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Abstract — In this paper we present a ballistic electron emission
microscopy (BEEM) modeling for the Si/Ge quantum dots
characterization. BEEM is a new characterization technique by
using electrons ejected from the scanning tunneling microscopy
(STM) tip to investigate the metal-semiconductor interfaces.
Because of the high resolution of the STM system, BEEM is
promising in the characterization of quantum dots as the charge
transport on individual dot can be characterized compared to the
multitude of dots necessitated in other techniques. This method
requires three terminals: a connection to the STM tip to inject
electrons, a connection to the sample to collect electrons that
traverse the interface, and a third grounding terminal. The
energy and angular distribution of the injected electrons can be
controlled by varying the tip potential. By using the
characteristic data of the injected and collected electrons, many
useful transport-related properties of the sample can be obtained.
The silicon quantum dots (Si QDs) may be fabricated by taking
advantage of the Stranski-Krastanov growth model. Germanium
layer has been choosed as a barrier layer due to the large lattice
mismatch between Si and Ge. The n-type Si(100) was oxidized to
grow ~10 nm thickness of SiO, layer. Hemispherical Si nanodot
were self-assembled growth on an HF-treated SiO, layer by
LPCVD technique. The Ge layer were deposited on the pregrow
silicon dot. Thin gold (Au) films cap can be used to provide a
conductive layer on top of the Si QDs for the BEEM
measurement. When the STM tip is positioned on the dot, the
injected electron would experience a band profile similar to a
double-barrier heterostructure, wherein the quantum dot act as
the potential well. However, when the tip is positioned away from
the dot (off dot), the injected charge would rather experience a
potential step (single barrier) with the band profile.

Index Term - Ballistic electron emission microscopy (BEEM),
scanning tunneling microscopy (STM), silicon quantum dots (Si
QDs), characterization.

I. INTRODUCTION

The ballistic electron emission microscopy (BEEM)
technique is a three-terminal extension of conventional STM,
and utilizes an STM tip to inject hot electrons into a
semiconductor via a thin metallic layer. Hot electron is an
electron with kinetic energy higher than thermal energy, kgT.
In BEEM, an atomically sharp STM tip (emitter) is brought
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into close contact but not touching the thin conductive surface
(base) on the top side of a semiconductor substrate (collector).
If the electron injected energy is high enough, "ballistic"
electrons can overcome the Schottky barrier height at the
sample surface and are collected via a backside contact. The
collector current as a function of tip bias is called BEEM
current. These phenomenon can be explained by using a three-
step model: (i) electrons are injected from the STM tip into the
thin metallic layer (tunneling); (ii) electrons propagate through
the layer suffering collisions with different quasiparticles
(transport), and (iii) finally, electrons overcome the Schottky
barrier and enter into the semiconductor (matching of metal
and semiconductor wavefunctions across the interface).
BEEM technique was introduced by Bell and Kaiser in 1988
[11, 121

The collector current or BEEM current, is only a small
fraction of the tunnelling current injected by the STM tip into
metallic layer. At sufficiently small tunneling bias, only
ballistic carriers are able to enter the collector, i.e. those
carriers which have not been subject to any scattering event. In
addition to the energy, the momentum component parallel to
an interface is usually conserved to varying degrees. In fact, in
the simplest theories capable to quantitatively describe the
BEEM current as a function of the tunnelling bias, perfect
conservation of the parallel momentum has been assumed [3].
Energy and parallel momentum conservation have the effect
that the BEEM current, at a given tunnelling bias, is not only
sensitive to lateral variations of the potential barriers, but also
to any scattering processes taking place between the point of
injection at the surface and the collector.

The properties of silicon quantum dots (Si QDs) have been
studied intensively for nanoelectronic device applications.
Their unique physical properties, such as size confinement
effects and Coulomb blockade phenomena, make Si QDs
suitable for use in new silicon-based devices like single
electron transistors [4]. Because of electron mean free path in
silicon at room temperature is about 10 nm [5], it is necessary
to prepare Si QDs with size less than 10 nm to provides
electron transport ballistically in the dots.

In the previous work [6], we have proposed a BEEM study
for quantum dots characterization. The quantum dots under
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testing can be Si quantum dots, InAs quantum dots, AllnP
quantum dots, etc. In this paper, therefore, we present a
BEEM modeling for the characterization of silicon/germanium
self-assembled quantum dot heterostructures by using n-type
silicon (100) substrate.

II. THE PRINCIPLES OF BEEM TECHNIQUE

BEEM is a very useful technique to investigate various
semiconductor material properties such as Schottky barier
height [7], [8], MOS structure [9]-[11], band offsets [12], size-
quantized states [13], and local barrier height between
quantum dots and substrate [14]. Ballistic transport, means
electrons travel without scattering, occurs when device size is
much smaller than the electron mean free path. The simplest
structures of BEEM system are those consisting just of a thin
conductive layer deposited on the semiconducting collector, as
shown in Fig. 1(a). The electrons injected into conductive
layer by the STM tip have an energy equal to eV;, where V; is
the STM tip bias. The tickness of the layer must be
comparable to or less than the electron mean free path, so that
the electrons can transverse the layer ballistically (without
scattering) [15].

If their energy higher than the potential step at the interface,
the electron have a finite probability of being injected into
conduction band, and after traversing the barrier, reaching the
semiconductor substrate, where they emerge as a collector
current /.. The conduction band profile of a simple Schottky
diode sample is shown in Fig. 1(b) [15]. Electron tunnel from
the STM tip into the metal base. If eV, > eV, electron from tip
will be able to surmount the Schottky barrier and enter the
semiconductor (collector). The applied tunnel voltage with the
tip under negative voltage with respect to the base provides the
electron potential lies much higher in the STM tip than in the
base. Thus electrons entering the base by tunneling through
the vacuum barrier have energies high above the Fermi level
in the base metal, i.e. they are so-called hot electron.

Unlike other techniques (such as cathodoluminescence,
transmission electron microscopy (TEM), and electron beam
induced current (EBIC)), BEEM involves extremely low
energy electrons, typically in the 1 - 2 V range versus the kilo-
Volt range in other methods, and hence constitutes a unique
tool to examine dislocation scattering (free of electron hole
pair creation) and to study material buried well below the
surface. This new form of microscopy could turn out to be a
powerful tool for understanding the materials properties and
the effects of defects/dislocations on important transport
properties in the regime of interest for devices, i.e., few volts
[16].

The BEEM technique has also been used to measure
conduction band offsets, which are critical for the design of
new heterostructure devices such as transistors, lasers, etc.
Traditional methods based on current-voltage (/-V) and
capacitance-voltage (C-V) measurements have long yielded
highly varying results for the GalnP/GaAs system. Recent
theoretical calculations have shown that the electronic band

structure depends markedly on the degree of ordering, i.e., the
possible alternate stacking of Ga atoms and In atoms in an
ordered- instead of a random- array. By careful control of the
conditions of crystal growth, it is believed that the order
parameter can be changed although the degree of order still
varies spatially. Concurrent STM and BEEM measurements
have been used to spatially map out simultaneously the
ordered domains and the conduction band offsets as a function
of ordering. These measurements once again show the power
of BEEM to provide new information on electronic transport
in semiconductors on a local scale, not possible by any other
technique [17].
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Fig. 1. (a) The simplest structures of BEEM system are consisting of a thin
conductive layer on the semiconducting substrate, (b) a schematic of energy
diagram of a BEEM model on a Schottky barrier diode.

The Schottky barrier height formed at the metal-
semiconductor interface is then one of the quantities of
interest, determining the potential barrier to be surmounted by
the hot charge carriers. The barrier height, ®@g, can be obtained
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by measuring the collector current, /., or BEEM current as a
function of the tunnelling bias ¥}, and by fitting the resulting
spectra to a power law of the form:

1,(V,)=R(eV, - ®)* M

The exponent o has a value of 2 when quantum mechanical
reflection at the interface is neglected, or 5/2 if it is taken into
account within an effective mass approximation. Schottky
barrier height inhomogeneities are responsible for many
anomalies in the behaviour of macroscopic Schottky diodes.
Schottky barrier height fluctuations on a nanometer scale have
been observed by several groups [1], [18].

Kaiser and Bell [1] is one of the first to use this technique in
the characterization of semiconductor structures. In their work,
they described a ballistic electron spectroscopy technique to
characterize the spatially resolved charge transport properties
of the interfaces as well as the theoretical treatment in order to
understand the spectroscopic features they were observing.
Since then, many researchers have utilized BEEM in their
research on semiconductor structures and several extensive
reviews [18]-[20] have been published about the applications
of BEEM. Among the many of material systems were
investigated using BEEM include InAs/GaAs, Si p-n junction,
and SiGe strained layers [21], [22]. The Bell-Kaiser [2] and
the Ludeke-Prietsch model [23] uses a planar tunneling
formalism and transverse momentum conservation at the
metal-semiconductor interface to determine Schottky barrier
height. The Bell-Kaiser model has been found to fit the BEEM
current spectra for Au/Si system [2] by using a I, = (Vi—V,)*
approximation, see Eq. (1). However, Ludeke and Prietsch
[23] found that a I, =~ (V=V)"* model more closely
approximated conditions in a metal/GaP system and an
Au/GaAs system [24]. The difference in the Ludeke-Prietsch
model takes into account the electron mean free paths in the
base metal layers and quantum mechanical transmission at the
metal-semiconductor interface. However, at near threshold
conditions the difference between both models is very small
[19], [25] and within experimental error. Higher deviations
might be expected with voltages far from the threshold values.
These deviations might be caused by the voltage dependent
energetic distribution of the tunneling current, carrier
scattering in the metal overlayer as well as carrier scattering
and impact ionization in the semiconductor substrate.

III. PHYSICAL MODEL AND MEASUREMENT DESIGN

The first BEEM study of quantum dots were done by Rubin
et.al. [26] in their research on single InAs self assembled
quantum dots buried beneath a Au/GaAs interface. InAs dots
were grown on top of undoped GaAs buffer layer and covered
with GaAs cap layer. BEEM images show shifted current
thresholds when comparing spectra taken with the tip over the
quantum dot with off dot spectra. The off dot spectra showed
structure for Au on bulk GaAs. A slight dip in the center of
each dot was believed to be caused by strain induced

preferential buildup of the cap GaAs layer away from the
center of the dot during growth. They have been observed an
enhancement of the BEEM current when the tip was over the
buried quantum dots. The fine structure was consistent with
resonant tunnelling through two different quantum states of
the dot with an energy separation of ~0.1 eV.

When introducing BEEM, Bell and Kaiser [2] presented a
formula for the modelling of the ballistic current, which has
been widely utilized in BEEM since then. Their first step in
developing their model was to use the well-known formalism
for tunnelling between planar electrodes as an approximation.
For simplicity, the STM tip and the base layer are assumed to
be identical metals.

The silicon quantum dots (Si QDs) to be studied in this
work can be fabricated by taking advantage of the Stranski-
Krastanov growth model [27]. Germanium layer has been used
as a barrier layer due to the large lattice mismatch of Si and
Ge. Chemically cleaned by HF of n-type Si(100) wafer was
oxidized in O, ambient to grow ~10 nm thick SiO, layer.
Hemispherical Si nanodots were first self-assembled on an
HF-treated SiO, layer by using LPCVD technique. The Ge
layer may be deposited on the pregrow silicon dots via same
deposition processes. Thin gold (Au) films cap can be used to
provide a conductive layer on top of the Si QDs for the BEEM
measurement as shown in Fig. 2. There is no intralayer
required at the Au/Si QDs system. The STM tip will be used
to inject electrons in thin Au films. Electrons can travel
through these structures and be collected in the back contact of
semiconductor if two conditions are fulfilled: the Au film
thickness should be comparable or less than electron mean
free path (typically 10 nm for electron of 2 eV) and the
electron energy should be above the Schottky barrier height at
the interface.
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Fig. 2. Schematic of a BEEM set-up for Si/Ge quantum dot heterostructures.
STM tip may be positioned on the dot or away from the dot (off dot).

When the STM tip is positioned on the dot, the injected
electron would experience a band profile similar to a double-
barrier heterostructures of Ge/Si-QDs/SiO,/n-Si, wherein the
silicon quantum dot act as the potential well, as shown in Fig.
3(a). However, when the tip is positioned away from the dot
(off dot), the injected charge would rather experience a
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potential step (single barrier) with the band profile of
Ge/Si0,/n-Si, see Fig. 3(b). In the both case, if the injected
electron has enough energy will travel through the barrier to
reach the semiconductor back contact (collector) and thus
contribute to the BEEM current (Ic), see Fig. 2. These
phenomena are similar to reported by Reddy et al. [28] for InP
self-assembled quantum dots on GaAs substrate. The Bell-
Kaiser or Ludeke-Prietsch model may be used for the electron
transport analysis purpose on the Ge/Si QDs heterostructures
which is expected that the both models will be produced result
with almost same or a very little different only.
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Fig. 3. Typical conduction band profile that an injected electron would
experience when the STM tip is positioned on the dot (a) and off the dot
(away from the dot) (b).

Analysis based on the thermionic emission theory gives a
barrier height of Au/Ge contact of 0.4 eV at temperature of
130 K and 0.5 eV at room temperature [29], [30]. The BEEM

and internal photoemission (IPE) measurements in Au/Si
structures gives Schottky barrier of 0.79-0.83 eV [31]. Redy
et al. [28] obtained Au/GaAs barrier height of 0.92 £ 0.02 eV
by performing the BEEM spectroscopy on a reference GaAs
epilayer sample. The threshold of the off dot curve is
determined to be 1.24 + 0.02 eV, the band offset between
GaAs/InAlGaP is 0.32 + 0.02 eV. However, on dot spectrum
look quite different with appearance of an inflection point with
threshold of 1.17 £ 0.02 eV.

IV. CONCLUSION

The BEEM provides an alternative method for study of
electron transport properties on nanoscale devices as a
replacement for conventional -V and C-V measurement
techniques. The main advantage of the BEEM technique is its
very high resolution and promising in the characterization of
quantum dots as the charge transport on individual dot can be
characterized. As the beam of injected electrons is very
narrow, its diameter at the interface is estimated to be less than
10 nm. The expected energy resolution is typically 50 meV
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