Universiti Teknologi Malaysia Institutional Repository

Channel acquisition and routing system for real-time cognitive radio sensor networks

Zubair, Suleiman (2015) Channel acquisition and routing system for real-time cognitive radio sensor networks. PhD thesis, Universiti Teknologi Malaysia, Faculty of Electrical Engineering.

[img]
Preview
PDF
242kB

Official URL: http://dms.library.utm.my:8080/vital/access/manage...

Abstract

The need for efficient spectrum utilization and routing has ignited interest in the Cognitive Radio Sensor Network (CRSN) paradigm among researchers. CRSN ensures efficient spectrum utilization for wireless sensor network. However, the main challenge faced by CRSN users have to deal with is the issue of service quality in terms of interference when using channels and degradation in multi-hop communication. This thesis proposes to overcome the interference due to contention and routing issues through the design of an efficient Channel Acquisition and Reliable routing System (CARS). CARS is designed to reduce carrier sense multiple access contention and enhance routing in CRSNs. CARS comprises of Lightweight Distributed Geographical (LDG), and Reliable Opportunists Routing (ROR) modules. LDG is a medium access control centric; cross-layer designed protocol to acquire a common control channel for signalling to determine the data channel. ROR is a network-centric cross-layer designed protocol to decide on a path for routing data packets. The result shows that LDG significantly reduces the overhead of media access contention and energy cost by at an average of 70% and 80% respectively compared to other approaches that use common control channel acquisition like Efficient Recovery Control Channel (ERCC) protocol. In addition, LDG achieves a 16.3% boost in the time to rendezvous on the control channel above ERCC and a 36.9% boost above Coordinated Channel Hopping (CCH) protocol. On the other hand, the virtual clustering framework inspired by ROR has further improved network performance. The proposed ROR significantly increases packet received at the sink node by an average of over 20%, reduces end-to-end latency by an average of 37% and minimizes energy consumption by an average of 22% as compared to Spectrum-aware Clustering for Efficient Multimedia routing (SCEEM) protocol. In brief, the design of CARS which takes the intrinsic characteristics of CRSNs into consideration helps to significantly reduce the energy needed for securing a control channel and to guarantee that end-to-end, real-time conditions are preserved in terms of latency and media content. Thus, LDG and ROR are highly recommended for real-time data transmission such as multimedia data transfer in CRSN.

Item Type:Thesis (PhD)
Additional Information:Thesis (Ph.D (Kejuruteraan Elektrik)) - Universiti Teknologi Malaysia, 2015; Supervisor : Prof. Dr. Norsheila Fisal
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:77926
Deposited By: Fazli Masari
Deposited On:18 Jul 2018 07:36
Last Modified:18 Jul 2018 07:36

Repository Staff Only: item control page