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ABSTRACT 

 

 

 

 

Buckling Restrained Braces (BRB) have been widely used in the construction 

industry as they utilize the most desirable properties of both constituent materials, 

i.e., steel and concrete. They present excellent structural behaviours such as high load 

bearing capacity, ductility, energy-absorption capability and good structural fire 

behaviour. In this study, the use of BRB systems on enhancing the fire resistance of 

whole building in terms of preventing the progressive collapse of the structural frame 

against fire was investigated. The effect of size and type of filler material of existed 

gap at the steel core-concrete interface as well as the element's cross sectional shape 

on the fire resistance of BRB isolated member was explored. The accuracy of 

numerical solution was certified by comparing the FE results with those of analytical 

formulations and experimental predictions. The study in this thesis shows that the 

superior fire performance of BRB can be obtained by altering the filler material of the 

gap from metal to concrete as well as by increasing the size of the gap. Also, 

cylindrical cross-section BRB perform better under fire conditions compared to that 

of rectangular cross section. In terms of verifying the efficiency of BRBs in 

preventing the progressive collapse of the structural frame under fire, a new 

framework called "stiffness reduction" technique was proposed and the response of 

BRBs was compared with that of Ordinary Concentrically Brace systems (OCBs). 

The results indicate that BRBs provide higher global collapse temperature of the 

frame, owing to the greater stiffness they append to the structural frame as compared 

to OCBs. Moreover, BRBs are strength enough to distribute the sustained load by 

heated columns to the adjacent members without any buckling occurrence in the 

bracing member, maintaining the stability of whole frame for a longer period of 

heating time through both heating and cooling phases of fire.  
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ABSTRAK 

 

 

 

 

Lengkokan dihalang Penyokong (BRB) telah digunakan secara meluas dalam 

industri pembinaan kerana mereka menggunakan ciri-ciri yang paling diingini dari 

kedua-dua bahan konstituen, iaitu keluli dan konkrit. Mereka membentangkan 

tingkah laku struktur yang sangat baik seperti keupayaan galas beban yang tinggi, 

kemuluran, keupayaan tenaga penyerapan dan tingkah laku kebakaran struktur yang 

baik. Dalam kajian ini, penggunaan sistem BRB bagi meningkatkan ketahanan api 

bangunan keseluruhan dari segi mencegah keruntuhan progresif bingkai struktur 

terhadap kebakaran telah dikaji. Kesan saiz dan jenis bahan pengisi bagi jurang 

wujud yang pada muka teras konkrit keluli serta bentuk keratan rentas elemen pada 

ketahanan api daripada BRB ahli terpencil telah diterokai. Ketepatan penyelesaian 

berangka telah disahkan dengan membandingkan hasil FE dengan rumusan analisis 

dan ramalan eksperimen. Kajian dalam tesis ini menunjukkan bahawa prestasi api ke 

atas BRB boleh diperolehi dengan mengubah bahan pengisi jurang dari logam untuk 

konkrit dan juga dengan meningkatkan saiz jurang. Juga, keratan silinder BRB 

berprestasi lebih baik di bawah keadaan kebakaran berbanding dengan keratan rentas 

segi empat tepat. Dari segi mengesahkan kecekapan BRBs dalam mencegah 

keruntuhan progresif bingkai struktur di bawah api, satu rangka kerja baru yang 

dikenali sebagai teknik "pengurangan kekukuhan" adalah dicadangkan dan 

tindakbalas BRBs telah dibandingkan dengan sistem sepusat kekangan biasa (OCBs). 

Keputusan menunjukkan bahawa BRBs menyediakan suhu keruntuhan global yang 

lebih tinggi daripada bingkai biasa, kerana kekukuhan yang lebih besar yang 

diperolehi mereka kepada bingkai struktur berbanding OCBs. Selain itu, BRBs 

mempunyai kekuatan yang mencukupi untuk mengagihkan beban yang berterusan 

pada tiang-tiang yang dipanaskan kepada ahli-ahli bersebelahan tanpa apa-apa 

kejadian lengkokan dalam anggota perembatan dan mengekalkan kestabilan 

keseluruhan rangka untuk tempoh yang lebih lama melalui kedua-dua fasa 

pemanasan dan penyejukan api. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  General 

 

 

1.1.1  Overview of Fire Hazard 

 

 

Fire event is one of the most hazardous conditions that any building could 

encounter throughout its service life. If buildings are not appropriately designed and 

constructed, this disaster could produce huge obliteration in terms of loss of life, 

property and money. With increasing interest in developing large cities as well as 

constructing huge structures with multiple stories, which involve a large amount of 

combustible furniture, the probability of fire hazard becomes higher. Moreover, 

severe earthquakes in urban regions are frequently followed by major conflagrations, 

which are hard to control and leads to huge destructions (e.g. 1995 Kobe earthquake). 

When a fire happens in the structure, temperature rise due to fire event can lead to the 

reduction in material strength, which then causes decrease in the strength and 

stiffness of the structural load bearing elements. It can also induce a big thermal axial 

forces as well as deformations in the structural members. These two phenomena are 

the main reason of structural collapse during fire. Therefore, fire concept and gaining 
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a thorough understanding of the vulnerability of structures under fire conditions 

impose significant challenges to the structural engineering community in recent years. 

 

 

 

1.1.2  Overview of Ordinary Brace systems 

 

  

Lateral displacements of the buildings against various loading conditions have 

subjected significant challenges to the structural engineering community. In order to 

decrease these displacements, which are mainly resulted from the wind and 

earthquake forces, horizontal bracing systems are formed and appended to the 

structural frames. In the conventional systems, when the bracing elements are 

subjected to the big axial forces the buckling occurs in the corresponding members as 

shown in Figure 1.1(a), which is then followed by the failure of bracing components. 

Consequently, the capacity of ordinary bracing members is significantly limited under 

compression, owing to the occurrence of buckling before reaching the load level that 

corresponds to the plastic response. Therefore, such these members are considered in 

design as tension-only braces and not used to their full capacity. Figure 1.1(b) shows 

the hysteretic response of ordinary bracing systems, in which the unsymmetrical 

behaviour is resulted from the buckling of bracing members beneath compression 

force. 

 

 
 

a 

a 

hollow steel section 

(RHS) 

Section a-a 

RHS 

        

 

P 

P            

                   (a)             (b)   (c) 

Figure 1.1 (a) Typical section of ordinary bracing (OCB) element, (b) the behaviour of OCB 

against axial loading, (c) the hysteretic response of conventional bracing systems (Xie, 2004)   

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBuckling&sa=D&sntz=1&usg=AFQjCNHxlxqs7JxHoSvYuTcoGcfuvJs6XQ
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1.1.3  Overview of Buckling Restrained Brace systems (BRBs) 

 

 

As mentioned in Section 1.1.2, the conventional bracing members buckle 

under compression force. In order to overcome this negative characteristic of ordinary 

braces, the overall buckling of bracing element should be prevented such that the 

tensile and especially compressive components are capable of sustaining higher axial 

forces. This requirement stimulates researchers to conduct an improved type of 

bracing system called the buckling restrained brace (BRB), as demonstrated in Figure 

1.2 (a). The un-buckled characteristic of BRBs leads to a similar tension and 

compression behaviour of bracing components at the hysteretic loop, as shown in 

Figure 1.2 (b). 

 

 

                 

P 

P           

                       (a)         (b) 

Figure 1.2 (a) The behaviour of BRB element under axial loading, and (b) the hysteretic 

response of BRB system (Xie, 2004) 

 

 

Attributing to the superior performance of BRBs as restraining system due to 

their high potential of distributing axial loadings without the occurrence of buckling 

in the bracing members, BRBs are found to decrease noticeably the lateral 

displacements of the structural frame in comparison to the ordinary types as shown in 

Figure 1.3. 
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 (a) 
    

 (b) 
    

 (c) 

 

Figure 1.3 Comparison of storey drift demand for the structural frame (a) without braced 

resisting system, (b) with ordinary bracing system, and (c) with BRB system (Mack and 

Chenault, 2007) 

 

 

The use of BRBs has been extensive in recent decades owing to their supreme 

structural behaviour in terms of enhancement of lateral resistance of the structural 

frames against earthquakes. The efficiency of using this system under static and 

seismic loadings at ambient temperature had been well studied and documented 

(Clark et al., 1999; Uang and Nakashima, 2004; Kigginsa and Uang, 2006; Newell et 

al., 2006; Sahoo and Chao, 2010). 

 

 

 The principal strong specifications of BRB systems are high energy 

dissipation capability, high ductility and almost symmetrical hysteretic responses in 

tension and compression (Sahoo and Chao, 2010). As shown in Figure 1.4 (a), BRB 

components are consisted of a steel core encased in a concrete-filled steel hollow 

(CFT) casing for an enhanced buckling resistance. In terms of its constituents, the 

steel core is composed of a yielding steel core, non-yielding and buckling-restrained 

transition parts, non-yielding and unrestrained end regions (Figure 1.4 (b)). About 

60%-70% of the entire length of the core is restrained by the casing (Sahoo and Chao, 

2010). In these bracing systems, compression stresses are mainly sustained by the 

restrained portion of the core. On the other hand, the yield strength of the steel core is 

much lower than that of steel tube casing. This allows the core to yield in the same 

manner during tension and compression prior to the casing, thus considerably 
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enhancing the energy dissipation capabilities of BRBs in comparison to the ordinary 

bracing systems. Due to the Poisson's effect on the steel core, it expands when it is 

compressed. To prevent the axial stress transition from the core to the restrainer (in-

filled concrete steel tube casing), a certain amount of clearance between the core and 

concrete must be provided to avoid the friction between them (Figure 1.4(c)).  

 

 

 

 

   yielding steel core 

encasing 

concrete 

 unbonding material between  

 steel core and concrete 

 concrete filled steel tube (CFT)  

 

(a) 

 

Restrained yielding segment

Restrained

non-yielding segment

Unrestrained

non-yielding segment

Ending Buckling restrained segment EndingTransition
    part

Transition
   part

Restraining system

 

(b) 

 

separation gap 

buckling-restraining mechanism 

core 

P P P  P 

                                                                                                    

(c) 

 

 Figure 1.4 Detail of BRB (a) general structure (Clark et al., 1999), (b) steel core constituent 

segments and (c) separation gap at steel core-restrainer interface (Korzekwa and Tremblay, 

2009) 
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In addition to this gap, in order to almost completely minimize the friction 

between the core and concrete, a de-bonding agent is also applied to the surface of the 

core, as shown in Figure 1.4(a). 

 

 

 

 

1.2  Background of the Problem 

 

 

Traditionally, the preliminary building fire-design codes prepare provisions 

based on a perspective approach, considering some basic parameters such as the 

location and number of sprinklers, fire alarms, smoke detectors and exits, which 

necessitate the structures to meet the relevant standard rules in terms of fire safety 

concept. However, several studies had demonstrated that such active fire protection 

systems were easily damaged at fire, and their operational mechanisms were 

disturbed due to their mechanical failure and deformations (MFIAJ, 1995). This has 

led to the widespread application of passive fire protection systems in the form of 

sprays, boars and intumescent onto the surfaces of structural elements, to get the 

assurance that their temperatures remain lower than the critical value during heating 

stages. In regards to this, concrete has been known commonly as a safe material, 

owing to its low conductivity and large thermal inertia (Buchnanan, 2001). 

Conversely, steel is considered to be more vulnerable to fail beneath heating, because 

of its high conductivity and small thermal inertia such that it is usually coated by fire 

protective materials. In terms of economy, previous surveys (Robinson and Latham, 

1986; Lawson and Newman, 1990; Lawson, 2001) have recorded that using such fire 

protection systems increase the total cost of the structure by more than 30%. The 

increase in the constructional charge of buildings has drawn the attention of engineers 

to explore the use of various alternative fire resistance techniques.  

 

 

One of the operational solutions for this problem has been recognized as the 

enhanced strength and stiffness of the structural frame that prevents progressive 

collapse from local to global for life safety against fire, i.e., allowing the occupants to 
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leave the building before the overall failure of structure at fire. In this case, in order to 

certify and monitor the stability of the structure at fire, the performance-based 

approach, (Eurocode 2-4, 2005) which represents the progression of actual heating 

stages in the structural frame while it is subjected to fire, has been extended.  

 

 

To date researchers implemented the performance-based technique in the form 

of laboratory fire tests on the individual structural elements. As a result, structural 

engineers have used these test results extensively, without considering how 

trustworthy they are, by not taking into account whether the corresponding data 

represent the actual behaviour of the whole structure or not. On the other hand, it has 

been proven for many years that the elevated temperature behaviour of entire building 

is completely different from that of isolated element, beneath fire loading (Baily et 

al., 1999; Usmani et al., 2005; Wald et al., 2006-2007). In order to track the real 

response of a structural frame (with actual boundary conditions) at fire, full scale fire 

tests need to be conducted on the whole structure and the structural fire design has to 

be carried out by the performance-based design of the entire building. Conducting 

such a large-scaled set of fire tests has been extremely complex, expensive, and 

engaged major risks in a controlled environmental condition. Moreover, with the 

advancements in the computational technology, computer models have shown that 

they are capable enough to simulate and analyze the real states of structures at fire 

with acceptable accuracy. Hence, finite element (FE) programs can be good 

alternatives to model the large scale parametric studies on fire. Consequently, from 

the early 2000̛ s the use of FE programs has been expanded extensively for evaluating 

the response of whole building during fire, instead of conducting full scale fire tests. 

Subsequently, various FE programs such as SAFIR (Chitty and Foster, 2001; Lim et 

al., 2004; Vila Real et al., 2004; Pyl et al., 2012) has been used to simulate the real 

fire exposure numerically. Also, the use of FE package, ABAQUS, has been extended 

by British Steel and many other researchers (Sanad, 1999 and 2000a-d; Gillie, 2000; 

Sun et al., 2012a; Agarwal and Varma, 2014), owing to its capability of simulating 

both material and geometric nonlinearities in the structural frame during fire. 

Recently, the application of other FE program, VULCAN, has been developed 

(Najjar and Burgess, 1996; Huang et al., 2009; Huang, 2010-2011; Yu et al., 2011; 

Sun et al., 2012b) at the University of Sheffield as a specific FE tool for monitoring 
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the elevated temperature behaviour of structures at fire. The use of these FE programs 

has prepared a comprehensive perspective of how the structural load bearing 

members as well as the whole building perform at high temperatures under fire 

condition. 

 

 

 

 

1.3   Statement of the Problem 

 

 

In order to know the level of resistance in the buildings against fire loading, 

the elevated temperature behaviour of structural frame, considering different 

horizontal resisting systems needs to be investigated. While there have been extensive 

advances in the consideration of structural behaviour at fire in recent decades, there 

are still many aspects of structural-fire responses that are not well understood and 

need further studies. For instance, no study has yet been done on the fire resistance of 

multi storey structures with Buckling Restrained Brace system (BRBs). Therefore, 

supplementary research is required to observe the performance and influence of this 

type of bracing system on the overall stability and resistance of an entire structure 

toward fire hazard.  

 

 

The research work carried out in this thesis is hoped to shed light on the 

performance of multi-storey buildings with BRBs under fire condition. The research 

considered the elevated temperature behaviour of BRB constituent components as an 

individual member subjected to fire loading, as well as the study on the influence of 

this type of bracing system on the fire resistance of entire building. The outcome of 

this research is very useful for the future design considerations on the fire resistance 

of multi-storey structures restrained with BRB system. Generally, the overall 

problems of this study are identified as follows: 

 



9 
 

1. Unknown elevated temperature performance of BRB individual element (sub-

element) under fire loading with respect to the reduction in material strength 

due to temperature rise, under fire conditions need to be addressed. 

 

2. Unknown BRB system effect on the overall stability and resistance of entire 

building against fire loading need to be established. 

 

3. How correct is the current nonlinear finite element (FE) analysis  to perform 

the actual behaviour of structural frame with BRBs subjected to fire need to 

be validated. 

 

 

 

 

1.4   Objectives of the Study 

 

 

This thesis concentrates on the behaviour of BRB individual element at high 

temperatures as well as the additional strength provided by this system on the fire 

resistance of the structures with multi-storey frames. In order to accomplish the main 

aim of this study, the objectives of this research can be specified as follows: 

 

1. To develop an efficient three dimensional (3D) numerical modelling for 

investigating the nonlinear behaviour of BRB constituent components under 

fire loading and validating the numerical approach with the existing analytical 

formulations and experimental test results. 

 

2. To develop an efficient two dimensional (2D) numerical modelling in order to 

recognize the influence of BRB system on preventing the progressive collapse 

of structural plane frame against fire loading, using the proposed technique to 

simulate the global collapse of the structural frame at fire.  

 

3. To develop an  efficient 3D numerical modelling for investigating the effect of 

BRBs on the fire resistance of whole building and validating the accuracy of 
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the proposed model by comparing the FE results with the existing full scale 

fire tests (Cardington fire test). 

 

4. To compare the efficacy of BRBs on enhancing the overall stability and fire 

resistance of whole building resulted from objectives 3 and 4 with that of 

ordinary concentrically bracing system (OCBs). 

 

 

 

 

1.5    Significance of the Study 

 

 

In last decades, the extensive developments in urbanizations have led to an 

enhancement in the potential of fire fatalness in different types of buildings. Fire can 

be a major catastrophe to the safety of building industry. Strength and stiffness of 

structural load bearing elements will reduce dramatically at elevated temperatures. On 

the other hand, high temperatures will induce large axial forces and big deformations 

in the structural members, causing by the global collapse of the whole building due to 

fire. 

 

 

Now-a-days, steel constructions have a great consumes acceptability due to 

their advantages in the building industry all over the world. The possibility of 

reducing the cross section area of the structural elements, the ability of building such 

structures more rapidly and the advantages of light weight steel structures contribute 

to the tendency of structural engineers to prefer steel as construction material rather 

than the other construction materials. However, steel mechanical properties are very 

vulnerable at elevated temperature. In addition to its high conductivity, reduction in 

material strength at high temperatures is another negative characteristic of steel. 

Recently, in order to improve the poor performance of steel structures at elevated 

temperature, some provisions such as protecting the steel structural members or 

alternative design methods have been developed under fire conditions. 
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Despite of significant researches that have been done to understand the 

elevated temperature behaviour of buildings at fire incidents in recent decade, there 

are still many relevant areas of interest that are not well understood and require 

additional research. As an example, the efficiency of using BRB system under static 

and seismic loadings at ambient temperature had been well studied and documented 

(Clark, 1999; Uang, 2004; Sahoo, 2010). However, only limited literatures (Saitoh et 

al., 2005; Talebi et al, 2014a-c) had explored its performance in fire situation. So, 

there is a lack of understanding on the structural behaviour of such braces at elevated 

temperatures.  

 

 

  The investigation presented in this dissertation is intended to contribute to 

improve the structural behaviour of steel frames restrained with BRB systems under 

fire conditions. 

 

 

 

 

1.6  Research Findings/Expected Outcomes 

 

 

There are three expected outcomes in this study. First, the performance of 

BRB sub-element (isolated member) against fire loading can be predicted such that 

whether the elevated temperature behaviour of BRB is analogous to that of normal 

temperature (20 °C), i.e., steel core yields prior to the restraining system due to 

thermal loading. Second, the effect of BRB system on the overall stability and 

resistance of a multi-storey building subjected to fire in contrast to that of OCBs and 

third, the effectiveness of finite element analysis to represent the actual performance 

of a structure with BRBs exposed to fire hazard. 

 

 

 

 

 



12 
 

1.7  Scope of the Study 

 

 

This research study provides a theoretical basis to understand further high-

temperature structural properties and refractory limit of BRBs when exposed to fire. 

By means of this research, the performance of BRB element in incidents of fire 

caused by earthquakes and situations of fire without the axial seismic force are 

investigated and validated analytically in the elastic domain. Also, this study reveals 

the positive and negative remarks of using BRB system instead of OCBs to resist the 

structural collapse under fire conditions. Finally, this research work provides useful 

information to the structural engineers on how to use finite element analysis to predict 

the failure of building and thus increase the structural safety under fire conditions. 

 

 

 

 

1.8   Research Methodology 

 

 

Research methodology is a guideline to carry out the study in an organized 

manner so as to attain the research objectives. In this thesis, the research procedure 

mainly contains of 3 stages as shown in Figure 1.5, namely, "Stage A": Primary study 

on elevated temperature behaviour of BRB isolated element, "Stage B": Secondary 

study on the performance of BRB system on a 2D plane frame at fire, "Stage C": 

Ultimate study on the response of BRB system on a 3D structure under fire condition. 

The process of research and the approaches of analyses used are as follows: 

 

 Stage A: includes a primary study on the behaviour of an individual BRB 

element under fire condition. In this phase of study, coupled nonlinear 

thermal-stress analysis was conducted, using ABAQUS package. In the 

primary study, the responses of each constituent components of BRB at 

elevated temperatures were verified and concluded. The accuracy of 

numerical approach was validated by the existing analytical studies as well as 
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experimental tests. At the end of this stage, the elevated temperature 

behaviour of BRB sub-element was concluded. 

 

 Stage B: involves the performance of BRB system on a plane frame under fire 

condition. In this part of study, a two dimensional analysis was conducted, 

using VULCAN program. In this step, the influence of BRB system on the 

progressive collapse prevention of the structural frame due to fire loading was 

investigated and its response was compared with that of OCBs. The outcomes 

at this stage of research gives a comprehensive scheme on the influence of 

BRB system in transferring the load from the buckled-heated columns to the 

unheated stiffer members, which was followed by the prevention of spreading 

the local to global collapse of structural frame at fire, compared to OCBs. The 

accuracy of FE results was verified with the existing parametric work on the 

performance of ordinary systems at fire.  

 

 Stage C: consists the response of BRB system on the resistance of whole 

building under fire scenario. In this stage of study, a three dimensional model 

was conducted, using ABAQUS package. The effect of using BRB system on 

the overall stability and resistance of a multi-storey structure exposed to fire 

was investigated in this stage. This concluding stage of research proposed a 

comprehensive solution on the use of BRB system as compared to that of 

OCBs in enhancing the fire resistance of the structures with multiple stories. 

The accuracy of the proposed numerical model results was validated with the 

predictions of existing experimental fire test carried out on an eight storey 

building at Cardington laboratory (Lennon, 1997). 

 

 

These three stages explained the general scheme of the research methodology 

that has been implemented in this study. A thorough description on each stage is 

detailed out in Chapters 4 to 6. Finally, the thesis is ended with concluding remarks 

and recommendations for future studies.  

 

 

 



14 
 

 

  

Material properties 

-Temperature dependent 

thermal & mechanical 

steel and concrete 

-Nonlinear behavior of 

steel and concrete 

 

Geometry data for the 

BRB sub-element 

-Steel core 

-Filled-in concrete  

-Steel tube casing 

Fire simulation 

-Convection 

-Radiation 

-Conduction 

Numerical 3D study on 

BRB sub-element 

-Coupled nonlinear 

thermal-stress analysis 

using ABAQUS CAE 

Validation of FE results 

-Using analytical thermal 

& stress formulations 

-Using existing test results 

Material properties 

-Temperature dependent 

thermal & mechanical 

steel and concrete 

-Nonlinear behavior of 

steel and concrete 

 

Geometry data for the 

structural frame with 

BRB system 

-Frame plan & elevation 

-Structural constituent 

elements specification 

Fire simulation 

-Convection 

-Radiation 

-Conduction 

 

Comparative study on 

the structural frame 

with BRBs and OCBs 

-Using VULCAN  

Validation of FE results 

-Using the existing 

parametric work on the 

fire performance of OCBs  

Geometry data for the 

structural frame with 

BRB system 

-Frame plan & elevation 

-Structural constituent 

elements specification 

Fire simulation 

-Convection 

-Radiation 

-Conduction 

 

Numerical 3D study on 

the structural frame 

with BRBs and OCBs 

-Using ABAQUS CAE  

Validation of FE results 

-Using existing fire test 

results on Cardington 

laboratory 

Stage A: 

Primary study on the 

elevated temperature 

behaviour of BRB 

isolated member  

Stage B: 

Secondary study on 

the performance of 

BRB system on 2D 

plane frame at fire 

Stage C: 

Ultimate study on the 

performance of BRB 

system on 3D frame 

under fire condition 

 Figure 1.5 Research methodology 

scheme 

 

Material properties 

-Temperature dependent 

thermal & mechanical 

steel and concrete 

-Nonlinear behavior of 

steel and concrete 

 



15 
 

1.9  Thesis Organization 

 

 

This thesis comprises seven chapters, which are arranged according to the 

sequence of the main objectives and rationale of the study. A brief description on the 

structure of these seven chapters is provided below. 

 

 Chapter 1: Introduction. This is the current chapter which formulates the research 

proposal and describes the background of the study, statement of the problem, 

objective of the study, significant of study, research findings and expected 

outcomes, scope and limitations, research methodology and thesis organization.   

 

 Chapter 2: Literature review. This chapter describes the relevant researches which 

are useful to compare and improve the proposed research work. It reviews the 

literatures, which are related to the behaviour of individual structural components 

and the entire building behaviour in fire incidents. Also some pertinent works on 

the performance of individual BRB elements and their usage as a braced resisting 

system in the structural frame under various loading conditions are presented in 

this chapter.  

 

 Chapter 3: Theoretical background (research methodology). This chapter 

focuses on the methods used for accomplishing the main purpose of this thesis. 

The principal issues, which affect the behaviour of structural components under 

fire condition, are discussed in this chapter. As an example, the effects of 

boundary (restraint) conditions and material strength degradation at elevated 

temperature are pointed out in this chapter. In terms of finding the handy 

formulations, the basic theories on thermal and structural response of BRB 

element against fire loading are detailed out. An overall introduction on the 

existing fire tests used for verifying the accuracy of proposed numerical solutions 

is presented in this chapter. Moreover, a brief description on the overview of 

available computer programs used in this study is provided in this chapter.  
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 Chapter 4: Elevated temperature behaviour of BRB sub-element. This chapter 

describes the process of analyses for modelling the BRB individual member under 

fire condition. The response of BRB constituent components at high temperature is 

concluded thoroughly in this chapter. The accuracy of proposed numerical 

analyses presented in this chapter is validated by comparing the FE results with 

existing analytical formulations and experimental test predictions. 

 

 Chapter 5: Influence of BRB system on the response of structural frame at fire. 

This chapter provides a thorough description on the development and validation of 

the numerical approach, namely, "stiffness reduction technique" proposed for 

simulating the global collapse in a two dimensional structural plane frame with 

BRBs, at fire. The influence of BRB system on the prevention of spreading local 

to global collapse in the structural frame at fire is discussed and compared with 

that of OCBs. Finally by means of the validated model, the concluding remarks on 

enhancing the stability of structural frame for preventing the progressive collapse 

due to fire loading are given at the end of this chapter.  

 

 Chapter 6: The effect of BRB system on the fire resistance of entire building. 

This chapter investigates the effect of BRB system on the overall stability and fire 

resistance of whole building and a thorough comparison on the influence of this 

system with that of OCBs is provided also in this chapter. The accuracy of 

numerical model is verified by validating the FE results with the predictions of 

existing fire tests, carried out on an eight storey structure at Cardington laboratory. 

 

 Chapter 7: Conclusions and recommendations. This chapter concludes and 

summarizes the results obtained in the previous chapters and provides 

recommendations for further future studies. 
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