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ABSTRACT 

 

 

 

 

The need of having passive microwave devices that can operate in Ultra 

Wideband (UWB) frequency range has been arising these days due to their 

features that capable in bringing significant advances in wireless communications 

such as low power consumption, minimal interference and large channel capacity. 

However, the low power consumption has led to short range communication. 

Butler Matrix Beam Forming System is one of the solutions to solve such issue. 

Multilayer UWB couplers and multilayer UWB phase shifter are possible devices 

to develop a compact system design of Butler Matrix for UWB as the crossover 

function has been eliminated by this technique. New designs of multilayer UWB 

couplers and multilayer UWB phase shifters, which are used to construct the 

UWB Butler Matrix are introduced. These two main components are designed to 

function in the UWB frequency range to permit construction of the UWB Butler 

Matrix. In this research, the proposed UWB Butler Matrix achieves an 

improvement of 18.6% wider bandwidth compared to available UWB Butler 

Matrix and 31.1% size reduction compared to planar configurations of Butler 

Matrix. Simulation results are obtained by using Computer Simulation 

Technology Microwave Studio 2012. All measurements of S-parameters and 

phase differences performances are performed using a Vector Network Analyzer. 

Meanwhile, the measurements on beam directions of the UWB Butler Matrix are 

steered towards a particular direction by switching the input port accordingly. The 

switched beam antenna array system shows that four orthogonal beams are 

produced at four different directions. All measurements result show a very good 

agreement with the simulation results. 
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ABSTRAK 

 

 

 

 

 Keperluan untuk mempunyai peranti gelombang mikro pasif yang boleh 

beroperasi dalam julat frekuensi Jalur Lebar Ultra (UWB) telah semakin meningkat 

pada hari ini kerana ciri-ciri mereka yang mampu membawa kemajuan dalam 

komunikasi tanpa wayar seperti kuasa yang rendah, gangguan yang minimum dan 

kapasiti saluran yang besar. Walau bagaimanapun, kuasa yang rendah telah membawa 

kepada komunikasi jarak pendek. Sistem Butler Matrix Membentuk Pancaran adalah 

salah satu penyelesaian untuk menyelesaikan isu tersebut. Struktur berbilang-lapisan 

pengganding UWB dan berbilang-lapisan penganjak fasa UWB adalah peranti yang 

mungkin boleh digunakan untuk membina saiz reka bentuk Butler Matrix yang lebih 

kompak untuk kegunaan dalam julat frekuensi UWB kerana fungsi penyeberang telah 

dihapuskan dengan menggunakan teknik berbilang-lapisan ini. Reka bentuk terbaru 

berbilang-lapisan pengganding UWB dan berbilang-lapisan penganjak fasa UWB yang 

diguna untuk membina UWB Butler Matrix diperkenalkan. Kedua-dua komponen 

utama direka untuk berfungsi dalam julat frekuensi UWB untuk membenarkan 

pembinaan Butler Matrix UWB. Dalam kajian ini, Butler Matrix UWB yang 

dicadangkan mencapai peningkatan sebanyak 18.6% jalur lebar yang lebih luas 

berbanding dengan Butler Matrix UWB sedia ada dan pengurangan saiz sebanyak 

31.1% berbanding dengan konfigurasi satah Butler Matrix. Keputusan simulasi 

diperolehi dengan menggunakan Computer Simulation Technology Microwave Studio 

2012. Semua pengukuran S-parameter dan perbezaan fasa dilakukan dengan 

menggunakan Penganalisa Rangkaian Vektor. Sementara itu, keputusan ukuran kajian 

menunjukkan arah radiasi Butler Matrix yang dikemudikan mengikut arah yang 

ditentukan mengikut perubahan input. Sistem membentuk pancaran menunjukkan 

bahawa empat pancaran ortogon dihasilkan di empat arah yang berbeza. Semua 

keputusan pengukuran menunjukkan perkaitan yang amat baik dengan keputusan 

simulasi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Introduction 

  

 

Ultra wideband (UWB) technology refers to any system that occupies more 

than 25% of the bandwidth of the center frequency or any system that has a 

bandwidth greater than 1 GHz with return loss performance of at least -10 dB [1]. 

The use of UWB holds many benefits, including an ability to penetrate obstacles, 

ultra high accuracy down to the centimeter level, accurate ranging, resistance to 

jamming, high data rates, and low power consumption. Earlier, UWB technology is 

equally suited to military applications to be used as radar and tracking devices. 

However, due to its benefits and attractive features, the Federal Communications 

Commission (FCC) of the United States allocated the frequency band 3.1 GHz to 

10.6 GHz as an unlicensed operations band for UWB systems [2], with the intention 

that society at large benefit from this technology as well. Since then, a rising interest 

on UWB has made the technology grows to a new level and more applications have 

been explored such as in medical and communication applications. 

 

As an example, in medical applications, UWB can be used to detect breast 

cancer [3-4] and to monitor patients [5-7] in the intensive care unit (ICU), emergency 
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room, home health care settings, and in rescue operations, where at a certain level, 

UWB systems can detect heartbeats under ruins, soil, or snow [8]. However, due to 

low power consumption, UWB holds one great disadvantage which is narrow 

communication range. Smart antenna system is one way to improve the problems 

holds by UWB technology. 

 

Smart antenna has two types: the switched-beam array antenna and adaptive 

array antennas [9]. For the switched-beam array antenna, the system is capable of 

forming multiple fixed beams and to focus only its main beam on the desired 

location. This leads to maximizing the energy at the desired location, enhancing the 

received signals. The system detects signal strength, selects one of several fixed 

beams, and switches from one beam to another as the user moves. Meanwhile, in an 

adaptive array system, the antenna array is capable of automatically changing the 

beam pattern in accordance with the changing signal environment. At the same time, 

the adaptive array system introduces the maximum beam signal in the desired 

direction and nulls the other, interfering directions. Therefore, this system is able to 

control the radiation pattern, hence leading to increased antenna system capacity.  

 

One of the most widely known switched-beam systems for beam-forming 

networks is the Butler Matrix [10]. The Butler Matrix is an N×N network consisting 

of N inputs and N outputs. Orthogonal beams pointed at different angles can be 

generated in switched beam antenna systems by connecting an N×N Butler Matrix to 

an N-element array antenna [11]. The Butler Matrix circuit is widely used in various 

beam antenna linear array systems to produce multiple beams. This circuit has the 

ability to form orthogonal beams. Comparing the Butler Matrix with other switched-

beam array antenna such as the Blass Matrix, the Butler Matrix requires fewer 

microwave couplers [12]. Recently, a lot of efforts have been done on Butler Matrix 

design to be implemented into UWB technology. Few techniques have been 

proposed which has been presented and reported in [10-11, 13-19]. 
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1.2 Problem Statement and Motivations 

 

 

A Butler Matrix consists of three main components; 3-dB couplers, 

crossovers and 45
o
 phase shifters. These three main components must be designed to 

function in the UWB frequency range to permit construction of the UWB Butler 

Matrix. Design of a UWB Butler Matrix is achieved in [17], where the authors 

design the UWB Butler Matrix onto planar configurations and good agreement 

between both simulated and measured results of the UWB Butler Matrix is achieved. 

However, the use of a five-section coupled-line coupler and phase shifter, together 

with two two-section Schiffman C-sections in this design, requires a very narrow 

slot, which makes fabrication very difficult. In addition, this Butler Matrix is bulky, 

due to the large number of multiple coupled sections. Therefore, a simpler and more 

compact system design UWB Butler Matrix should be designed due to recent 

technology where simpler and compact system design are needed in an environment 

of ever increasing technological complexity. 

 

To obtain simpler and compact system design with UWB performance, the 

multilayer technique is chosen. In multilayer technique, simplicity and compactness 

in the system design is achieved due to elimination of the crossovers. The multilayer 

UWB Butler Matrix is designed to replace the UWB Butler Matrix in [17] with 

similar performance, to increase the competitiveness of the UWB Butler Matrix in 

wider industrial applications. 

 

Several UWB Butler Matrix designs employing the multilayer technique has 

been designed in the range of 3.1 GHz to 10.6 GHz where, the simulation result for 

multilayer UWB Butler Matrix designs has shown good performance within the 

frequency range of 3.1 to 10.6 GHz [11, 14-15, 18-19]. However, performance were 

limited to simulated results, and no verification or measurement has been made to 

prove the performance of the UWB Butler Matrix [18-19]. In [11, 14-15], 

measurement is made to verify the performance of the UWB Butler Matrix. The 

authors claim that good performance for simulated and measured results is observed 
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from 3 GHz to 9.2 GHz [14-15] and from 4.5 to 8.8 GHz [11],which shows that the 

whole UWB coverage is still not achievable. The largest discrepancies between the 

simulated and measured results occur in the range 3 GHz to 4.5 GHz and 9 GHz to 

11 GHz [11]. This is due to the phase shifter used in the Butler Matrix design, where 

the result of the phase shifter shows that the performance was in the range 4 GHz to 

8.5 GHz. Improvement to the couplers and phase shifters in the UWB Butler Matrix, 

along with an improved fabrication process, must be demonstrated to achieve better 

results both in simulated and measured results. 

 

 

 

 

1.3 Objectives of Research 

  

 

 The objectives for this research are stated as follows:  

 

i. To design, simulate, optimize and fabricate compact size UWB 

coupler and UWB phase shifter which cover from 3.1 GHz to 10.6 

GHz using multilayer technology. 

 

ii. To construct a compact system design UWB multilayered Butler 

Matrix system design by using the designed UWB coupler and UWB 

phase shifter and eliminate the function of crossover. 

 

iii. To integrate UWB Butler Matrix with available antenna array to 

perform as switched-beam antenna array. 

 

 

 

 

1.4 Scope of Research 
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This research focuses on the design of a UWB Butler Matrix that can operate 

within the UWB frequency range, 3.1 GHz to 10.6 GHz. The development of a UWB 

Butler Matrix comprised of UWB couplers and UWB phase shifters, various 

structures of UWB couplers and UWB phase shifters that are designed, simulated, 

optimized, fabricated, and measured. The chosen UWB couplers and UWB phase 

shifters are combined to form a UWB Butler Matrix. Integration of the existing 

UWB antenna to the output ports of the designed Butler Matrix is carried out to build 

a switched-beam antenna array system. The novelty of this research includes design 

of the couplers, phase shifters and the Butler Matrix that operated in UWB. 

Simulated and measured results of the UWB Butler Matrix aim for operation is in a 

frequency range of 3.1 GHz to 10.6 GHz.  

 

The simulation and optimization process of individual components and the 

Butler Matrix is performed using Computer Simulation Technology (CST) 

Microwave Studio software onto a Rogers RO4003C board with thickness of 0.508 

mm and dielectric constant of 3.38. To ensure that performance in the measured 

results is comparable with the simulated results, fabrication and measurement 

processes are performed, and the results are measured using a vector network 

analyzer (VNA). All simulated and measured results, including return loss, isolation, 

phase differences between output ports, and coupling effect of all designed 

components, were carried out and carefully discussed. Integration of UWB Butler 

Matrix has been done with existing UWB antenna to perform the UWB switched-

beam antenna array. To observe the antenna’s beam direction, radiation pattern 

measurement of the UWB switched beam antenna array was taken. 

 

 

 

 

1.5 Contribution of the Research 

 

 

 For this research, three major contributions are introduced which include: 
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i. The design of new multilayer UWB coupler and its investigation on 

the effect of the microstrip patch shape and slot at ground plane to the 

coupler’s performance. In addition, air gap and misalignment 

parametric studies are performed to observe on how these 

circumstances affecting the simulation and measurement results of the 

designed coupler. 

 

ii. The design of new multilayer UWB phase shifter. The new multilayer 

UWB phase shifter is designed with the implementation of tapered-

line transmission line and centre slot which result in size reduction 

compared to the available multilayer UWB phase shifter.  

 

iii. The design of new multilayer UWB Butler Matrix. In previous 

work, several Butler Matrix designs have been reported in the range 

of 3.1 GHz to 10.6 GHz. However, none of them achieve optimum 

performance in the frequency range of 3.1 GHz to 10.6 GHz with 

bulky size. In order to reduce the size and enhance the bandwidth 

performance of the Butler Matrix, multilayer technique is employed in 

the design. By employing this technique, compact Butler Matrix is 

achieved due to elimination of the crossovers. Both simulated and 

measured results of the compact multilayered UWB Butler Matrix 

show improved performance in the desired frequency range. The 

proposed UWB Butler Matrix achieves an improvement of 18.6% 

wider bandwidth compared to available UWB Butler Matrix and 

31.1% size reduction compared to planar configurations of Butler 

Matrix. 

 

 

 

 

1.6 Thesis Outline 
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 This thesis is organized into seven chapters. In Chapter 1, the overview of the 

whole project is discussed. This includes overview of the project background, 

problem statement, significance of the research, research objectives, explanation on 

the research scope and last but not least, the thesis organization. 

 

 Chapter 2 focuses on the literature reviews. Introduction and basic concepts 

of ultra wideband, smart antenna system, array factor, Butler Matrix, coupler and 

phase shifter are further discussed in this chapter. The theory of the design 

development is introduced. Comparison between available designed of the main 

components and also Butler Matrix itself are described.  

 

 Chapter 3 discusses the methodology of this research project. The research 

workflows of the whole research are presented in this chapter. The design parameters 

and specifications are also introduced in this chapter. The simulation software, 

Computer Simulation Technology (CST) Microwave Studio and MATLAB are 

utilized to get a clear visualization of overall design. In addition, the measurement 

process including the use of Vector Network Analyzer (VNA) is introduced. 

 

 In Chapter 4, the design of the coupler for this research is presented. Three 

designed couplers are introduced. The simulation and measurement results for all 

designed couplers are discussed and analysed on the parametric study of the coupler 

including the air gap analysis and alignment analysis are explained. Elaboration on 

the couplers results are also discussed in this chapter. 

 

 Chapter 5 introduces the designed phase shifter. Four designed couplers are 

introduced in this chapter. Simulation and measurement results of the designed phase 

shifters are discussed. Two analyzes on the phase shifter, which is on the stepped 

impedances and tapered transmission line also are elaborated in details at this 

chapter. 

 

 Proposed Butler Matrix design is further discussed in Chapter 6. The result 

for the whole Butler Matrix as the beam forming system is elaborated. The 

implementation of the 0º phase shift microstrip transmission line into the Butler 

Matrix design is further conversed in this chapter. Both simulation and measurement 
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results in term of scattering parameter, phase differences between each consecutive 

ports and phasor beam directions are described in details at this chapter. 

 

 In the last chapter, Chapter 7, this research work is concluded. In addition, the 

finding of the project, key contributions and recommendations for future works are 

proposed and described in this chapter. Last but not least, the list of references and 

appendices are provided at the end of this thesis. 
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