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ABSTRACT 
 
 

 
 

The objective of this research is to investigate the possibility of direct 
integration between III–V based materials of Schottky diode and planar antenna 
without any insertion of the matching circuit by applying direct connection through 
Coplanar Waveguide (CPW) structure.  Gallium Arsenide (GaAs) and integrated on-
chip Schottky diode and antenna are considered as the promising material and device 
structure, to achieve such purposes.  This kind of device structure should be able to 
function as wireless power supply as well as power detector.  To achieve this 
objective, several basic components were studied.  Firstly, the design, fabrication and 
characterization of individual Schottky diode and planar antenna were conducted in 
order to understand both Direct Current (DC) and Radio Frequency (RF) 
characteristics.  RF signals were well detected and rectified by the fabricated 
Schottky diodes with the cut-off frequency of up to several tens GHz, and a stable 
DC output voltage was generated.  The RF characteristics of planar dipole and 
meander antenna as a function of antenna dimension were investigated.  Good return 
loss was obtained at the resonant frequency of the antenna.  From the direct injection 
experiment, the conversion efficiency up to 80 % of 1 GHz signal to the diode was 
achieved.  Then, the integrated device was evaluated by transmitting RF signal from 
a different planar antenna and also using a horn antenna placed at a certain distance.  
The irradiated signal was successfully received by the planar antenna and rectified by 
the integrated diode.  The rectification achieved was due to enough power received 
by the antenna to turn on the diode (Schottky barrier height = 0.381 eV- Cr/Au 
metallization, turn on voltage = 0.8 V).  The output voltage of several volts (V) was 
generated at the load which was connected in parallel to the diode.  A maximum 
output voltage of around 0.6 V and 130 mV were generated at the load resistance for 
frequency of 2 GHz and 7 GHz, respectively.  A closed-form equation for the 
conversion efficiency of the Schottky diode has been derived to analyse the diode for 
the high frequency rectenna.  The measured results were in good agreement with 
calculated results with small discrepancy between them due to resistance blow up 
effect, effect of non-linear junction capacitance, effect of the finite forward voltage 
drop and the breakdown voltage of the diode.  From these presented results, the 
proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a 
promising candidate to be used for application in proximity communication system 
as a wireless low power source as well as a highly sensitive RF detector device. 
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ABSTRAK 
 
 
 
 

Objektif kajian ini adalah untuk menyiasat kemungkinan integrasi langsung 
antara diod Schottky berasaskan bahan III-V dan satah antena tanpa memasukkan 
sebarang litar pengantara dengan menggunakan sambungan terus melalui struktur 
pandu gelombang sesatah (CPW).  Galium Arsenida (GaAs), diod Schottky dan 
antenna bersepadu atas cip dianggap sebagai bahan dan struktur peranti yang 
berpontensi menyumbang dalam mencapai tujuan tersebut.  Struktur peranti jenis ini 
akan dapat berfungsi sebagai bekalan kuasa tanpa wayar dan juga pengesan kuasa.  
Untuk mencapai matlamat ini, beberapa komponen asas telah dikaji.  Pertama, reka 
bentuk, fabrikasi dan pencirian diod Schottky dan satah antena secara individu telah 
dijalankan untuk memahami kedua-dua ciri-ciri arus terus (DC) dan frekuensi radio 
(RF).  Isyarat RF telah dikesan dan ditukarkan oleh diod Schottky dengan frekuensi 
potong sehingga beberapa puluh GHz dan keluaran voltan DC yang stabil telah 
dijana.  Ciri-ciri RF untuk satah antena dwikutub dan antena lingkaran sebagai fungsi 
dimensi antara antena telah dikaji.  Kehilangan pulangan yang baik telah diperolehi 
pada frekuensi salunan antena.  Dari eksperimen suntikan secara langsung, 
penukaran kecekapan sehingga 80 % daripada isyarat pada 1 GHz untuk diod telah 
dicapai.  Kemudian, peranti bersepadu dinilai dengan menghantar isyarat RF dari 
satah antena yang berbeza dan juga menggunakan antena tanduk yang diletakkan 
pada jarak tertentu.  Isyarat radiasi telah berjaya diterima oleh satah antena dan 
ditukarkan oleh diod bersepadu.  Penukaran ini dapat dicapai kerana kuasa yang 
mencukupi telah berjaya diterima oleh antena untuk menghidupkan diod (Ketinggian 
sawar Schottky = 0.381 eV- pelogaman Cr/Au, voltan hidup = 0.8 V).  Voltan 
keluaran dalam beberapa volt (V) telah dijana pada beban yang disambung secara 
selari dengan diod.  Maksimum voltan keluaran sebanyak 0.6 V dan 130 mV telah 
dijana pada rintangan beban pada frekuensi 2 GHz dan 7 GHz.  Satu persamaan 
tertutup untuk mengira kecekapan penukaran diod Schottky telah dikaji untuk diod 
tersebut beroperasi pada frekuensi peranti yang tinggi.  Keputusan yang diperolehi 
secara eksperimen bersamaan dengan keputusan yang dikira dengan perbezaan kecil 
di antara satu sama lain kerana kesan daripada rintangan pecahan, kesan tidak linear 
persimpangan kapasitor, kesan kejatuhan voltan hadapan terhingga dan voltan 
pecahan diod.  Daripada keputusan yang dibentangkan, AlGaAs/GaAs transistor-
pergerakan-elektron-tinggi (HEMT) diode Schottky dan antena atas cip menjadi 
calon yang amat berguna bagi aplikasi sistem perhubungan jarak dan sebagai sumber 
tenaga yang rendah tanpa wayar serta peranti pengesan RF yang sangat sensitif. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1 Research Overview 

 
 

Generally, the development of wireless communications technology can be 

traced to the convenience it offers by sending signals to distance locations.  Recently, 

attention has come to focus on local area wireless technologies for use within the 

office or home and human area wireless communication technologies for use within 

the reach of human limbs.  In particular, close proximity wireless technology, whose 

spread distance through space is limited to less than 10 cm, reduces the risk of 

unauthorized signal reading compared to close range wireless technologies like 

Bluetooth and ZigBee whose propagation distance is greater than 10 m [1].  It can be 

used to initiate communications by simple and intuitive operations, which suggests a 

wide variety of applications such as contactless integrated circuit (IC) card and radio 

frequency identification (RFID) cards.  Figure 1.1 shows some examples of short 

range wireless technologies [2].  The use of close proximity wireless 

communications also enables simple actions like touching or holding something to 

act as a trigger for initiating communications.  This feature can be used to enable 

anyone to operate an information device or home usage in an easy-to-understand and 

intuitive way [1].  
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application in proximity communication system as a wireless low power source as 

well as a highly sensitive radio frequency (RF) detector device.  

 
 
 
 

1.2 Research Motivation 
 
 

A rectenna is an important device to convert RF power into dc power to be 

used in low power applications as wireless power supply.  It contains an antenna 

which collects microwave incident power and a rectifying circuit to convert it into 

useful DC power.  Since the 1970s, one of the major reasons for intensive researches 

on rectenna is due to the development of solar power satellites in space for energy 

harvesting from sunlight [12].  In recent years, interest has turned up into the 

exploitation of on-chip rectenna as wireless low power source for application in 

wireless microelectronic systems.  The most common application of rectenna is in 

RFID tags [13], proximity cards and contactless smart cards [14], which contain an 

IC which is powered by a small rectenna element.  When the device is brought near 

to an electronic reader unit, radio waves from the reader are received by the rectenna, 

powering up the IC, which transmits its data back to the reader.  

 
 
Various kinds of rectennas have been developed since Brown demonstrated 

the dipole rectenna using aluminium bars to construct the dipole and the transmission 

line [15].  He also presented the thin-film printed-circuit dipole rectenna [16] with 85 

% of conversion efficiency at 2.45 GHz.  Linearly polarized printed dipole rectennas 

were developed at 35 GHz in [17] and [18] with the conversion efficiency of 39 % 

and 70 %, respectively.  5.8-GHz printed dipole rectenna was developed in 1998 [19] 

with a high conversion efficiency of 82 %.  In 2002, Suh et al. [20] presented a 

rectenna designed for over 100 milliwatt (mW) rectifying and the RF-to-DC power 

conversion efficiency was less than 20 % at the 1 mW microwave input.  Tu et al. 

[21] published an experimental on a 5.8 GHz rectenna using dipole antenna with 

conversion efficiency of 76 % at load resistance of 250 Ω.  In 2011, Harouni et al. 

[22] presented an analysis of 2.45 GHz rectenna with maximum conversion 

efficiency of 63 % at load resistance of 1.6 kΩ.  Recently, a new design for a 
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compact and wideband circularly-polarized rectenna including matching circuit were 

developed at 9.5 GHz with the conversion efficiency of 71.9 % [23]. 

   
 
However, these reports have thoroughly discussed the results of the integrated 

large-scale discrete diodes and antennas through the matching circuits [15-33]. 

Consequently, due to the large dimensions, make the rectenna not suitable for several 

tens millimeter-scale on-chip system.  Thus, a small dimension on-chip rectenna 

devices with the omission of impedance matching circuit needs to be developed for 

the application in on-chip proximity communication system.  Table 1.1 shows the 

difference between available rectenna and the proposed rectenna to be used in the 

proximity communication technology. 

 
 

Table 1.1: Difference between conventional and proposed rectenna structure 

Integration of discrete device Planar on-chip integration 

Contains matching circuit between 
antenna and Schottky diode 

No matching circuit between 
antenna and Schottky diode 

Disadvantages: 
Increase area and cost (fabrication 

process) 

Advantages: 
Low power (same wafer), fast 
switching, reduce area and cost 

(fabrication process) 

Cannot be applied for nanosystems Can be applied for nanosystems 

 
 
 

Nanoelectronic systems are increasingly vulnerable to malfunction due to 

incident electromagnetic (EM) radiation, particularly since many integrated circuits 

(IC) operate at lower voltages.   Lower voltages generally result in lower power 

operation for the devices and are easier to supply using batteries in small devices 

[34].  The damaging RF radiation can be produced intentionally such as by high 

power microwave generator [35], or accidentally such as by ambient sources like 

lightning.  Then, it becomes a great interest to know how, and at what level, 

microwaves penetrate equipment shielding and reach the vulnerable chips.  This 

motivates our group to work on the on-chip RF detectors both for measuring power 
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at the chip level and for developing strategies to mitigate its effects.  Knowing the 

RF power levels in various chips and locations within chips is likely to be more 

useful than the “digital” information that a given external RF power level made the 

circuits fail.  RF power detector is also the most potential device to be used in 

proximity communication.  RF detector is built to sense the potentially damaging EM 

signals to avoid circuit failures.   

 
 
It is well known that sufficiently intense EM signals in the frequency range of 

200 MHz to 5 GHz can cause upset or damage in electronic systems [36].  The 

Schottky diode rectifies the incident RF signal, and the capacitor and the resistor 

produce a direct current (DC) output by filtering out the high frequency part of the 

rectified signal.  In special molecular beam epitaxy (MBE) grown geometries, RF 

detection up to 100 GHz has been reported [37-39].  However, in foundry fabricated 

Si-based diodes detection of only up to 600 MHz has been reported [37, 40]. 

Recently, the CMOS fabricated Schottky diode detected RF signals up to 10 GHz in 

direct injection experiments and in the range of 9.5-19.5 GHz in microwave 

irradiation experiments have also been reported [41].  However, the design and 

fabrication of Schottky diodes and planar antennas on III-V semiconductor based 

HEMT structures for low power rectennas and RF detector have not been extensively 

investigated. 

 
 
 
 
1.3  Research Objectives and Scopes 

 
 

The objectives of this research are; 

 

1. To fabricate and characterize the Schottky diode structure on an 

AlGaAs/GaAs HEMT for high RF-to-DC conversion efficiency and high 

detection capability. 

2. To fabricate and characterize the planar antenna on semi-insulated GaAs for 

efficient signal reception and transmission.  
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3. To fabricate and characterize an integrated Schottky diode and planar antenna 

on an AlGaAs/GaAs HEMT structure without any matching circuit inserted. 

4. To develop a reliable model for the device and circuit characteristics based on 

the experimental results. 

 

The scopes of this research are as follows; 

 

1. The Schottky diode is fabricated on an AlGaAs/GaAs HEMT structure using 

standard photolithography and lift off process.  The DC and RF characteristic 

of diode is investigated in order to check the capability of the Schottky diode 

for direct integration of planar antenna.  In the preliminary study, the 

fabricated Schottky diode provides low conversion efficiency, high ohmic 

resistance and high Schottky barrier height.  The optimization of the Schottky 

diode is carried out for high RF-to-DC conversion efficiency and high 

detection capability. 

2. The dipole and meander type of planar antenna are chosen and fabricated on 

the semi-insulated GaAs substrate.  The RF characteristics of the planar 

antenna are investigated.  The obtained results are compared with the 

simulation results.  The planar antenna structures are simulated using 

Commercial Electromagnetic Sonnet Suites Simulator.  Finally, the antennas 

with high return loss at the resonant frequency are chosen to integrate with 

the diode. 

3. The on-chip integrated device is fabricated on an AlGaAs/GaAs HEMT 

structure.  The RF-to-DC characteristics of the integrated devices are 

conducted under the direct injection and irradiation condition.  Direct 

injection experiment is carried out in order to confirm the capability of the 

Schottky diode and planar antenna.  Whereas, the direct RF irradiation 

experiment is carried out in order to investigate the capability of the 

integrated devices for real practical applications. 

4. In this work, the measurement of RF-to-DC conversion efficiency with series 

and parallel connection of diode and load are performed.  The modeling for 

series and parallel circuits are carried out since correct and reliable modeling 

is important so that correct device and circuit design can be performed at 

design stage. 
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1.4 Research Hypothesis 

 
 
 Hypothesis of the research are as follows;  

 

1. In this research, knowing the RF power levels in a chip is more useful than 

the digital information that given external RF power level made the circuits 

fail. 

2. Schottky diode: The threshold voltage of the Schottky diode should be small, 

so only low power are needed to supply in order to turn on the diode making 

it suitable for low power application.  The Schottky diode should be designed 

with lower Schottky barrier height (SBH) in order to reduce the turn on 

voltage and also produce good RF response.   

3. Antenna: The planar antenna should be designed with high return loss at the 

fundamental resonant frequency to make it well match and reduce loss at the 

reflected signal.    

4. On-chip integration:  

a. The advantages of on-chip integration such as low power (due to same 

material/layer), fast switching, reduce area and cost to fabricate the 

devices make it suitable for electronic application. 

b. The matching circuit should be omitted and impedance characteristic of 

the diode and antenna should be same. The CPW structure is used as 

transmission line to directly integrate both devices.  

c. III-V based material such as GaAs should be used as the material for the 

rectenna device to make it easily integrate with other microelectronics 

devices and also suitable for high frequency devices. 

 
 
 
 
1.5 Research Activities 

 
 

The implementation of this research is summarized in a flowchart as shown 

in Figure 1.2.  This study is focused on the direct integration of Schottky diode and 

planar antenna without insertion of any matching circuit.  At the beginning stage, the 
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fabrication and characterization of individual Schottky diode and planar antenna are 

conducted in parallel.  Here, the RF characteristics of Schottky diode and planar 

antenna facilitated with CPW structure are investigated by applying direct injection 

of RF signals.  Then, the fabrication and characterization of the integrated Schottky 

diode and planar antenna fabricated on n-AlGaAs/GaAs HEMT structure are 

investigated by applying direct irradiation of RF signals.  The optimization of the 

integrated devices is carried out for high conversion efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Research activities 
 
 
 
 
 
 
 

Optimization of integrated devices 

Dual Functional Integrated On-Chip Gallium Arsenide Schottky Diode 
and Antenna for Application in Proximity Communication System 

Fabrication and RF-to-DC 
characterization of integrated devices 

Schottky diode Planar Antenna 

Fabrication and RF characterization 
of planar antenna 

Fabrication and RF-to-DC 
characterization of Schottky diode 
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1.6  Overview of Thesis Structure 

 
 

This thesis consists of 8 chapters.  This chapter gives an overview of the 

research background, motivation, objectives, scopes and research activities. 

 
 
Chapter 2 provides an overview of on-chip technology and its application. 

Recent technology on the proximity communication application especially on the 

rectenna and RF detector are studied.  This chapter also describes the basic concept 

and theory of Schottky diode and planar antenna as the devices of on-chip 

technology.  Furthermore, the fundamental of CPW structure are also discussed 

briefly. 

 
 
Chapter 3 presents the details on the basic material structure for application 

in on-chip technology.  In addition, the material structure for the devices also 

discussed briefly.  The unique features formed by AlGaAs/GaAs HEMT structure 

make it suitable as a core material for the development of the on-chip integrated 

device which has been considered as the most promising chip structure for realizing 

advanced heterogeneous integration on Si platform.  

 
 

The research contents can be divided to four subtopics that are described in 

chapter 4, 5, 6 and 7.  Chapter 4 presents the development of the Schottky diode on 

an AlGaAs/GaAs HEMT structure.  First, the design and fabrication process are 

described.  Then, the obtained results which confirm the feasibility of Schottky diode 

to be integrated with planar antenna are discussed.  The optimizations of the 

Schottky diode are discussed in this chapter. 

 
 
Chapter 5 presents the work on GaAs-based planar antenna device.  The 

fabrication procedures of the device are described.  Then, the RF characteristics of 

planar dipole antenna facilitated with CPW structure are presented and discussed. 

The dependence of fundamental resonant frequency of the dipole antenna on the 

antenna’s width and length are studied.  Basically, the characteristics of reflection or 

return loss are measured. 
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Chapter 6 presents the work on GaAs-based on-chip integrated devices.  

After the experimental procedures are described, the obtained results are presented 

and discussed.  The devices are tested under direct injection and RF irradiation using 

horn antenna and antenna-antenna method. 

 

Chapter 7 presents the development of reliable model for series and parallel 

connection between diode and load.  This model can be used in order to design a 

correct device with good performance at the design stage. 

 
 
Chapter 8 concludes the main findings of present work and the directions of 

future work. 
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