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ABSTRACT 
 
 
 

 Deposition of a large and uniform distribution of diamond grains with good 
adherent and high quality of diamond coating using chemical vapour deposition 
(CVD) technique is a challenge. Large diamond grains reduce the adhesion strength 
between the diamond coating and substrate material. The aim of this research is to 
develop a large and uniform distribution of grain size with high quality and good 
adhesion strength of diamond coating coated on WC–6wt% Co for grinding 
application. The research started with the determination of suitable etchant and 
etching time that can provide high surface roughness and lower Co content of WC 
substrate. The best concentration of SiC (174 µm) of 1, 5 and 10 g/l mixed with 
diamond (0.5 µm) powders with a concentration of 0.8 g/l for seeding was also 
determined. The diamond coating was performed for 30 hours using hot filament 
CVD unit. The field emission scanning electron microscopy (FESEM), X-ray 
diffraction (XRD) and Raman spectra results indicate that all the coated samples 
have well faceted grains of (111) and (220) morphologies with high quality (>99% 
purity) of diamond coatings. The atomic force microscopy (AFM) shows the grain 
size formed was in the range of 1-6 µm with a density of above 108 grains/cm2. 
Sample treated with HNO3 + H2O2 for 60 seconds however had the highest adhesion 
strength measured by sand blasting. It is due to the lowest surface Co content and 
highest diamond grain density. The WC substrates etched with this etchant then 
seeded with 1 g/l of SiC mixed with 0.8 g/l of diamond powders was found to have 
diamond coating with sharp peaks with uniform height and gaps between diamond 
grains when observed using FESEM and AFM. This condition fulfilled the 
requirement for grinding application and at the same time having the highest quality 
(99.496% purity) and adhesion strength. To determine the grinding performance, WC 
grinding wheels were fabricated and treated with HNO3 + H2O2 for 60 seconds, 
seeded with 1 g/l of SiC mixed with 0.8 g/l of diamond powders and diamond coated 
for 30 hours. The grinding process was performed on WC-2wt% Co work piece 
using ultra-precision grinding machine at different feed rates of 0.015, 0.030, 0.045, 
0.060 and 0.075 mm/min respectively. The diamond grain sharpness of the wheel 
was found unaffected after analysed using FESEM while the surface finish (Ra) of 
the work piece was finer from 0.020 µm to 0.007 µm. When compared with the 
commercial diamond bonded wheel grinding at 0.20 mm/min, the work piece surface 
finish is almost the same. However, the diamond bonded wheel was severely 
damaged with clogged grinding chips, broken-off and dislodged diamond particles. 
Meanwhile, at the diamond coated wheel, only clogging was observed. As a 
conclusion, mix seeding of diamond (5 µm, 0.8 g/l) and SiC (175 µm, 5 g/l) has 
produced good diamond coating properties for grinding application which is at par 
with the diamond bonded wheel.  
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ABSTRAK 
 
 
 

  Menghasilkan salutan intan dengan saiz bijian yang besar dan seragam, daya 
rekatan dan kualiti yang tinggi menggunakan kaedah pengenapan wap kimia (CVD) 
adalah satu cabaran. Bijian intan yang besar mengurangkan daya rekatan antara 
salutan intan dan bahan substrat. Kajian ini bertujuan untuk menghasilkan bijian 
salutan intan yang besar dan seragam, daya rekatan dan kualiti yang tinggi ke atas 
WC-6% berat Co untuk kegunaan proses canaian. Kajian bermula dengan 
menentukan larutan dan masa punaran yang sesuai untuk menghasilkan kekasaran 
permukaan yang tinggi dan kandungan Co yang rendah pada substrat WC. 
Konsentrasi campuran serbuk SiC (174 µm) terbaik di antara 1, 5 dan 10 g/l di 
campur dengan serbuk intan (0.5 µm) dengan konsentrasi 0.8 g/l bagi tujuan 
pembenihan juga ditentukan. Salutan intan dilakukan selama 30 jam menggunakan 
unit filamen panas CVD. Analis dari mikroskop imbasan elektron pancaran medan 
(FESEM), pembelauan sinar-X (XRD) dan Raman spektrum menunjukkan semua 
salutan intan mempunyai segi bijian yang jelas dengan morfologi (111) dan (220) 
dan berkualiti tinggi (>99% ketulenan). Analisis mikroskopi daya atom (AFM) 
menunjukkan saiz bijian adalah dalam julat 1-6 µm dengan ketumpatan melebihi 108 
bijian/sm2. Sampel yang dipunar dengan HNO3+H2O2 selama 60 saat, didapati 
mempunyai daya rekatan tertinggi bila diuji secara pembagasan pasir. Ini disebabkan 
oleh kandungan Co terendah serta ketumpatan bijian intan tertinggi pada permukaan 
substrat WC. Substrat WC yang dipunar dengan larutan ini yang kemudiannya di 
lakukan pembenihan dengan campuran serbuk 1 g/l SiC dan 0.8 g/l intan didapati 
mempunyai salutan intan dengan puncak yang tajam, ketinggian dan jarak antara 
bijian yang seragam apabila di analisis menggunakan FESEM dan AFM. Keadaan ini 
memenuhi keperluan aplikasi proses canaian dan pada masa yang sama mempunyai 
kualiti (99.496% ketulenan) dan kekuatan rekatan tertinggi. Bagi menguji prestasi 
canaian, roda pencanai WC dihasilkan, dirawat dengan HNO3+ H2O2 selama 60 saat 
dan dibenihkan dengan campuran serbuk 1 g/l SiC dan 0.8 g/l intan serta disalut intan 
selama 30 jam. Proses canaian telah dilakukan ke atas benda kerja WC-2% berat Co 
menggunakan mesin canai ketepatan ultra dengan kadar suapan berbeza iaitu 0.015, 
0.030, 0.045, 0.060 dan 0.075mm/min. Ketajaman bijian intan didapati tidak terjejas 
apabila di analisis menggunakan FESEM dan kemasan permukaan (Ra) benda kerja 
adalah lebih halus dari asalnya 0.020 µm kepada 0.007 µm. Perbandingan canaian 
pada 0.20mm/min menggunakan roda intan terikat komersial menunjukkan kemasan 
permukaan benda kerja adalah hampir sama. Walau bagaimanapun roda komersial 
didapati rosak teruk dengan tatal canaian yang tersekat serta partikel intan yang 
pecah dan tertanggal. Sementara pada roda salutan intan, hanya tatal canaian tersekat 
berlaku. Sebagai kesimpulan, campuran bahan pembenihan serbuk intan (5 µm, 0.8 
g/l) dan SiC (175 µm, 5 g/l) telah menghasilkan salutan intan dengan sifat yang 
sesuai untuk kegunaan canaian serta ia setara dengan roda canaian terikat intan.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Research 

 

 Since the introduction of first coating and coating process, it has been 

recognized by the industry that the tool’s performance and its lifetime could be 

extended by applying a hard surface to a cutting tool. Further gains in performance 

and tool life have been achieved each time advancement in equipment and 

technology has made it possible to develop new coatings. Today, there are several 

coating processes and numerous types of coatings being used on a wide range of 

tools.  

 

 One of the main coating materials that held a special interest in the hearts and 

minds of the scientists, researchers and engineers is diamond. Diamond which 

derived from the Greek word “adamas”, meaning “invincible” is a very impressive 

material as it is the hardest known material with the lowest coefficient of thermal 

expansion, chemically inert and wear resistance, offers low friction, has high thermal 

conductivity, electrically insulating and is optically transparent from the ultraviolet 

(UV) to the far infrared (IR) (Asfold et al, 1997). It is formed naturally deep in the 

earth under extreme conditions of very high temperature and pressure and the only 

known source of diamond for centuries.  

 

 With the introduction of high pressure high temperature (HPHT) method in 

1950s (May, 1995), the first artificial diamond was crystallized through metal 
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solvated carbon at pressure of about 80 kBar and temperature around 2000OC. For 

more than three decades, “industrial diamonds” have been produced commercially by 

this method. With the discovery of a various types of chemical vapour deposition 

(CVD) techniques in 1960s by Spitsyn et al (1991) in Moscow, has sparked more 

interest of scientific nature in this material. It involves the gas phase chemistry 

mainly between hydrocarbon and hydrogen gaseous within the vicinity of the surface 

which causes diamond deposition onto that surface. 

 

 Given all the many positive properties together with the availability of 

various CVD techniques, diamond already finds use in many diverse applications as 

the optical windows operating in severe environment, heat sinks in electronic 

devices, semi conductors applications (field effect transistors, diodes, high voltage-

high current switch, radiation and gas detectors) as well as in mechanical 

applications which are commercially available (abrasives, coating on cutting tools 

such as inserts, drill bits, end mills, reamers and counter sinks) (Alix Gicquel et al, 

2001). 

 

 One of the major considerations for the development and production of high 

quality diamond coating on cutting tools using CVD techniques is the choice of 

appropriate hard material substrates. These hard substrate materials should have 

optimal thermal and mechanical properties such as heat conductivity, thermal 

expansion coefficient, hardness and toughness as well as having good adaptation to 

the CVD coating process. Hard cemented carbide mainly tungsten carbide (WC) that 

was normally used as cutting tools was found to be the most suitable material as it 

has all the required properties for diamond coating using CVD (Haubner, 1996).  The 

most widely used of WC for diamond coated cutting tools is WC-6 wt% Cobalt (Co) 

which has been manufactured in various complex shapes such as inserts (Arumugam 

et al., 2006), (Davim and Mata, 2008), end mills (Gomez et al., 2012), drill bits 

(Hanyu et al., 2003), (Chen et al., 2002) and grinding tools (Chou et al., 2010), 

(Butler-Smith et al., 2012).  

 

 However, the successful diamond coating using CVD technique onto the 

WC-6 wt% Co substrate in terms of well faceted crystals, good adhesion, high 

quality, uniform coverage and grain size depends on these factors: 
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 (a) Co content and the surface roughness of the WC-6wt % Co 

 (b) Diamond nucleation density  

 

Co binder used in cemented carbide causes the diffusion and dissolution of carbon 

during coating process which reduces the diamond nucleation rate and promote the 

formation of graphite. This will results in poor coating quality as well as weaker 

coating adhesion strength (Jan Gabler and Westermann, 2000; Miao et al., 2004). 

During diamond deposition on cemented carbides a surface with only a minimum Co 

concentration will allows good diamond deposition (M. Alam, 1997). This is 

particularly important for the industrial formation of diamond coatings on cutting 

tools. WC substrate surface roughness is essential in promoting high diamond 

nucleation density. Amirhaghi (1999) has proved that the scratched area on WC 

substrate surface produce high nucleation density as compare to non-scratched area 

and this factor promote high adhesion strength, uniform coverage and grain size.  

 

 Various methods and techniques have been successfully employed to prepare 

the WC substrate surface prior to diamnd coating such as introduction of Co inter-

diffusion barrier interlayer (Amirhaghi et al., 1999; Chou et al., 2008), biasing 

(Chiang and Hon, 2008; (Saito et al., 2009) as well as chemical pretreatment (Saito 

et al., 2009; Raghuveer et al., 2002). Two-step chemical pretreatment (Sien et al., 

2004; Volker Buck et al., 2002) followed with diamond seeding (Xu et al., 2013; 

Wei et al., 2011) is however, simple, effective and widely used to roughen, 

minimized surface Co concentration as well as creating better diamond nucleation 

sites. 

 

 

 

1.2 Problem Statement 

 

 Successful diamond coating on cemented WC requires solutions to the 

problems of adequate diamond nucleation and most importantly poor adhesion. The 

poor adhesion between diamond coating and the WC substrate results from the 

thermal expansion mismatch between the diamond coating and the substrate, which 
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lead to large thermal stresses at the interface, and the presence of binder materials 

such as Co in the substrate, will enhance the graphite formation. Currently the most 

effective, simple and cheap technique employed by most researchers to improve the 

adhesion strength and nucleation density of diamond on WC substrate is through the 

combination of two-step chemical pretreatment and diamond seeding process 

(Almeida et al, 2011). The adhesion strength is further improved by mixing other 

small particles such as Ti (Bujinster et al., 2009) and SiC (Avigal and Hoffmann, 

1999) with diamond powder during seeding. However, this technique mostly applied 

to produce not only high adhesion strength but also high diamond nucleation density 

which means small and uniform grain size. This condition is only suitable for cutting 

tools (inserts, end-mill and drill bits) in order to maintain the cutting point or cutting 

edge of the tools as well as to provide wear resistant properties. However, for 

abrasive application mainly for grinding, the rough surface finish of diamond film is 

necessary where the entire diamond grains will act as cutting points for minute 

material removal. At the same time it also provides clearance between the grains to 

accommodate the grinding chips (Kopac and Krajnik, 2006). The smooth surface of 

diamond film with very fine, uniform and high density of diamond grains is however 

not suitable for grinding application as there will no cutting action take place. 

Currently, most of the CVD diamond coated grinding wheels have been produced by 

machining of solid CVD diamond pieces (Butler-Smith et al., 2012) or by laser 

patterning the diamond grains (Butler-Smith et al, 2009) which is very costly 

processes.  The application of chemical pretreatment and seeding which is a viable 

process and cheaper on WC grinding tools was however minimally reported. A 

thought of applying smaller diamond powder size mix with larger size of second type 

of powder on WC grinding wheel substrate surface during seeding that may produce 

rough surface finish with larger grains of diamond coating and its grinding 

performance which is unknown is worth to be investigated. 

 

 

 

1.3 Objectives of the Research 

 

The main objective of this research is to establish the hot filament chemical 

vapour deposition (HFCVD) diamond coating film with high adhesion strength and 
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quality with appropriate grain size and distribution  suitable for grinding application. 

The specific objectives for this research are as follows:   

 

1.  To determine suitable chemical pretreatment process and seeding      

 parameters that can produce high quality of diamond coating for 

 grinding application..  

 

2.  To evaluate and compare the grinding performance in terms of the 

 condition of the wheels and the surface finish of the work piece 

 between fabricated diamond coated WC and the commercial diamond 

 bonded WC wheels. 

 

 

 

1.4 Scopes of the Research 

 

The research scopes are as follows: 

 

1. The cemented tungsten carbide (WC-6 wt% Co) was selected as a 

substrate material.  

2.   Two-step pretreatment was chosen as the method to prepare the WC 

substrate surface with the first step was fixed using Murakami solution 

for 20 minutes. For second step of treatment, three different chemicals 

were used with three different etching times. 

3.   Seeding process was conducted using fixed size and concentration of 

 diamond powder mixed with fixed size (174 μm) and different 

 concentrations (0, 1, 5 and 10 g/l) of SiC powders 

4.  Diamond coating was conducted using hot filament CVD (HFCVD) 

 with fixed parameters for 30 hours.   

5.   Surface characterizations on the chemically treated substrates were 

 analyzed by using FESEM, EDX and surface roughness tester for  

 element, morphology and surface roughness respectively. 
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6.    Surface characterization on the diamond coated substrates were 

 analyzed under FESEM, XRD, Raman Spectrometer, AFM for 

 morphology, quality and surface roughness 

7.  The adhesion strength of diamond films was determined through the 

 size of diamond flake-off area and time to flake-off using blasting 

 technique. 

8.  Grinding was performed on WC-2 wt% Co work piece using ultra-

 precision cutting and grinding machine with varying feed rate as other 

 parameters are fixed. 

9.  Analysis of grinding was conducted on the grinding wheels in terms 

 of grinding edge conditions as well as on the WC samples in terms of 

 finishing surface morphology and roughness using FESEM and 

 surface profiler respectively. 

 

 

 

1.5 Significance of the Research 

 

 This research is expected to provide an alternative method to produce suitable 

CVD polycrystalline diamond on WC substrate for abrasive application which 

should be comparable with diamond bonded wheels. With the application of simple 

and cheap conventional two-step pretreatment process combine with mix seeding to 

provide proper substrate conditions, should open up further research in producing 

different grain sizes of diamond coating for different grinding applications.  



 

 

 

 

CHAPTER 5 

 

 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

 

 

5.1 Conclusions 

 

 Various methods have been employed to increase the adhesion 

strength of CVD diamond film on to the WC substrate. Two-step 

pretreatment followed with diamond powder seeding are found to be very 

effective in increasing the diamond nucleation density with the purpose of 

increasing the adhesion strength adhesion strength. Seeding using mixture of 

diamond powder with large size of second material powders has been proved 

more effective in increasing the diamond nucleation density. However, most 

of the reports published used Si as a substrate. Employing even larger powder 

size of second material during seeding with the intention of producing larger 

diamond grain size and at the same time having high adhesion strength was 

still not reported. This experimental study was conducted to determine the 

effect using large second material powder size on the adhesion strength of 

diamond film and the diamond grain size. The grinding tests were conducted 

to determine the effectiveness of the produced diamond grains. This 

experimental study is concluded with following findings: 

 

1. Application of large SiC powder with small diamond powder size 

 during  seeding has produced large HFCVD diamond grains with the 

 same structure consist of mixture of (111) and (220) structures 
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 regardless of the different second step pre-treatment. It is suspected 

 due to the same seeding condition conducted on all the samples. 

 However, the adhesion strength were varied, due to various factors 

 and such as high surface Co content, high residual stress as well as 

 lower density of diamond grains. Sample treated with HNO3 + 

 H2O2 for 60 seconds has the highest adhesion strength due to lowest 

 surface Co and  highest grain concentration. This indicates that the 

 concentration of substrate surface Co and the diamond nucleation 

 density are the major factors in determine the adhesion strength. 

 

2. The adhesion strength of the diamond film was also found to be 

depend on the  amount of large second material powders used during 

the seeding. With the same pretreatment conducted on the samples, it 

is clearly indicates that with a certain ratio of mix seeding, will 

produce a certain adhesion strength. In this particular experiment, 

sample seeded with diamond and 1 g/l has the highest adhesion 

strength due to highest diamond grain concentration and diamond 

quality. This selected seeding condition also produced almost uniform 

height and distribution of diamond grain and on top of that sharp peak 

of the grains which is suitable for grinding application. The diamond 

grain concentration was lower as compare to sample seeded with only 

diamond powder. This is expected as with only diamond powder used, 

there was no restriction of the powders to be embedded into the WC 

substrate surface. The adhesion strength of sample seeded with only 

diamond, however was lower due to no hammering effect of large SiC 

powder onto the diamond powder during seeding. 

 

3. The mirror image surface finish with the minimum roughness, Ra of 

 0.007 µm of the WC work piece was achieved with no indication of 

 any defect occur to the diamond coated grinding wheel. When 

 grinding performance was compared with diamond bonded wheel,  the 

 surface finish of the work piece was at par. However, the problem of 

 grinding chips clogging is obvious which commonly found in 
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