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ABSTRACT 

The occurrence of voltage sags often interrupt the operating process of modern 

equipment, especially in manufacturing and semiconductor plants. To avoid high 

production loss in industries, power quality monitoring is essential. Monitoring the 

whole power system will provide important data to a utility company. As most power 

system networks are large, allocating a Power Quality (PQ) monitor at every bus in 

the system is costly. Therefore, the optimal number of PQ monitors should be 

determined. In this thesis, an optimum number of PQ monitor locations is identified 

through a searching procedure developed based on the method of fault position 

combined with certain network characteristics such as the number of connecting lines 

and the size of the coverage area, or sag vulnerability area. The proposed searching 

procedure will be enhanced with the usage of monitor redundancy level. To allow 

redundancy in monitoring sags, a minimum of three recordings are required. This is to 

allow functioning of two recordings when a monitor fails. The monitor redundancy 

criterion is used to ensure that every fault in the power system can be observed and 

validated with sufficient redundancy to ensure the monitoring system is not affected 

when one of the monitors fails to function. The monitor searching procedure is 

developed by using the MATLAB software. The monitor searching procedure is 

simulated to three different IEEE standard test systems: IEEE 30, 118 and 300 bus 

systems. Simulation results demonstrate that it is possible to monitor the occurrence 

of a voltage sag in the entire power system with an optimum number of power quality 

monitors. The monitor searching procedure is then validated through the 

implementation of monitoring the voltage sag event in the Peninsular Malaysia’s 

utility network project. The number of monitors used under this project has been able 

to record sag events with optimum redundancy and the introduction of remote 

monitoring has enhanced the monitor searching procedure as the monitors used are 

able to upload data automatically to the database. 



vi 
 

ABSTRAK 

 Kejadian voltan lendut sering mengganggu proses operasi peralatan moden 

terutamanya dalam loji pembuatan dan semikonduktor. Untuk mengelakkan kerugian 

yang tinggi di bahagian pengeluaran sektor industri, pemantauan kualiti kuasa adalah 

penting. Pemantauan keseluruhan sistem kuasa akan memberikan data penting kepada 

syarikat utiliti. Oleh kerana rangkaian sistem kuasa adalah besar, meletakkan monitor 

kualiti kuasa (PQ) pada setiap bas yang ada di dalam sistem akan meningkatkan kos. 

Oleh itu, bilangan monitor PQ yang optimum perlu ditentukan. Di dalam tesis ini,  

penentuan bilangan monitor yang optimum ditentukan melalui proses pencarian yang 

dibangunkan menggunakan kaedah kedudukan kerosakan yang digabungkan dengan 

ciri-ciri rangkaian sistem kuasa seperti bilangan talian setiap bas dan saiz kawasan 

liputan atau juga dikenali sebagai kawasan kelemahan voltan lendut. Tatacara 

pencarian monitor yang dibangunkan akan dipertingkatkan dengan  menggunakan ciri 

lewahan rakaman monitor. Untuk membenarkan lewahan dalam pemantauan voltan 

lendut, tiga rakaman minimum diperlukan. Ini membolehkan dua rakaman lagi 

berfungsi apabila satu monitor tidak berfungsi. Kriteria lewahan monitor digunakan 

untuk memastikan setiap kerosakan di dalam sistem kuasa boleh diperhatikan dan 

disahkan dengan lewahan yang mencukupi bagi memastikan sistem pemantauan tidak 

terjejas apabila satu monitor gagal untuk berfungsi. Program proses pencarian monitor 

kualiti kuasa dibangunkan dengan menggunakan perisian MATLAB. Tatacara 

pencarian disimulasikan untuk tiga sistem ujian piawai IEEE yang berbeza: sistem 

IEEE 30, 118 dan 300 bas. Keputusan simulasi telah menunjukkan bilangan monitor 

yang optimum bagi memantau semua kejadian voltan lendut dalam seluruh sistem 

kuasa. Tatacara pencarian monitor kemudiannya disahkan melalui pelaksanaan projek 

pemantauan kejadian voltan lendut di rangkaian kuasa di Semenanjung Malaysia. 

Jumlah monitor yang digunakan di dalam projek ini telah mampu merekodkan 

kejadian voltan lendut dengan lewahan yang optimum dan pengenalan pemantauan 

jarak jauh telah menjadi nilai tambah kepada proses pencarian monitor kerana monitor 

yang digunakan mampu memuat turun data ke pangkalan data secara automatik. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

The electric power system has been developed enormously due to the 

increasing demand of power. Today, electricity is generated by several types of 

generators, and then delivered to customers through the transmission and distribution 

system in the form of an alternating current (AC). While delivering electricity to 

customers, the quality of power could be potentially distorted [1]. The distortion in the 

electric power posed no severe problems to the end-users or utility during the early 

days of the development of the power system.  

The proliferation of microprocessors and power electronics in industrial 

facilities has greatly increased the sensitivity of the electrical equipment to the power 

quality. Thus, power quality has become an important technical subject, since most 

industries are using complex microprocessors to improve their productivity and 

efficiency. The complexity has increased machine sensitivity, especially to the 

irregularities in the power supply [2-4]. It is a critical issue to discuss the means of 

ensuring the reliability and consistency of the power supply, as a short interruption 

may cause great loss or life-threatening consequences. 

An ideal power supply would be one that is reliable, and within voltage and 

frequency tolerance, without any disturbance. However, reality is not always ideal. In 

its broadest sense, the term power quality could be interpreted as a service quality 
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encompassing three main aspects, namely, reliability of supply, quality of power 

offered and provision of information. In a more rigorous interpretation, power quality 

is the ability of a power system to operate loads without disturbing or damaging them, 

and the ability of these loads to operate without disturbing or reducing the efficiency 

of the power system [5]. 

The International Electro-technical Commission (IEC) has defined a set of 

parameters to quantify power quality variations. These include harmonics, voltage 

flicker, voltage unbalance, voltage sags, interruptions, voltage regulation, frequency 

variation, swell and switching disturbances. Among these power quality disturbances, 

most complaints about poor power quality tend to be associated with voltage sags. For 

example, a survey in [6] has shown that 68% of power quality problems were due to 

voltage sags. Production loss occurred when the voltage drops to more than 13% of 

the rated voltage, and for a duration of more than 8.3ms, or approximately, a half-

cycle. As another example, a survey that has been carried out on 210 large commercial 

and industrial customers in the USA has revealed that each voltage sag event could 

cost a loss of about US$7, 694 to industries [7]. 

Since an increasing amount of industries rely on sophisticated equipment, a 

study on the voltage sag events is a must. Traditionally, the emphasis in voltage sag 

studies has primarily been on fixing existing problems, rather than preventing future 

problems. In this thesis, the study of voltage sag is focused on determining a practical 

method to identify the optimal monitor locations that can capture the events without 

missing any of the important information. 

1.2 Power Quality Issue in Malaysia 

Power quality is not a new issue, nor a recent phenomenon. This issue has been 

well studied around the world. When Malaysia became an industrializing country in 

the 1980s, industries started to complain persistently about the malfunction of their 

equipment, which was not accompanied with the loss of supply. At that time, Tenaga 

Nasional Berhad (TNB) called these complaints "micro-interruptions". Arising from 
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these complaints, TNB started investigations on these problems since 1993. In early 

1994, TNB has initiated a voltage study in selected areas and loads by engaging a 

consultant company, the PTI of the USA [8]. 

In June, 2009, one of the microelectronics assembly plants in the Klang Valley 

suffered operational interruptions due to four different voltage sag incidents. The 

interruptions disrupted the plant and caused losses in terms of manpower and facilities, 

overhead loss and product spoilages [9]. The losses were estimated by the plant 

management to cost up to several million Ringgit Malaysia that month. In Malaysia, 

there are currently over sixty electronic industrial plants of comparable size to the plant 

mentioned. 

In another incident, a fire broke up in one of the government offices due to a 

small fire in the vicinity of Uninterruptible Power Supply (UPS) equipment. According 

to the fire rescue department’s investigation, the fire looked to have started around a 

neutral wire which was burnt [9]. Such an accident could have led to more dire 

consequences than only the damage to the UPS equipment and the immediate 

surroundings. 

These anecdotal incidents represent a much larger sized problem that 

continually occurs due to power quality events. In fact, in Peninsular Malaysia, the 

number of customers (among TNB customers, Northern Utility Resources Distribution 

Sdn Bhd (NUR) and Centralised Utility Facilities (CUF)) that consumed electricity of 

more than 3MW peak is around 500. TNB has about 30,000 industrial customers who 

could be affected by voltage sag disruptions in a similar manner. TNB has over one 

million commercial electricity supply customers, many of whom would be affected in 

a similar manner to the neutral wire incident described above. Therefore, the extent of 

the impact of the power quality problem may have cost losses in millions of Ringgit 

Malaysia, if not billions, as can be estimated from the overall number consumers that 

could potentially be impacted. 

As a comparison to similar experiences of events that occurred internationally, 

a European Power Quality Survey in 2007 estimated that, on average, losses due to 
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short interruption events for industrial sectors were estimated to be in the range of 

RM35,000 and RM70,000, and for service sectors in the range of RM90,000 and 

RM200,000 [10]. For the telecommunication and IT sector, small spikes, surges and 

sags in the electricity supply may cause 15 times the amount of problems computer 

viruses cause, as reported by Bahram Mechanic, the CEO of Smart Power System Inc. 

[11]. 

Today, many electricity stakeholders realize that proper analysis and standard 

usage will minimize the losses that occur due to sudden voltage sag events. 

Unfortunately, in Malaysia, the knowledge and competency in power quality acquired 

by stakeholders has not reached an acceptable and internationally competitive level. 

Malaysian practices also lag behind compared to other countries. In the new economic 

model, this status is not competitive, as a great loss in the manufacturing industry is 

unattractive in persuading more foreign investment in the country. Malaysia may end 

up paying more than necessary due to avoidable damage to the available electrical 

equipment and installation. 

In order to improve the level of power quality in the country, the Energy 

Commission of Malaysia (EC) has been taking a very pro-active approach by setting 

up the Power Quality Baseline Study for Peninsular Malaysia Consultancy Project 

[12]. 

1.3 Power Quality Baseline Study for Peninsular Malaysia Consultancy 

Project 

As a regulator, the EC is monitoring the electricity supply network to ensure 

the utilities take a rigorous technical management of the PQ problems caused via the 

networks. The EC has taken the steps required to recognize most of the Malaysian 

Standards in PQ as voluntary standards among stakeholders. In the future, according 

to electricity supply industry requirements, it may be possible that a few of those 

standards will be made compulsory. 
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Realizing the importance of practical and comprehensive data for the 

establishment of good standards, the EC is undertaking a two-year study to determine 

the baseline data of power quality problems in Malaysia, its economic impacts and the 

means by which existing international PQ standards can be fine-tuned, improved and 

optimized for the requirements of the country. 

A more detailed explanation regarding this project, as well as its 

implementation on the means to detect voltage sag events is given in Chapter 5. 

1.4 Problem Statement 

Power quality monitoring has been widely investigated on a global scale, and 

Malaysia is no exception. During the monitoring period, a large volume of power 

quality disturbances data is recorded such as voltage sag, voltage swell and harmonics 

data. In this thesis, the main focus is on the recorded voltage sag events. There are a 

few issues that arise during the development of the voltage sag monitoring system. The 

main issues are to identify the number of monitors needed, monitor locations and how 

to determine areas affected by voltage sag events. 

To ensure every voltage sag event in the electrical network could be identified, 

a monitor can be placed at all of the buses in the system. Unfortunately, this will result 

a huge amount of duplicate data, or data redundancy. Many studies have been 

conducted on the redundancy issue. In [3] and [13], the redundancy level has been 

eliminated to overcome duplicate data, and also to reduce the cost of the power quality 

monitoring system. On the other hand, redundancy has the advantage to ensure the 

reliability of recording data in the system. 

In this thesis, the concept of redundancy has been used as an advantage to 

analyze and identify voltage sag events. By using a suitable redundancy level, the 

continuity of supply (also known as reliability) can be guaranteed. Reliability is 
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crucial, especially for industries such as manufacturing and semiconductor sectors, 

since a short interruption may potentially cause great loss.  

Redundancy data can also be used as a voltage sag event verification tool. 

Verification is important to ensure the recorded data is free from false recording, and 

it can also assist in determining voltage sag or fault locations. 

The suitable location to allocate the monitor should also be identified. Since 

portable monitors are available in the market, a safe location needs to be identified. 

The monitors also need to be protected from bad weather. Thus, a suitable location to 

allocate the monitor is at the substation. 

Some issues such as the number of monitor needed, monitor locations, 

threshold value and the duration of the monitoring programs needed have been raised 

up in previous work [14]. In this thesis, the above concerns, as well as the practical 

issues such as communication among the remote sites and the high cost of the 

monitoring system, have been taken into account [13]. The new advances in electronics 

and communications offer new options in monitoring large systems in an efficient and 

low-cost manner. The advancement in communication technology, as well as the 

emergence of the smart grid, communication between the remote monitors and the 

database can be implemented through the Internet network [15]. Since most locations 

have wireless communication network coverage, it is also possible to obtain real-time 

data of the power system network. 

Through the implementation of the Power Quality Baseline Study, the 3G 

wireless public communication network has been used to download the data to a server 

via a Virtual Private Network (VPN).This system have been chosen due to it ease of 

installation. The internal storage is used as a backup mechanism in case of data loss 

due to network problems.  
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1.5 Research Aim and Objectives 

With the advancement in technology, in order to improve the placement of the 

power quality monitor, the formulated objectives of this research have been listed as 

follows: 

i. To propose monitor search placement configuration that can ensure all 

voltage sag events in the power system can be observed and validated. 

ii. To develop a cost-effective monitoring system in terms of the number and 

location of monitors for the power system network.  

iii. To identify the affected areas by using the recorded data of voltage sag 

events.  

1.6 Scope of Study 

 Due to time constraints, the objectives of this research were achieved by 

concentrating on the research scope, which comprises the following points: 

i. This research focuses on analyzing voltage sag problems that occur in the 

power distribution system due to faults.  

ii. The algorithm is validated by using simulation data from the selected 

international network (IEEE 30-bus, IEEE 118-bus and IEEE 300-bus) and 

Tenaga Nasional Berhad (TNB). 

1.7 Main Contributions of the Research Work 

 This thesis reports the research work that has been developed by the author 

during the past five years. It introduces the causes of voltage sags as well as their 

effects on the power system network and sensitive loads. It also provides a basic review 

of fault analysis in power systems to better understand the method of fault positions 
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for identifying optimum monitor locations. The main contributions of the work can be 

summarized as follows: 

i. It presented the application of the method of fault positions to an existing 

power system. It also investigated the contribution of symmetrical and 

unsymmetrical faults to the total number of monitors needed to record 

voltage sag events that occur in a network. 

ii. The proposed monitoring searching procedure has been successfully 

implemented in the PQ Baseline Study for Peninsular Malaysia project. 

This project is a successful power quality monitoring project in which 

multiple monitors are placed in optimum locations to avoid blind spots, and 

then networked using machine-to-machine technology (M2M) in a Virtual 

Private Network through a public wireless broadband system. 

iii. The analysis of the data from using several monitors has been successful in 

reducing the problems of: single events being recognized as multiple events 

due to differences in the recorder's clock, recording blind spots, and data 

collection costs. 

1.8 Organization of the Thesis 

This thesis is organized in six chapters. The first chapter provides a general 

background on power quality, voltage sag and the work, as well as the aims, objectives 

and achievements of the research. 

Chapter 2 provides a general introduction on voltage sag, and describes the 

most relevant standards on this subject. This chapter also presents the past works on 

the engineering aspects of voltage sag events. The work in this thesis uses some facts 

and important findings from the past works as guidelines. 

Chapter 3 presents the results of the application of the method of fault 

positions. Three different sizes of IEEE network were used to illustrate the method. 
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The results are presented in the Appendix. The exposed areas are determined for some 

selected buses. 

Chapter 4 introduces the monitoring searching procedure in order to determine 

the optimum locations for the monitors. The terms monitor exposed area (MEA) and 

bus exposed area (BEA) are introduced in order to identify the optimum monitor 

locations that have the ability to satisfy the first research objective. The searching 

procedure is then tested on three different sized IEEE networks. The results are 

presented as a list of monitor locations. 

Chapter 5 explains in details the implementation of the searching procedure 

during the implementation of the PQ Baseline Study for the Peninsular Malaysia 

project.  

Chapter 6 presents conclusions derived from this work. Several research issues 

are identified and proposed for future work. 
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