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ABSTRACT 

 

 

 

 

The cementation factor has specific effects on petrophysical and elastic 

properties of porous media. A comprehensive investigation of carbonate rock 

properties which have an interlock with the cementation factor was done through 

core analysis and well log data. Five wells in Nasiriya oilfield, which is one of the 

giant fields consists of the carbonate reservoirs in the Middle East were used in this 

study. The study was made across the Mishrif and Yamamma carbonate formations 

in the Nasiriya oilfield. Neurolog software (V5, 2008) was used to digitize the 

scanned copies of available logs while Interactive Petrophysics software (IP V3.5, 

2008) was used to determine the properties of studied formations. The average 

cementation factor values were calculated from the F-PHI plot and Gomez methods 

and compared with Pickett method. Petrophysical and dynamic elastic properties 

were determined from well logs. In this study, a new approach was introduced to 

obtain correlations of cementation factor to petrophysical and dynamic elastic 

properties of Mishrif and Yamamma formations. An artificial neural network 

platform was used to determine these correlations depending on the determined 

properties of studied formations. The neural network model used two different 

training algorithms; Gradient Descent with Momentum and Levenberg–Marquardt. 

Results show that the plot of average core data and calculated data from IP software 

of porosity and permeability gave a good correlations coefficient of R
2 

= 0.86034 to 

0.94303. Generally, cementation factor values obtained from all methods are found 

to be less than two. In addition, cementation factor values also increased with 

increasing depth of the studied formations. An efficient performance and excellent 

prediction of cementation factor have been obtained with less than 10
-4

 and 10
-8

 

mean square error from both artificial neural network models. Three saturation 

models were used to estimate water saturation of carbonate formations, which are 

simple Archie equation, dual water model and Indonesian model. The Indonesian 

water saturation model recorded the lowest percentage error in comparison with 

water saturation of core samples, and the water saturation in Yamamma formation 

was higher than in the Mishrif formation. The accurate determination of a 

cementation factor gives reliable saturation results. 
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ABSTRAK 

 

 

 

Faktor penyimenan mempunyai kesan yang spesifik terhadap sifat-sifat 

petrofizik dan sifat-sifat keanjalan media berliang. Kajian menyeluruh terhadap 

sifat-sifat batuan karbonat yang saling mengunci dengan faktor penyimenan telah 

dilaksana menggunakan data analisis teras dan log telaga. Lima buah telaga di 

medan minyak Nasiriya, yang merupakan satu daripada medan gergasi yang terdiri 

daripada reservoir karbonat di Timur Tengah telah digunakan dalam kajian ini. 

Kajian dilakukan merentasi formasi karbonat Mishrif dan formasi karbonat 

Yamamma di medan minyak terbabit. Perisian Neurolog (V5, 2008) telah diguna 

untuk mendigitkan salinan log. Perisian Petrofizik Interaktif (IP V3.5, 2008) pula 

diguna untuk menentukan sifat-sifat formasi yang dikaji. Purata nilai faktor 

penyimenan dikira daripada plot F-PHI dan kaedah Gomez, dan seterusnya 

dibandingkan dengan kaedah Pickett. Sifat-sifat petrofizik dan sifat-sifat keanjalan 

dinamik ditentukan daripada log telaga. Dalam kajian ini, suatu pendekatan baharu 

telah diperkenalkan untuk memperoleh korelasi antara faktor penyimenan dengan 

sifat-sifat petrofizik dan sifat-sifat keanjalan dinamik formasi Mishrif dan formasi 

Yamamma. Suatu platform rangkaian neural tiruan diguna untuk menentukan 

korelasi ini yang bergantung kepada sifat-sifat formasi kajian yang dikaji. Model 

rangkaian neural terbabit menggunakan dua algoritma latihan yang berbeza; Turun 

Cerun dengan Momentum dan Levenberg-Marquardt. Hasil kajian menunjukkan 

bahawa plot data purata keliangan dan kebolehtelapan teras dan data keliangan dan 

kebolehtelapan yang dikira daripada perisian IP menghasilkan pekali korelasi yang 

baik, iaitu R
2 

= 0.86034-0.94303. Nilai faktor penyimenan yang diperoleh daripada 

semua kaedah adalah kurang daripada dua. Nilai ini meningkat dengan 

bertambahnya kedalaman formasi yang dikaji. Prestasi yang efisien dengan ramalan 

faktor penyimenan yang baik berjaya diperoleh daripada kedua-dua model rangkaian 

neural tiruan, dengan masing-masing ralat min kuasa dua adalah kurang daripada   

10
-4

 dan 10
-8

. Tiga model ketepuan digunakan untuk menganggar ketepuan air dalam 

formasi karbonat, iaitu persamaan ringkas Archie, model air duaan, dan model 

Indonesia. Model Indonesia mencatatkan peratusan ralat yang paling rendah 

berbanding dengan ketepuan air daripada sampel teras, dengan ketepuan air dalam 

formasi Yamamma adalah lebih tinggi daripada formasi Mishrif. Penentuan faktor 

penyimenan yang jitu boleh menghasilkan ketepuan yang tepat.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

Carbonate rocks reservoirs usually consist of various kinds of grains, lime 

mud, and carbonate cement. A petroleum carbonate reservoir is a porous medium 

that is sufficiently permeable to permit fluid flow through it. In the presence of 

interconnected fluid phases of different density and viscosity, such as water and 

hydrocarbons, the movement of the fluids is influenced by gravity, viscosity and 

capillary forces. The fluids separate, therefore, in order of density when flowing 

through a permeable stratum is arrested by a zone of low permeability, and, in time, 

a petroleum reservoir is formed in such a trap (Peters, 2011). 

 

In petroleum carbonate reservoirs; there are many forms of heterogeneity in 

rock properties. Petrophysical parameters such as; porosity, permeability, 

cementation factor, resistivity formation factor and fluid saturation are the most 

important parameters for evaluating oil reservoirs in order to estimate the original oil 

in place and flow patterns to optimise production of a reservoir. The evaluation of 

logging data in most carbonate reservoirs  still a challenging task in the present days 

which need to specify of efforts and capitals to avoid incorrect interpretation 

(Kadhim et al., 2015). The incorrect interpretation leads to lost hydrocarbon zones 

or incorrect selection for the perforated intervals, as a result, lost time and money.  

 

Middle East carbonate reservoirs contain giant oil and gas reservoirs, since 

their reserve are more than 500MMbbl (Bia and Xu, 2014), such as Mishrif, 

Yamamma, Shu’aiba, Asmari, Ilam and Sarvak, which cover around 50% percent of 

hydrocarbon reserves in the world (Naomi and Standen, 1997). This ratio will 

increase when reservoirs in other regions are depleted, and then the Middle East 
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carbonate formations will become the main resource of oil and gas reserve (Kadhim 

et al., 2013). After World War I, carbonate reservoirs became important to the 

petroleum industry, when exploration drilling resulted in the discovery of major oil 

reserve in carbonate rocks in the Middle East (Chilingarian et al., 1992). 

 

Fluid flow through heterogeneous carbonate reservoirs is a substantially 

different process from the flow through the less heterogeneity sandstone reservoir. 

This variation is largely cause to the fact that carbonate rocks tend to have a more 

complex pore system (i.e the interrelationships among depositional lithologies, the 

geometries of depositional facies, and diagenesis) than sandstone (Chilingar et al., 

1979; Mazullo, 1986; Xu et al., 2012). Carbonate reservoirs have highly 

heterogeneous layers in nature. Therefore, on the basis of the dominant rock type 

carbonate reservoirs are divided into layers in order to define average values and 

trends of petrophysical parameters in these reservoirs (Kadhim et al., 2013).  

 

Archie in 1942 is the first researcher, who had discernment for the porosity 

exponent (m). Archie introduced an empirical relationship between porosity, and 

formation resistivity factor (F), the porosity exponent used in the description of this 

correlation that could has a valuable application to quantitative studies of electrical 

well logs. Physically, the m factor is a measure of the degree of cementation and 

consolidation of the rock. Therefore, it is called cementation factor (Guyod, 1944). 

The m factor is the most important parameter for applying the petrophysical 

characterization, because its effect on the calculation of water saturation (Sw), F 

factor, tortuosity (a) of the pore geometry to current flow, surface area of composite 

particles, and porosity (Ransom, 1974; Ransom, 1984; Polido et al., 2007). 

  

Water saturation interpretation from conventional logs are encountered many 

difficulties that lead to misleading of information such as; the impact of diagnosis 

and rock wettability variations in Archie’s parameters (m, n, and a) is difficult to 

quantify throughout the reservoir, and errors in reading of logging tools due to high 

environmental impact while drilling and run logging tools in open whole sections 

(Cassou et al., 2007; Liu and Ford, 2008). 
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The accurate calculations of petrophysical and dynamic elastic properties in 

carbonate formations are the most challenging aspects of well log analysis. Many 

empirical correlations and equations have been derived and developed over the years 

based on known physical principles, which are used to find carbonate rock 

properties (Archie, 1942; Coates and Dumanoir, 1973; Hagiwara, 1984; Watfa and 

Youssef, 1987; Salazar et al., 2008; Kadhim et al., 2015). Practically, the formation 

water resistivity (Rw) estimates from spontaneous potential (SP) log. Deep induction 

log (ILD) or deep lateral log (LLD) usually measured the true resistivity of the 

formation (Rt). Density, neutron, and sonic logs are used to calculate the porosity. 

Well logs and core data analysis can be used to estimate the saturation exponent (n) 

and cementation exponent.  There are many correlations were developed to calculate 

permeability (K) from porosity logs (Lucia, 2007; Peters, 2011).  

 

Depositional carbonate rocks consist mainly of loose irregular calcite grains, 

during deposition of carbonate rocks, there are many physical and chemical 

processes will take place over time that will change these rocks. One of the most 

important processes that take place during deposition is called cementation. 

Cementation will significantly influenced the compressional and shear wave 

velocities and other dynamic elastic properties of carbonate rocks. In addition 

cementation also impacts the grain surface and the grain contacts will become stiffer 

sediment. The compressional and shear wave velocities can be determined by 

interval transit time (DT) from the sonic logs. The dynamic elastic properties; Bulk 

modulus, Young modulus, and Biot's Constant can be determined when the 

compression wave velocity (Vp) and corrected bulk density values are available 

(Entyre, 1989; Lucia, 2007; Jackson, et al., 2008; Kadhim et al. 2013). 

 

Due to complexity and highly nonlinearity of carbonate reservoirs properties 

as well as there are many input variables related cementation factor with 

petrophysical  and dynamic elastic properties, no close mathematical model that can 

describe the behaviour of this relationship. Artificial neural networks (ANN) 

technique has been implemented, because of their cost - effective, easy to 

understand and ability to learn from examples, which found in many applications to 

estimate variable that usually cannot be measured in linear modelling (Amnah, 

2009). The ANN has become increasingly popular in the petroleum industry. Many 
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practical applications of the ANN have been used for quantitative analysis of 

reservoir properties from well logs (Huang et al., 1996; Huang and Williamson, 

1997; Zhang et al., 2000), where the  ANN approach is shown to be a simple and 

accurate alternative for converting well logs to common reservoir properties such as 

porosity and permeability. 

 

Overall, due to the large variation of petrophysical and dynamic elastic 

properties of carbonate reservoirs, petrophysical evaluation of these reservoirs is 

important in predicting their behaviour. Well logs are considered one of the main 

sources of data for the geological and petrophysical parameters of reservoir 

formations. Cementation factor is one of the most important parameters because the 

accurate determination of it should be improved the saturation value and 

consequently oil in place calculation. 

 

 

1.1  Problem Statements 

 

The value of m factor has been assumed constant for each type of rocks in 

numerous studies of formation evaluation (Kadhim et al., 2013). Previous studies of 

the Nasiriya (NS) oil field too, assumed the m factor is constant with depth, that 

increases the uncertainty in calculating water saturation value, and as a result there 

was a mistake of hydrocarbon reserve calculation, as well as inaccurate detection of 

perforation zones. 

 

Since carbonate reservoirs are heterogeneous in nature, therefore the 

behaviour of petrophysical and elastic properties of these reservoirs is a high non- 

linear. The correlation between cementation factor  and petrophysical properties of 

carbonate reservoirs such as; K, PHI, and F factor is provided in this study based on 

the conventional well logs, analysis of core samples data, and NS oilfield reports. 

Moreover, a new interpretation approach for the relation between dynamic elastic 

properties for instance; compressional-shear velocity ratio (VP/VS), Poisson’s Ratio 

(PR), Bulk modulus (KB), Young’s modules (E), and Biot's Constant (BC) is 

introduced using ANN platform. 
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The artificial network model is used as an efficient technique as predictor, 

especially in carbonate formations when the nature is complex and highly non- 

linearity, that cause no close conventional mathematical model can describe the 

behaviour of this process without assumptions. Furthermore, the model can be 

considered faster by integrating graphical user interfaces (GUI) and more accurate 

by added mean square errors calculations in comparison with traditional ones such 

as Gomes and Pickett methods. 

 

 

1.2  Objectives of Study 

 

1. To determine petrophysical properties of carbonate formations from well 

logs data and compare with available core data results. 

2. To determine the dynamic elastic properties of carbonates formation 

from sonic log data. 

3. To calculate cementation factor for various depth of formation by using 

Pickett, Gomez and F-PHI plot methods.  

4. To determine new correlations between the cementation factor and 

petrophysical and dynamic elastic properties for carbonates formation by 

using a new approach of ANN model. 

5. To determine the water saturation for various depth of carbonate 

formation from Archie, dual water and Indonesian models. 

 

 

1.3  The Scope of Study 

 

1. Mishrif and Yamamma carbonate formation of the NS oilfield are used as 

a case study. Available well logs and core data are provided from five 

studied wells in this field. 
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2. Convert the available copies of logs to digitals using Neura-log software 

(NL, V5, 2008) and validated using Origin Pro8 software based on 

correlation coefficient (R
2
) and standard error (SE). 

3. Interactive Petrophysics software (IP V3.5, 2008) was used to determine 

the petrophysical and dynamic elastic properties of the carbonate rocks in 

the studied area, and validated with properties from core data. 

4.  Gomez and F-PHI plot methods were used to determine the cementation 

factor for the studied carbonate formation, and compared and validated 

with Pickett method. 

5. An Artificial neural network model was trained using Gradient Descent 

with Momentum and Levenberg – Marquardt algorithms.  

6. An artificial neural network model was used to develop a new correlation 

between cementation factor and petrophysical properties (K, PHI, and F) 

and with dynamic elastic properties (VP/VS, PR, KB, E and BC) of the 

studied carbonate formation and compared with Pickett method.   

7. Mean square error (MSE) and correlation coefficient (R
2
) were used to 

determine the cementation factor prediction performance by ANN model, 

and compared with previous studies, such as (Aifa et al., 2014; saljooghi 

and hezarkhani, 2014)  

8. Three water saturation models (Archie, dual water and Indonesian) were 

used to determine water saturation in various depths of the studied 

carbonate formation, and validated with saturation data from core 

samples.  

 

 

1.4  Significance of Research and Contributions of the Present Study  

  

Cementation factor is one of the most important parameters, which has the 

specific effect to rock properties. Therefore, the accurate determination of this factor 

should be improved the accuracy of water saturation values, and consequently oil in 

place calculation. Moreover, accurate determination of water saturation profile with 

depth leads to avoiding mistakes in the detecting of perforation zones, that means 

save money and time. The contribution to be made in this study involves: 
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1.  With a new developed correlations between cementation factor and 

carbonate rock properties, more accurate formation cementation factor can 

be determined by knowing the carbonate reservoirs petrophysical and 

dynamic elastic properties. 

2. More accurate water saturation for various depths of carbonate formation can 

be determined. 

3. Establishment of a new and more accurate petrophysical and dynamic elastic 

properties data for studied formation.  

4. Developed an artificial neural network model can be used to establish the 

cementation factor from properties of carbonate formation by using graphical 

user interfaces (GUI). 

 

 

1.5  Area of Case Study  

 

NS oil field is located on the Arabian platform, in a gently folded zone, west 

of the Zagros fold belt as shown in Figure 1.1. A thick platform (Yammama 

formation) develops in the north of Arabian Gulf, passing to north-east to Balambo 

formation. During Barremian, the erosion of the Arabian shield introduced a lot of 

clastic sediments (Zubair formation) into the basin, invading part of the former shelf 

area. After the widespread deposition of anhydrite facies (Hartha formation.), 

carbonate depositional conditions re-establish in response to generalized 

transgressed events.  

The last sedimentary cycle is represented by shallow shelf limestone 

(Shuaiba formation) gradually passing eastward to basin deposits where shale and 

marl accumulate (Sarmond formation). NS-1, NS-2, NS-3, NS-4, and NS-5 are 

studied wells in the NS oil field which is considered as a giant oil field in the 

southern of Iraq as shown in Figure 1.2. Also, it is characterized by carbonate 

reservoirs. NS oil field has reserves in Late Cretaceous Mishrif limestone reservoir, 

and Early Cretaceous Yammama limestone reservoir as shown in Figure 1.3, 

(Repsol Company, 2008). Mishrif reservoir contains water oil contact (WOC) at 

depth 2064m, while in Yamamma formation, the WOC at depth 3390m (INOC, 
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1985). The lithological column of the NS oil field is provided by Iraqi National Oil 

Company (INOC) in 1985, in the final drilling report of the NS-3 oil well as shown 

in Table 1.1. 

 

 

 

Figure 1.1 : Satellite images for NS oil field location 

 

 

 

 

Figure 1.2 : Location maps of the studied wells 
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Table 1.1 : Lithological column from  the Sulaiy to Upper Faris formations in the 

NS-3, (INOC, 1985) 

 

No Formation Top             

(m) 

Bottom              

(m) 

Main Lithology Thickness 

(m) 

1 Upper Fars surface 296 Mudstone and sandstone 296 

2 Lower Fars 296 376 Shale and anhydrite 80.0 

3 Gereibi 376 426 Dolomite and anhydrite 50.0 

4 Dammam 426 667 Limestone, dolomite and 

anhydrite 

241 

5 Russ 667 732 Anhydrite and dolomite 65.0 

6 Umm 

Rradhuma 

732 1174 Anhydrite and dolomite 441 

7 Tayarat 1174 1244 Dolomite 70.0 

8 Shiranish 1244 1443 Shale and limestone-clayey 199 

9 Hartha 1443 1625 Limestone and dolomite 182 

10 Sa’di 1625 1790 Cretaceous-limestone 165 

11 Tannuma 1790 1862 Shale 72.0 

12 Khasib 1862 1910 Shale-clayey 48.0 

13 Kifl 1910 1929.5 Shale-clayey 19.5 

14 Mishrif 1929.5 2101 limestone  171.5 

15 Rumaila 2101 2148 Limestone-clayey  47.0 

16 Ahmadi 2148 2251.5 Shale and clay  103.5 

17 Maudud 2251.5 2412 Cretaceous-limestone  160.5 

18 Nahr Umr 2412 2529.5 Shale, limestone and sand  117.5 

19 Shu’aiba 2529.5 2592 Dolomite  62.5 

20 Zubair 2592 3097 Sandstone and some shale  505 

21 Ratawi 3097 3197 Limestone-clayey and some 

shale  

80.0 

22 Yammama 3177 3403.5 Limestone 226.5 

23 Sulaiy 3403.5 3440.5 Limestone 17.5 
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Figure 1.3 : Stratigraphy of NS oil field formations (Repsol Company, 2008) 

 

Limestone 

Sandstone  
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1.6  Thesis Outlines 

 

 The present thesis is divided into five chapters. Chapter 1 describes a 

background of the study and motivation of the research is being explained to give a 

basic overview of the problem statement, research objectives, significant, 

contribution and scope of the study. This chapter also explains the area of the case 

study. Chapter 2 reviews the cementation factor, petrophysical and dynamic 

properties and their calculations. The theory and application of artificial neural are 

also proposed in this phase. Previous studies of correlations between cementation 

factor and porosity, resistivity formation factor, permeability, and acoustic velocities 

are introduced in this chapter. 

 

 Chapter 3 shows the research methodology diagrams and the steps of 

parameters calculation as well as structure of artificial neural network model. 

Chapter 4 illustrates the results and discussion of petrophysical properties, 

cementation factor, dynamic elastic properties, and water saturation. The 

cementation factor calculation from petrophysical and dynamic elastic models are 

introduced by ANN technique, and the verification of results has been done in each 

step of the calculation. This is followed by the conclusion and recommendations of 

future works in Chapter 5. 
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