamik telah dibangunkan untuk menentukan garis pusat daripada nozel masuk dan ruang pencampuran ejektor berdasarkan kapasiti penyejukan penghawa dingin. Pada pemodelan, persamaan pemuliharaan jisim, momentum dan tenaga digunakan. Keputusan menunjukkan bahawa peningkatan COP daripada MEC menggunakan R290 adalah lebih tinggi berbanding dengan R22 untuk semua suhu sekeliling. Peningkatan COP menggunakan R290 adalah 34.52, 39.53 dan 47.58% pada suhu sekeliling 30, 35 dan 40°C. Uji kaji telah dijalankan ke atas kitaran piawai yang menggunakan tiub kapilari dan juga MEC dengan tiga garis pusat nozel masuk, iaitu 0.9, 1.0 dan 1.1 mm. Pengukuran dijalankan pada keadaan mantap dan diulang sebanyak lima kali dengan selang 2 masa minit. Keputusan uji kaji menunjukkan bahwa peningkatan COP tertinggi dicapai dengan garis pusat nozel masuk 1.0 mm iaitu sebanyak 30.67%. Uji kaji menunjukkan bahawa MEC dengan menggunakan R22 sebagai cecair penyejuk meningkatkan COP pada kadar 24.69, 26.06 dan 32.12%, sedangkan menggunakan R290 pula memberikan 27.68, 31.53 dan 33.61%, pada suhu sekeliling 30°C, 35°C dan 40°C. Hasil ini menunjukkan bahawa penggantian R22 kepada R290 boleh meningkatkan lagi COP daripada MEC. Perbandingan antara keputusan kaedah berangka dan uji kaji menunjukkan terdapat perbezaan di antara dua keputusan tersebut kerana perbedaan yang tinggi pada nisbah kemasukan ejektor.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE PAGE	
	DECLARATION STATEMENT	ii
	DEDICATION	iii
	ACKNOWLEDGMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	xix
	LIST OF SYMBOLS	XX
	LIST OF APPENDICES	xxii
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Problem Statement	3
	1.3 Objective of Study	4
	1.4 Scope of Research	5
	1.5 Thesis Outline	6
2	LITERATURE REVIEW	8
	2.1 Introduction	8
	2.2 Ejector in Refrigeration System	15
	2.3 Operation Principles of Ejector as an Expansion	Device 23

	2.4	COP Improvement of Standard Ejector Cycle	30
		2.4.1 COP improvement on the Conventional Cycle	32
		2.4.2 Improvement on the Transcritical Cycle	37
	2.5	Optimum Results of the SEC	40
	2.6	Modified Ejector Cycle	41
	2.7	Summary	42
2	DEG		42
3	RES	EARCH METHODOLOGY	43
	3.1	Introduction	43
	3.2	Thermodynamic Modeling	43
		3.2.1 Numerical Algorithm	45
		3.2.2 Energy Analysis on the SEC	49
		3.2.3 Energy Analysis on the MEC	50
	3.3	Exergy Analysis	52
	3.4	Experimental Methodology	54
		3.4.1 System Description	54
		3.4.2 Test Apparatus	57
		3.4.3 Experimental Procedure	61
		3.4.4 Analysis of Data	65
		3.4.5 Experimental Uncertainty Analysis	67
	3.3	Summary	68

RESU	LTS A	ND DISCUSSION	69
4.1	Introd	uction	69
4.2	Nume	rical Results	69
	4.2.1	Effect of Ambient Temperature on	
		Geometric Parameters	70
	4.2.2	Effect of condenser temperature	
		on the COP Improvement	71
	4.2.3	Effect of Ambient Temperature	
		on P _{lift}	73

	4.2.4 SEC and MEC in the P-h Diagram	
	with R22 as Working Fluid	74
	4.2.5 SEC and MEC in the P-h Diagram	
	with R290 as Working Fluid	78
	4.2.6 Irreversibility on the Standard Cycle and	1 SEC 81
	4.2.6.1 Irreversibility on the SEC Using	5
	R22 and R290 as Working Fluid	l 84
	4.2.6.2 Effect Room Temperature	
	on Irreversibility	85
4.3	Experimental Results	87
	4.3.1 The Effect of Motive Nozzle Diameter	
	on the Performance	87
	4.3.2 Effect on the Cooling Capacity	8b
4.4	Standard Versus Modified Ejector Cycle Using	R22 92
	4.4.1 Influence of Ambient Temperature	
	on the Cooling Capacity	93
	4.4.2 Influence of Ambient Temperature	
	on the Input Power	96
	4.4.3 Influence of Ambient Temperature	
	on the COP Improvement	100
	4.4.4 Influence of Ambient Temperature	
	on the Discharge Pressure	104
	4.4.5 Influence of Ambient Temperature	
	on the Suction Pressure	106
	4.4.6 Influence of Ambient Temperature	
	on the Compression Ratio	109
4.5	Comparison Between R22 and R290	
	as Working Fluid	111
	4.5.1 Influence of Ambient Temperature	
	on the Cooling Capacity	112
	4.5.2 Influence of Ambient Temperature	
	on the Input Power	115
	4.5.3 Influence of Ambient Temperature	

		on the COP Improvement	118
		4.5.4 Influence of Ambient Temperature	
		on the Discharge Pressure	122
		4.5.5 Influence of Ambient Temperature	
		on the Suction Pressure	123
		4.5.6 Influence of Ambient Temperature	
		on the Compression Ratio	124
		4.5.7 Influence of ambient temperature	
		on the Ejector Exit Pressure	125
		4.5.8 Influence of Ambient Temperature	
		on the Entrainment Ratio	127
	4.6	Comparison between Numerical	
		and Experimental Results	127
	4.7	Experimental Uncertainty Analysis	128
	4.8	Summary	129
5	CON	NCLUSION AND FUTURE WORKS	130
	5.1	Introduction	130
	5.2	Conclusions on Thermodynamic Modeling	130
	5.3	Conclusions on Experimental Studies	131
	5.4	Future Works	133

REFERENCES

Appendices A - F 140-186

134

LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	Phase flow of the working fluid in the ejector.	23
2.2	Critical properties of refrigerants.	31
2.3	The summary of papers of ejector as an expansion	
	device in the vapor compression refrigeration cycle	36
	using conventional refrigerants	
2.4	The summary of papers of ejector as an expansion	
	device in the vapor compression refrigeration cycle	40
	using CO ₂ refrigerant.	
2.5	The optimum geometric of an ejector based on the	
	numerical analysis and experimental that yields the	41
	highest improvement COP.	
3.1	Properties of R22 and R290.	57
3.2	Geometry parameters of ejector.	62
3.3	Instrumentation range and accuracy of the sensors.	62
4.1	Variation P_5 and T_5 versus the ambient temperature for	
	R22 as working fluid ($T_{evap} = 5^{\circ}C$, $\eta_{mn} = 0.9$, $\eta_{sn} = 0.9$	74
	and $\eta_{dif} = 0.8$).	
4.2	Variation P_5 and T_5 versus the ambient temperature for	
	R290 as working fluid ($T_{evap} = 5^{\circ}C$, $\eta_{mn} = 0.9$, $\eta_{sn} = 0.9$	74
	and $\eta_{dif} = 0.8$).	
4.3	Exergy loss in each component of standard cycle and	
	SEC of VCRC at $T_r = 24^{\circ}C$ and $T_o = 34^{\circ}C$.	82

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Vapor compression refrigeration cycle in T-s diagram	
	(Jones and Hawkins, 1986).	9
2.2	Reversed Carnot cycle using wet-vapor as working fluid	
	in T-s diagram (Jones and Hawkins, 1986).	10
2.3	Simple vapor compression refrigeration cycle in T-s	
	diagram (Jones and Hawkins, 1986).	11
2.4	Simple vapor compression refrigeration cycle in P-h	
	diagram (Jones and Hawkins, 1986).	12
2.5	Reversed Carnot cycle with ideal-gas as working fluid	
	on P-V diagram (Jones and Hawkins, 1986).	13
2.6	Schematic diagram of ejector refrigeration cycle	
	Pridasawas, 2006).	18
2.7	Schematic diagram of Bergander's concept (Bergander,	
	2006).	18
2.8	Schematic diagram of standard ejector cycle (SEC) on	
	the VCRC.	19
2.9	Schematic diagram of modified ejector cycle (MEC) on	
	the MEC.	19
2.10	Ejector refrigeration cycle in P-h diagram (ASHRAE,	
	1983).	21
2.11	Schematic diagram of Bergander's concept in P-h	
	diagram (Bergander, 2006).	21
2.12	The SEC in P-h diagram (Kornhauser, 1990).	21
2.13	The MEC in P-h diagram	22

2.14	Constant-area mixing ejector.	24
2.15	Constant-pressure mixing ejector.	25
2.16	The SC and SEC in P-h diagram.	27
2.17	Profile of pressure and velocity inside an ejector.	28
2.18	The VCRC in P-h diagram:	
	(a) Subcritical cycle, (b) Transcritical cycle.	32
2.19	Comparison of exergy losses in the standard cycle and	
	SEC for a high-side pressure of 8.7 MPa.	39
3.1	Flowchart of numerical procedure to obtain diameters of	
	motive nozzle (mn), mixing chamber (mc), COP and	
	exergy	50
3.2	The indoor unit of the experimental rig.	55
3.3	The outdoor unit of the experimental rig.	55
3.4	Refrigerants used in the experiments (R290 is orange	
	tank and R22 in green tank).	56
3.5	Saturated pressure vs. temperature of R22 and R290	57
3.6	Schematic diagram of experimental rig.	59
3.7	Pictorial view of valve section of the experimental rig.	60
3.8	Temperature measurements apparatus.	61
3.9	Exploded view of assembly of ejector used in the	
	experiment.	63
3.10	Cut-off view of assembly of ejector used in the	
	experiment	64
3.11	The ejector used in the experiment.	64
3.12	The flowchart of research methodology.	66
4.1	Variation of the motive nozzle (mn), mixing chamber	
	(mc) diameters and area ratio of ejector (AR) versus	
	ambient temperature ($T_{evap} = 5^{\circ}C$).	71
4.2	Variation of the COP and COP improvement, versus	
	ambient temperature in the SEC ($T_{evap} = 5^{\circ}C$).	72
4.3	Variation of COP improvement of SEC and MEC versus	
	ambient temperatures $(T_{evap} = 5^{\circ}C)$.	73
4.4	The SEC on P-h diagram with R22 as working fluid for	

	the ambient temperature of 30° C, $T_{evap} = 5^{\circ}$ C.	75
4.5	The SEC on P-h diagram with R22 as working fluid for	
	the ambient temperature of 35° C, $T_{evap} = 5^{\circ}$ C.	75
4.6	The SEC on P-h diagram with R22 as working fluid for	
	the ambient temperature of 40° C, $T_{evap} = 5^{\circ}$ C.	76
4.7	The MEC on P-h diagram with R22 as working fluid for	
	the ambient temperature of 30° C, $T_{evap} = 5^{\circ}$ C.	76
4.8	The MEC on P-h diagram with R22 as working fluid for	
	the ambient temperature of 35° C, $T_{evap} = 5^{\circ}$ C.	77
4.9	The MEC on P-h diagram with R22 as working fluid for	77
	the ambient temperature of 40° C, $T_{evap} = 5^{\circ}$ C.	
4.10	The SEC on P-h diagram with R290 as working fluid for	
	the ambient temperature of 30° C, $T_{evap} = 5^{\circ}$ C.	78
4.11	The SEC on P-h diagram with R290 as working fluid for	
	the ambient temperature of 35° C, $T_{evap} = 5^{\circ}$ C.	79
4.12	The SEC on P-h diagram with R290 as working fluid for	
	the ambient temperature of 40° C, $T_{evap} = 5^{\circ}$ C.	79
4.13	The MEC on P-h diagram with R290 as working fluid	
	for the ambient temperature of 30° C, $T_{evap} = 5^{\circ}$ C.	80
4.14	The MEC on P-h diagram with R290 as working fluid	
	for the ambient temperature of 35° C, $T_{evap} = 5^{\circ}$ C.	80
4.15	The MEC on P-h diagram with R290 as working fluid	
	for the ambient temperature of 40° C, $T_{evap} = 5^{\circ}$ C.	81
4.16	Exergy loss distribution on the SEC with R22 as	
	working fluid.	83
4.17	Exergy los distribution on the SEC with R290 as	
	working fluid.	84
4.18	Comparison of exergy loss on the SEC of R22 and	
	R290).	85
4.19	Effect of room temperature on total irreversibility.	86
4.20	Freezing around the separator on SEC mode.	88
4.21	Comparison of the cooling capacity of SC versus MEC	
	for five time measurement.	90

4.22	Comparison of the average cooling capacity for different	
	motive nozzle diameter in the MEC.	91
4.23	Comparison of COP improvements for different motive	
	nozzle diameters in the MEC ($T_{amb} = 30^{\circ}C$).	92
4.24	Comparison of the cooling capacities of standard and	
	modified ejector cycle at ambient temperature of $30^{\circ}C$	
	for five time measurements.	94
4.25	Comparison of the cooling capacities of standard and	
	modified ejector cycle at ambient temperature of 35°C	
	for five time measurement.	94
4.26	Comparison of the cooling capacities of standard and	
	modified ejector cycle at ambient temperature of 40°C	
	for five time measurements.	95
4.27	Comparison of the cooling capacities and the cooling	
	capacity improvements for various ambient	
	temperatures for R22.	96
4.28	Comparison of the input powers of standard and	
	modified ejector cycle at ambient temperature of $30^{\circ}C$	97
	for five time measurements.	
4.29	Comparison of the input powers of standard and	
	modified ejector cycle at ambient temperature of 35°C	
	for five time measurements.	97
4.30	Comparison of the input powers of standard and	
	modified ejector cycle at ambient temperature of $40^{\circ}C$	
	for five time measurements.	98
4.31	Comparison of the input powers and the input powers	
	improvements for various ambient temperatures using	
	R22.	99
4.32	Comparison of the COPs of standard and modified	
	ejector cycle at ambient temperature of 30°C for five	
	time measurements.	100
4.33	Comparison of the COPs of standard and modified	
	ejector cycle at ambient temperature of 35°C for five	

	time measurements.	101
4.34	Comparison of the COPs of standard and modified	
	ejector cycle at ambient temperature of 40°C for five	
	time measurements.	101
4.35	Comparison of the COPs and the COP improvements	
	for various ambient temperatures.	102
4.36	Comparison of the discharge pressures of standard and	
	modified ejector cycle at ambient temperature of 30°C	
	for five time measurements.	104
4.37	Comparison of the discharge pressures of standard and	
	modified ejector cycle at ambient temperature of 35°C	
	for five time measurements.	104
4.38	Comparison of the discharge pressures of standard and	
	modified ejector cycle at ambient temperature of 40°C	
	for five time measurements.	105
4.39	Comparison of the discharge pressures for various	
	ambient temperatures.	105
4.40	Comparison of the suction pressures of standard and	
	modified ejector cycle at ambient temperature of 30°C	
	for five time measurements.	107
4.41	Comparison of the suction pressures of standard and	
	modified ejector cycle at ambient temperature of 35°C	
	for five time measurements.	107
4.42	Comparison of the suction pressures of standard and	
	modified ejector cycle at ambient temperature of 40°C	
	for five time measurements.	108
4.43	Comparison of the suction pressures for various ambient	
	temperatures.	108
4.44	Comparison of the compression ratios of standard and	
	modified ejector cycle at ambient temperature of 30°C	
	for five time measurements.	109
4.45	Comparison of the compression ratios of standard and	
	modified ejector cycle at ambient temperature of 35°C	

	for five time measurements.	110
4.46	Comparison of the compression ratios of standard and	
	modified ejector cycle at ambient temperature of 40° C	
	for five time measurements.	110
4.47	Comparison of the compression ratios for various	
	ambient temperatures.	111
4.48	Comparison of the cooling capacities of standard and	
	modified ejector cycle using R22 and R290 at ambient	
	temperature of 30°C for five time measurements.	113
4.49	Comparison of the cooling capacities of standard and	
	modified ejector cycle using R22 and R290 at ambient	
	temperature of 35°C for five time measurements.	113
4.50	Comparison of the cooling capacities of standard and	
	modified ejector cycle using R22 and R290 at ambient	114
	temperature of 40°C for five time measurements.	
4.51	Comparison of the cooling capacities (Q_{evap}) of SC and	
	MEC with R290 as working fluid and cooling capacity	
	improvements (Q_{evap_imp}) for various ambient	
	temperatures	114
4.52	Comparison of the input powers of standard and	
	modified ejector cycle using R22 and R290 at ambient	
	temperature of 30°C for five times measurements.	116
4.53	Comparison of the input powers of standard and	
	modified ejector cycle using R22 and R290 at ambient	
	temperature of 35°C for five times measurements.	116
4.54	Comparison of the input powers of standard and	
	modified ejector cycle using R22 and R290 at ambient	
	temperature of 40°C for five times measurements.	117
4.55	Comparison of input powers and input power reductions	
	(P_red) of SC and MEC with R22 and R290 as working	
	fluid for various ambient temperatures.	117
4.56	Comparison of the COPs of standard and modified	
	ejector cycle using R22 and R290 at ambient	

	temperature of 30°C for five time measurements.	119
4.57	Comparison of the COPs of standard and modified	
	ejector cycle using R22 and R290 at ambient	
	temperature of 35°C for five times measurements.	119
4.58	Comparison of the COPs of standard and modified	
	ejector cycle using R22 and R290 at ambient	
	temperature of 40°C for five times measurements.	120
4.59	Comparison of the COPs of MEC and SC for various	
	ambient temperatures.	120
4.60	Comparison of experimental results of the COP	
	improvements on the MEC using R22 and R290 for	
	various ambient temperatures.	121
4.61	Comparison of the discharge pressures for various	
	ambient temperatures.	122
4.62	Comparison of the suction pressures for various ambient	
	temperatures.	123
4.63	Comparison of the compression ratios for various	
	ambient temperatures.	124
4.64	Comparison of the ejector exit pressures for various	
	ambient temperatures.	125
4.65	Comparison of the entrainment ratios for various	
	ambient temperatures.	126
4.66	Comparison of the COP improvements between	
	numerical and experimental results for various ambient	
	temperatures.	128

LIST OF ABBREVIATIONS

A/C	-	air conditioner
AR	-	area ratio
COP	-	coefficient of performance
EERC	-	ejector-expansion refrigeration cycle
ERC	-	ejector refrigeration cycle
Ι	-	current
MEC	-	modified ejector cycle
Р	-	pressure
PW	-	input power
R	-	Refrigeration
SC	-	standard cycle
SEC	-	standard ejector cycle
VCRC	-	vapor compression refrigeration cycle
V	-	voltage
W	-	compressor work

LIST OF SYMBOLS

h	-	specific enthalpy (kJ/kg)
'n	-	mass flow rate of refrigerant (k/s)
R	-	gas constant
Т	-	temperature (°C)
$T_{\rm H}$	-	High temperature (K)
T_L	-	Low temperature (K)
и	-	uncertainty
η	-	efficiency
ω	-	entrainment ratio of ejector

Subcript

1,2,, n	-	Measurement points
abs	-	absolute
cond	-	condenser
са	-	constant-area
сотр	-	compressor
dif	-	diffuser
evap	-	evaporator
ejt	-	ejector
exp	-	expansion
f	-	liquid
g	-	gas
imp	-	improvement
in	-	input

тс	-	mxing chamber
mn	-	motive nozzle
0	-	outdoor
r	-	room
red	-	reduction
rjt	-	rejected

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Working drawings, Schematic Diagrams and Assemblies	140
	of Tested Ejector	
В	Experimental Results	149
С	Refrigerant properties of R22	164
D	Refrigerant properties of R290	167
E	Experimental results in P-h diagram	170
F	List of publications	182

CHAPTER 1

INTRODUCTION

1.1 Background

The air-conditioner uses approximately 57% of the total energy consumption in buildings in Malaysia (Saidur, 2009). More than that, in commercial building, such as five star hotels in India, air-conditioning systems consumes about 80% of the total energy (Ananthanarayanan, 2006). As a result, an improvement on the coefficient of performance (COP) of air-conditioner will generate a significant impact on energy savings. The use of ejector as an expansion device in the vapor compression refrigeration cycle (VCRC) is a method to increase performance and to reduce power consumption system.

Typically, the split-type air-conditioner (A/C) uses a capillary tube device as an expansion device. Due to energy loss during expansion process, the pressure drop from the condenser and evaporator pressure is considered constant enthalpy (isenthalpic), because during the process generates energy losses (entropy generation). To reduce the energy losses during throttling are required a process that generates as small as possible entropy generation. In other words, the process during expansion is almost entropy constant or isenthalpic. An ejector can be used to transform isenthalpic to isentropic in the expansion process. The advantages of an ejector as an expansion device to improve the COP have been demonstrated by several researchers. Numerical and experimental analysis showed that replacing a conventional expansion device with an ejector generates COP improvement on the VCRC. In this study, the ejector as an expansion device in

refrigeration systems that have been investigated by many researchers called standard ejector cycle (SEC). Meanwhile, a novel cycle named modified ejector cycle (MEC) is introduced in this research to enhance the COP improvement produced by the SEC. The main advantage of MEC compared to SEC is the amount of refrigerant which flows through the evaporator. In the MEC, all refrigerant in the system flow through the evaporator, while in the SEC, the amount of refrigerant flows through the evaporator depending on entrainment ratio of the ejector.

The experimental results of effect of motive nozzle diameter on an ejector as expansion device in an air-conditioner were reported by Chaiwongsa and Wongwises (2007). In their experiment, they used three diameters of motive nozzle, viz. 0.8, 0.9 and 1.0 mm with R134a as working fluid. They reported that the motive nozzle with diameter of 0.8 mm resulted in the highest COP. However, they did not explain the numerical modeling how to determine the motive nozzle diameter. This research will describe a numerical modeling how to determine the motive nozzle and mixing chamber diameter based on cooling capacity of air-conditioner . A better understanding of geometric parameter effect on an ejector is required to obtain the minimum energy losses during the throttling process. Also, because the split-type A/C may be installed in geographical areas which have outdoor temperature from medium to hot, as a result, the ambient temperature on the condenser will be varied, that is, 30°C, 35°C and 40°C. The objective of the ambient temperature variation is to investigate its effect to COP improvement.

The working fluid R22 family of HCFCs (hydro-chlorofluorocarbons) is the most widely used as the working fluid in split-type air-conditioner s. Because of the negative impact on the environment, many countries have accelerated the phase out of using HCFC22 (R22) as working fluid. Europe and Japan have banned the import of air-conditioner s using R22 since January 1st, 2004. In the developing countries, such as China, have started to reduce the use of R22 in 2012, and will ban the use of R22 in air-conditioner s industry from 2040 (Chen, 2008). In addition, in the developed countries, the use of HCFCs has already been phased out in new equipment for below 100 kW capacities, in 2002. Furthermore, the total phase out of HCFCs is scheduled for 2015 in developed countries. Hydrocarbons (HCs) are a refrigerant alternative to replace HCFCs.

In addition, replacing R22 with hydrocarbon refrigerant, i.e. propane (R-290) is recommended by Loretzen (1995). As a result, there are two working fluids will be used in this study, i.e. R22 and R290. Besides as a green working fluid, the use of R290 replacing R22 in the standard refrigeration system could improve the COP (Lorentzen, 1995; Urchueguia, 2004; Devotta, et at., 2005).

The geometric parameters of the ejector that used on the experimental are determined by thermodynamics modeling. Based on the developed model, the exergy analysis will be carried out on the SEC and MEC.

1.2 Problem Statement

Increasing the economic community causes increasing energy use. Because the energy consumed by the refrigeration system is quite high, so efforts to enhance the performance of the refrigeration system are needed. The ejector as an expansion device is one of the alternatives is used to enhance e the performances of the VCRC.

In the SEC, the working fluid that flows out from diffuser enters to a separator. From the separator, the working fluid is distributed to the compressor and the evaporator. Vapor phase of the working fluid from the separator flows into suction of the compressor, whereas liquid phase flows through the separator. Due to not all the working fluid flows through evaporator resulting decrease in cooling capacity. Also, because the separator is close to the compressor suction resulting in most of the working fluid tends to flow into the compressor and only a small portion which flows through the evaporator. As a result, the cooling capacity and COP tends to decrease.

To overcome the drawback of the SEC, a novel cycle, that is, the MEC is developed. The difference between SEC and MEC is located at the separator. In the SEC, the separator has an inlet that flow refrigerant from the ejector and two outlets that flow out the vapor refrigerant to compressor suction and liquid refrigerant to the evaporator. Meanwhile, in the MEC, the separator only has an inlet and an outlet. All of the working fluid from the separator flow through the evaporator; as a result the cooling capacity increases compared to the SEC.

Air-conditioner may be installed in the areas which have medium to high ambient temperature. It is well known that the COP of air-conditioner s will decrease with increase in the ambient temperature. As a result, besides to determine diameters of motive nozzle and mixing chamber of an ejector, the numerical analysis also investigates the effect of ambient temperature to the COP improvement on the air-conditioner using an ejector as an expansion device. Thermodynamics analysis in the SEC showed that the COP improvement yielded above 20% for certain working fluids (Kornhauser, 1990; Bilir and Ersoy, 2009; Sarkar, 2010). However, none of the experimental results generates COP improvement over 10% (Wongwises and Disawas, 2005; Elbel and Hrnjak, 2008; Elbel, 2011). The present study introduces a novel cycle using ejector as an expansion device based on the SEC modification, called the MEC. The novel cycle is to enhance the COP improvement of the standard ejector cycle. To obtain optimum results, the dimensions of the motive nozzle and mixing chamber are calculated using three equations, i.e., conservation of mass, energy and momentum.

To the best of author's knowledge, the geometric parameters analysis of an ejector based on the cooling capacity of the air-conditioner is still relatively scarce. This study will complete and enhance previous research. In addition, losses energy in each component, such as the compressor, expansion valve, ejector, evaporator and condenser can be calculated by exergy analysis.

1.3 Objective of Study

There are two refrigerants that will be investigated in this study, namely R22 and R290. Working fluid R22 is the most widely used as the working fluid in split-type airconditioner s, whereas R290 as a green refrigerant was considered to be long-term alternative refrigerant for replacing R22. Also, it is not yet available in open literature data for determining motive nozzle and mixing chamber diameters of an ejector in the split-type A/C based on the cooling capacity and ambient temperature. As a result, using thermodynamics model and experimental on the split-type A/C, the objectives of the study are:

- 1. To develop a numerical correlation on motive nozzle and mixing chamber diameters of an ejector based on the cooling capacity of the air-conditioner.
- 2. To investigate the performance of a novel cycle, that is MEC, in a split-type airconditioner using R22 and R290 as working fluid.
- 3. To validate the thermodynamic modeling of the use of an ejector as expansion device in a split-type air-conditioner with experimental data.

1.4 Scope of Research

An ejector is utilized to reduce energy losses during expansion process in a capillary tube. Most of split-type air-conditioner use capillary tube as an expansion device, as a result, replacing a capillary tube with an ejector will improve the performance of the air-conditioner. Thermodynamic modeling is used to determine the motive nozzle and mixing chamber diameters which are applied in the experiment. The COP improvement of the ejector-expansion system is influenced by geometry of an ejector. The motive nozzle and mixing chamber diameters are the most important of ejector geometric parameters. In developing the model, conservation laws of mass, momentum and energy equations were applied to each part of the ejector. Also, based on the thermodynamic modeling, the performances of the air-conditioner using a capillary tube and an ejector as expansion device are able to be determined. Experiment will be performed to validate the numerical model. Furthermore, the scopes of this research are:

- Building an experimental rig of a split-type air-conditioner using standard cycle (SC), standard ejector cycle (SEC) and modified ejector cycle (MEC) with R22 and R290 as working fluid.
- 2. To collect experimental data to determine the performance of the air-conditioner using SC, SEC and MEC with varying ambient temperature.
- 3. To validate the developed modeling with the experimental data.

1.5 Thesis Outline

There are five chapters in the present study. Chapter 1 presents the introduction that highlights the importance of the study.

Chapter 2 presents the literature review. This chapter describes a comprehensive review of two-phase ejector as an expansion device in the VCRC over the past two decades. The chapter also covers research opportunities that are still open in the ejector as an expansion valve. In addition, the effect of the ambient temperature and working fluid on the ejector as an expansion in the VCRC is covered.

Chapter 3 presents the research methodology. This chapter describes a thermodynamics modeling and experimental methodology on the SC, SEC and MEC. In developing the model, conservation laws of mass, momentum and energy equations were applied to each part of the ejector. This chapter calculates diameters of motive nozzle and mixing chamber based on the cooling capacity of the A/C. Based on the numerical modeling of dimension of the ejector, the COP improvement and irreversibility of each component of the SEC and MEC can be determined. Also, this chapter presents the experimental procedure and system characteristic. The development of experiment rig, test conditions and procedures of collecting data are also explained.

Chapter 4 presents the experimental results and discussion. This chapter explains the analysis of experiment results compared to numerical modeling. Statistical analyses are performed to calculate the percentages of the experimental uncertainties.

Chapter 5 presents the conclusions and recommendation for the future works.

REFERENCES

- Abdulateef, J. M., Sopian, K., Alghoul, M. A. and Sulaiman, M. Y. (2009). Review on solar-driven ejector refrigeration technologies. *Renewable and Sustainable Energy Reviews*. 13(6-7): 1338-1349.
- Al-Klalidy, N. (1997). Performance of solar refrigeration ejector refrigerating machine. *ASHRAE Transactions*. 103(1): 56-64.
- Ananthanarayanan, P. N. (2006). *Basic refrigeration and air conditioning*. Third edition, New Delhi: Tata McGraw-Hill Publishing Company Limited.
- Aphornratana, S., Chungpaibulpatana, S. and Srikhirin, P. (2001). Experimental investigation of an ejector refrigerator: Effect of mixing chamber geometry on system performance. *International Journal of Energy Research*. 25(5): 397-411.
- Arora, C. P. (2001). *Refrigeration and Air Conditioning*. Third ed., Singapore: McGraw-Hill.
- ASHRAE (1979). Equipment Handbook. Steam-jet Refrigeration Equipment. Chapter 13, Atlanta, GA, USA American of Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc.
- ASHRAE (1983). Equipment Handbook. Steam-jet Refrigeration Equipment. Chapter 13.
 3.1-13.6, Atlanta, GA, USA American of Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc.
- ASHRAE (1997). *Handbook of Fundamental*. Atlanta, GA, USA American of Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc.
- ASHRAE (1998). *Handbook of Refrigeration*. Atlanta, GA, USA: American of Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc.
- Banasiak, K. and Hafner, A. (2011). 1D Computational model of a two-phase R744 ejector for expansion work recovery. *International Journal of Thermal Science*. 50: 2235-2247.

- Bell, S. (2001). Measurement Good Practice Guide No. 11 (Issue 2): A Beginner's Guide to Uncertainty of Measurement. Issue 2, National Physical Laboratory, Teddington, Middlesex, United Kingdom, TW11 OLW.
- Bergander, M. J. (2006). Refrigeration cycle with two-phase condensing ejector. International Refrigeration and Air Conditioning Conference. Purdue University, July 17-20, R0008, 1-8.
- Bergander, M. J., Butrymowics, D., Smierciew, K. and Karwacki, J. (2010). Refrigeration cycle with ejector for second step compression. *International Refrigeration and Air Conditioning Conference at Purdue*, July 12-15, R2211, 1-8.
- Bilir, N. and Ersoy, H. K. (2009). Performance improvement of the vapour compression refrigeration cycle by a two-phase constant area ejector. *International Journal of Refrigeration*. 33(5): 469-480.
- Chaiwongsa, P. and Wongwises, S. (2007). Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. *International Journal of Refrigeration*. 30(4): 601-608.
- Chunnanond, K. and Aphornratana, S. (2004). Ejectors: applications in refrigeration technology. *Renewable and Sustainable Energy Reviews*. 8(2): 129-155.
- Chang, V., Gravalos, J. and Chitty, A. (1986). Thermal performance of an ejectorcompressor colar cooling system. *Proceeding of the Ninth Biennial Congress of the International Solar Energy Society*, Montreal, Canada, 744-748.
- Chen, X., Zhou, Y. and Yu, J. (2011). A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application. *Energy and Buildings*. 43(12): 3331-3336.
- Chen, W. (2008). A comparative study on the performance and environmental characteristics of R410A and R22 residential air conditioners. *Applied Thermal Engineering*. 28(1): 1-7.
- Chen, Y. M. and Sun, C. Y. (1997). Experimental study of the performance characteristics of a steam-ejector refrigeration system. *Experimental Thermal and Fluid Science*. 15(4): 384-394.
- Dahmani, A., Aidoun, Z. and Galanis, N. (2011). Optimum design of ejector refrigeration systems with environmentally benign fluids. *International Journal of Thermal Sciences*. 50(8): 1562-1572.

- Deng, J. Q., Jiang, P. X., Lu, T. and Lu, W. (2007). Particular characteristics of transcritical CO₂ refrigeration cycle with an ejector. *Applied Thermal Engineering*. 27(2-3): 381-388.
- Devotta, S., Padalkarb, A.S. and Sane, N.K. (2005). Performance assessment of HC290 as drop-in substitute to HCFC22 in a window air conditioner. *International Journal of Refrigeration* 28: 594-604.
- Diaz, N. F. (2009). Methodology for uncertainty calculation of net total cooling effect estimation for rating room air conditioners and packaged terminal air conditioners. *International Journal of Refrigeration*. 32(6): 1472-1477.
- Dincer, I. (2003). *Refrigeration Systems and Applications*. Chichester, England: John Wiley & Sons.
- Disawas, S. and Wongwises, S. (2004). Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. *International Journal of Refrigeration*. 27(6): 587-594.
- Dossat, R. J. (1991). Principles of Refrigeration, Prentice Hall, New Jersey, USA.
- Eames, I. W., Aphornratana, S. and Haider, H. (1995). A theoretical and experimental study of a small-scale steam jet refrigerator. *International Journal of Refrigeration*. 18(6): 378-386.
- Elbel, S. and Hrnjak, P. (2008). Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. *International Journal of Refrigeration*. 31(3): 411-422.
- Elbel, S. and Hrnjak, P. (2008). Ejector Refrigeration: an overview of historical and present developments with an emphasis on air-conditioning applications. *International Refrigeration and Air Conditioning Conference, Purdue University*, July 14-17, Paper 884, 1-8.
- Elbel, S. (2011). Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. *International Journal of Refrigeration*. 34(7): 1545-1561.
- Ersoy, H. K. and Bilir, N. (2010). The influence of ejector component efficiencies on performance of Ejector Expander Refrigeration Cycle and exergy analysis. *International Journal of Exergy*. 7: 425-438.
- Gay, N. H. (1931). Refrigerating system. US Patent: No.1,836,318.

- Harrel, G. S. and Kornhauser, A. A. (1995). Performance test of two-phase ejector. Proceeding of the 30th Intersociety Energy Conversion Engineering Conference, Orlando, FL, 49-53.
- He, S., Li, Y. and Wang, R. Z. (2009). Progress of mathematical modeling on ejectors. *Renewable and Sustainable Energy Reviews*. 13(8): 1760-1780.
- Huang, B. J. and Chang, J. M. (1999). Empirical correlation for ejector design. International Journal of Refrigeration. 22(5): 379-388.
- Huang, B. J., Chang, J. M., Wang, C. P. and Petrenko, V. A. (1999). A 1-D analysis of ejector performance. *International Journal of Refrigeration*. 22(5): 354-364.
- Jones J. B. and Hawkins G.A. (1986). *Engineering Thermodynamics: An Introduction Textbook*, second ed., John Wiley & Sons, Inc., New York, 1986.
- Keenan, J. H. and Neumann, E. P. (1942). A simple air ejector. ASME Journal of Applied Mechanics. 64: 75-82.
- Keenan, J. H., Neumann, E. P. and Lustwerk, F. (1950). An investigation of ejector design by analysis and experiment. ASME Journal Applied Mechanics. 17: 299-309.
- Kemper, G. A., Harper, G. F. and Brown, G. A. (1966). *Multiple phase ejector refrigeration system*. US Patent No.3,277,660.
- Kornhauser, A. A. (1990). The use of an ejector as a refrigerant expander. *Proceeding of the USN/IIR-Purdue Refrigeration Conference*, West Lafayette, IN, USA, 10-19.
- Kwong, Q. J. and Ali, Y. A. (2011). A review of energy efficiency potentials in tropical buildings – Perspective of enclosed common areas. *Renewable and Sustainable Energy Reviews* 15(9): 4548-4553.
- Levy, A. Jelinek, M., and Borde, I. (2002). Numerical study on the design parameters of a jet ejector for absorption systems. *Applied Energy*. 72(4): 467-478.
- Li, D. and Groll, E. A. (2005). Transcritical CO₂ refrigeration cycle with ejectorexpansion device. *International Journal of Refrigeration*. 28(5): 766-773.
- Liu, J. P., Chen, J. P. and Chen, Z. J. (2002). Thermodynamic analysis on transcritical R744 vapor compression/ejection hybrid refrigeration cycle. *The Fifth IIR Gustav Lorentzen Conference on Natural Working Fluid*, Guangzhou, China, 184-188.
- Lorentzen, G. (1995). The use of natural refrigerants: a complete solution to the CFC/HCFC predicament, Int. J. Refrig. 18(3): 190-197. *International Journal of Refrigeration*. 18(3): 190-197.

- Lucas, C. and Koehler, J. (2012). Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector. *International Journal of Refrigeration*. 35: 1595-1603.
- Menegay, P. and Kornhauser, A. A. (1996). Improvement to the ejector expansion refrigeration cycle. *Proceeding of the Intersociety Energy Conversion Engineering Conference*, Washington DC, 702-706.
- Nakagawa, M., Marasigan, A. R., Matsukawa, T. and Kurashina, A. (2011). Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO₂ refrigeration cycle with and without heat exchanger. *International Journal of Refrigeration*. 34(7): 1604-1613.
- Nehdi, E., Kairouani, L. and Bouzaina, M. (2007). Performance analysis of the vapour compression cycle using ejector as an expander. *International Journal of Energy Research*. 31(4): 364-375.
- Newton, A. B. (1972a). *Capacity control for multiphase-phase ejector refrigeration system*. US Patent No. 3,670,519.
- Newton, A. B. (1972b). *Controls for multiphase-phase ejector refrigeration system*. US Patent: No. 3,701,264.
- Ozaki, Y., Takeuchi, H. and Hirata, T. (2004). Regeneration of expansion energy by ejector in CO₂ cycle. *Proceeding of Sixth IIR Gustav Lorentzen Conference on Natural Working Fluid*, Glasgow, UK, 11-20.
- Pita, E. G. (2002). Air Conditioning Principles and Systems: An Energy Approach. Fourth ed., New York: Prantice Hall. Pridasawas, W. (2006). Solar-driven refrigeration system with focus on the ejector cycle. Sweden, Royal Institute of Technology: PhD Thesis.
- Saidur, R. (2009). Energy consumption, energy savings, and emission analysis in Malaysia office buildings. *Energy Policy*. 37(10): 4104-4113.
- Sarkar, J. (2010). Geometric parameter optimization of ejector-expansion refrigeration cycle with natural refrigerants. *International Journal of Energy Research*. 34(1): 84-94.
- Selvaraju, A. and Mani, A. (2006). Experimental investigation on R134a vapour ejector refrigeration system. *International Journal of Refrigeration*. 29(7): 1160-1166.

- Stoecker, W. F. (1988). *Industrial Refrigeration*. *Troy*. Troy, MI: Business News Publishing Corporation.
- Urchueguia, J.F., Corberan, J.M., Gonzalvez J. and Diaz, J.M. 2004. Experimental characterization of a commercial-size scroll and reciprocating compressor working with R22 and propane (R290) as refrigerant. *Ecobirium Journal of AIRAH* 23-25.
- Wongwises, S. and Disawas, S. (2005). Performance of the two-phase ejector expansion refrigeration cycle. *International Journal of Heat and Mass Transfer*. 48(19-20): 4282-4286.
- Yapıcı, R., Ersoy, H. K., Aktoprakoğlu, A., Halkacı, H. S. and Yiğit, O. (2008). Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio. *International Journal of Refrigeration*. 31(7): 1183-1189.
- Yari, M. and Sirousazar, M. (2008). Cycle improvements to ejector-expansion transcritical CO₂ two-stage refrigeration cycle. *International Journal of Energy Research.* 32(7): 677-687.
- Zhou, G. and Zhang, Y. (2010). Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290. *Applied Energy*. 87(5): 1522-1528.
- Zhu, Y. and Li, Y. (2009). Novel ejector model for performance evaluation on both dry and wet vapors ejectors. *International Journal of Refrigeration*. 32(1): 21-31.