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ABSTRACT 

This study provides information on the structure of solid oxide fuel cell 

(SOFC). Porous anode provides active site reaction while dense electrolyte layer 

prevents direct flow of gases through one electrode to another. Therefore, anode and 

electrolyte structural modifications were thoroughly investigated using different 

types of pore formers and various ceramic particle sizes, respectively. In the 

preliminary study, 0 to 10 wt.% corn starch and polyetherethylketone (PEEK) 

functioned as pore former were added into nickel oxide-yttria-stabilized zirconia 

(NiO-YSZ) anode suspensions. The results showed that high loading of pore former 

increased the porosity in anode but reduced the mechanical strength. As compared to 

using corn starch, addition of 2 wt.% PEEK produced anode with better porous 

structure by generating more connected open pores  and the hollow fibre (HF) was 67 

% stronger. The electrolyte of dual-layer HF was subsequently modified by varying 

the loading of YSZ particle sizes (i.e. micron, submicron and nano-sized) during 

suspension preparation. The most promising electrolyte layer with thin, dense, gas-

tight and defect-free was comprised of 70 % submicron-YSZ and 30 % nano-YSZ. 

The HF yielded the highest mechanical strength of 85 MPa, good gas-tightness 

behaviour of 3.16x10
-6

 molm
-2

s
-1

Pa
-1

 and successfully reduced the co-sintering 

temperature from 1450 to 1400 °C. Lastly, the anode suspension consist of 2 wt.% 

PEEK and electrolyte suspension composed of a mixture of particle sizes of micron, 

submicron and nano-sized YSZ in a ratio of 3:4:3 were co-extruded and co-sintered 

to produce the structural modified electrolyte/anode. Results revealed that the 

connected open pores at the entrance of anode inner surface resulted from the 

addition of pore former was significantly contributed to gas permeability of anode. 

However, the electrolyte was not fully densified due to less efficient electrolyte 

packing particles which resulted to the reduction in mechanical strength and integrity 

of HF. 
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ABSTRAK 

Kajian ini menyediakan maklumat mengenai struktur sel bahan api pepejal 

teroksida (SOFC). Anod berliang menyediakan ruang tindak balas aktif manakala 

lapisan elektrolit padat menghalang aliran langsung gas dari satu elektrod kepada 

yang lain. Oleh itu, ubahsuai struktur anod dan elektrolit masing-masing telah 

disiasat menggunakan pelbagai jenis pembentuk liang dan saiz zarah seramik. Dalam 

kajian awal, 0 hingga 10 % jisim  kanji jagung dan polieteretilketon (PEEK) yang 

berfungsi sebagai pembentuk liang telah ditambah ke dalam ampaian anod nikel 

oksida-ytria-zirkonia-terstabil (NiO-YSZ). Hasil kajian menunjukkan muatan 

pembentuk liang yang lebih tinggi meningkatkan lagi keliangan dalam anod tetapi 

mengurangkan kekuatan mekanikal. Berbanding dengan menggunakan kanji jagung, 

penambahan 2 % jisim PEEK menghasilkan anod dengan struktur berliang yang 

lebih baik dengan menjana lebih banyak liang terbuka yang bersambung dan gentian 

geronggangnya (HF) adalah 67 % lebih kuat. Elektrolit dwi-lapisan HF kemudiannya 

diubahsuai dengan mengubah muatan saiz zarah YSZ (iaitu mikron, submikron dan 

nano) semasa penyediaan ampaian. Lapisan elektrolit yang paling berpotensi dengan 

ciri-ciri nipis, tumpat, kedap gas dan tanpa kecacatan itu terdiri daripada 70 % 

submikron-YSZ dan 30 % nano-YSZ. HF tersebut menghasilkan kekuatan mekanikal 

tertinggi iaitu 85 MPa, sifat gas-ketat yang baik iaitu 3.16x10
-6

 molm
-2

s
-1

Pa
-1

 dan 

berjaya mengurangkan suhu pensinteran bersama dari 1450 ke 1400 °C. Akhir sekali, 

ampaian anod yang mengandungi 2 % jisim. PEEK dan ampaian elektrolit dengan 

campuran saiz zarah  mikron, submikron dan nano YSZ dalam nisbah 3:4:3 telah 

disemperit dan disinter bersama bagi menghasilkan elektrolit/anod dengan struktur 

terubahsuai. Keputusan menunjukkan bahawa liang terbuka yang berhubung di jalan 

masuk permukaan dalaman anod hasil daripada penambahan pembentuk liang adalah 

penyumbang ketara kepada kebolehtelapan gas anod. Walau bagaimanapun, 

elektrolit tidak tumpat sepenuhnya kerana penyendatan zarah elektrolit yang kurang 

cekap yang menyebabkan kepada pengurangan kekuatan mekanikal dan integriti HF. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

The fuel cell is extensively discovered as clean and sustainable technology 

for producing electricity. This is due to the major threats that need to be tackled such 

as the rising of oil price, serious global warming and the soaring of human demand 

on energy (Traversa, 2009). Fuel cell shows promising characteristics to solve these 

problems as it consumes fuel at high efficiency with less impact on the environment. 

The technology does not generate significant amounts of pollutants such as carbon 

monoxide and nitrogen oxides, and yields more electricity from the same amounts of 

fuel especially when compared with internal combustion engines (Atkinson et al., 

2004). 

Generally, the fuel cell is defined as an electrochemical device which 

converts chemical energy of fuel directly into electrical energy. It produces 

electricity through a chemical reaction, without undergoing combustion process. The 

energy conversion system is very efficient in generating electricity either for 

stationary or transportation applications (Barbir, 2008). In addition to that, the fuel 

cell is mechanically ideal as it does not require any moving parts during operation, 

and therefore, making them quiet and reliable sources of power. 

The fuel cell is made up of an electrolyte and two conducting electrodes, 

called as anode (positive electrode) and cathode (negative electrode). The electrolyte 

allows the ion transfer (depend on the type of fuel cells; anion-conducting and 



2 

 

cation-conducting electrolyte) from one electrode to the other. In electrodes, the 

operation of fuel cells involves a combined oxidation-reduction reaction. Oxidant is 

reduced on the cathode side and fuel is oxidized in the anode side. Electrons that 

released by anode are transferred to the cathode via external load, by which the 

production of electricity is realized.  

There are many kinds of fuel cell have been introduced. However, this study 

is focusing on solid oxide fuel cell (SOFC) based on solid oxide electrolyte. SOFC 

becomes a promising technology in the power generation field (Zuo et al., 2012) 

because of its great flexibility of fuel from biomass to pure hydrogen (Lo Faro et al., 

2012). SOFC operates at high operating temperature ranging from 500 °C to 1000°C. 

Operation in such high operating temperature allows an internal reforming reaction 

(conversion of hydrogen from hydrocarbon) to occur. Therefore, fuel pre-treatment  

is not required for SOFC system since the reforming reactions could directly promote 

within anode cells due to the high operating temperature (Assabumrungrat et al., 

2004). 

Two structural designs of the SOFC have been commercialized; planar and 

tubular SOFCs. The tubular design has been introduced by extrusion method in order 

to prevent the thermal shock problem facing by conventional planar design. Since 

power density is inversely proportional to the tubular cell diameter, Singhal and 

Kendall (2003) introduced a smaller cell diameter known as micro-tubular SOFCs 

(MT-SOFCs) to boost the performance. In fact, the development of this advanced 

cell design, i.e. MT-SOFCs promote an excellent thermal stability during rapid heat 

cycling, quick start-up capability, high power output density, low capital cost and 

portable characteristics as compared to the conventional planar and tubular SOFCs  

(Meng et al., 2013). 

The first generation of MT-SOFC was designed in an electrolyte-supported 

SOFC system with yttria-stabilized zirconia (YSZ) electrolyte tubes up to 5 mm in 

diameter. Thick electrolyte layer was first produced to serve as ―cell backbone‖, that 

is responsible to provide mechanical strength to the entire cell for deposition of the 

remaining cell layers (Wei et al., 2008). Other promising designs are electrode-
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supported SOFC which uses thick anode or cathode as the supporting layer. Table 1 

shows the difference of the three supported systems (i.e. Electrolyte, anode and 

cathode supporting layer). Based on this comparison, it can be seen that anode-

supported MT-SOFC is more favourable because it allows the application of a thin 

electrolyte layer, which results to the reduction in ohmic lose and consequently, 

enhance cell power density (Buchkremer et al., 1997; Mizutani, 2008).   

Current method for fabricating the anode-supported MT-SOFC is very 

challenging. The SOFC comprises of cathode/electrolyte/anode multi-layer hollow 

fibre (HF) as shown in Figure 1.1, need to be fabricated. This fabrication of multi-

layer HF involves many steps of extrusion and layer depositions (Wei et al., 2008). 

Each step needs to undergo a sintering process and these repetition steps lead to high 

fabrication cost. Fortunately, the cost can be reduced by using an economical 

fabrication method, i.e. single-step co-extrusion and co-sintering method.  

 

Figure 1.1: Schematic diagram of anode-supported MT-SOFC comprised of a thin 

electrolyte layer and two electrodes, where anode acts as support (Othman, 2011). 

The single-step fabrication reduces the cost, energy, chemical and time 

production because it fabricates electrolyte/anode dual-layer hollow fibres (HFs) 

simultaneously with smaller diameter and better adhesion (Droushiotis et al., 2009). 

The phase inversion technique was also applied during co-extrusion in order to form 

asymmetric structure on the prepared HF (Li, 2007). Therefore, in this study, the 

single-step phase inversion-based co-extrusion and co-sintering method can be 

employed to fabricate the electrolyte/anode dual-layer hollow fibre with desired 

anode and electrolyte microstructure.  

 
Electrolyte  Cathode 

Anode 

support 
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Table 1.1: The advantages and disadvantages to different MT-SOFC performances. 

MT-SOFC 

Configuration 
Electrolyte-supported SOFC 

Electrode-Supported SOFC 

Anode-supported SOFC Cathode-supported SOFC 

 

Schematic 

images 

 

 

Thick electrolyte 

 

 

Thick anode 

 

 

Thick cathode 

Advantages  High mechanical robustness due 

to dense structures and good 

stability for RedOx (Reduced 

and Oxidation Atmosphere) 

cycles (Sammes et al., 2005) 

 Gas-diffusible due thin 

electrodes layer (Sammes et al.,  

2005) 

 Low operating temperature (about 750 °C) 

and ohmic resistance due thin electrolyte 

layer (Mizutani, 2008) 

 High the electrical output due to low ohmic 

resistance (Mizutani, 2008) 

 Low materials cost since nickel (Ni) or 

nickel oxide (NiO) is relatively cheap 

 Easy to fabricate  

 Good stability under RedOx 

condition and low carbon deposition 

due thin anode (Lee, 2003)  

     
   

   C    E   A     C E   A    A E    C 

4
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Disadvantages  High ohmic losses resulting 

from thick electrolyte layer 

(Mizutani, 2008) 

 Low mechanical reliability due to porous 

structures and low RedOx stability 

(Sammes et al., 2005) 

 Lack of study and research based on 

cathode-supported  

 Induce chemical reaction between 

cathode and electrolyte at high 

sintering temperature (Sarikaya et 

al., 2012) 

 High polarisation resistance 

(Sarikaya et al.,  2012) 

5
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1.2 Problem Statements 

The electrolyte/anode dual-layer HF can be fabricated via single-step phase 

inversion based-co-extrusion method and, followed by co-sintering process. A 

number of researches have been reported on the feasibility of using this fabrication 

method to produce well-adhered electrolyte/anode dual-layer HF in economic ways 

(Droushiotis et al., 2009; Droushiotis et al., 2010; Othman et al., 2010b; Othman et 

al., 2011b). Nevertheless, the most challenging issues that require to be tackled is 

during co-sintering. Co-sintering for HF comprises of two different materials at high 

temperatures (1450 
°
C) to obtain full densification of the electrolyte layer might 

reduce the porosity in anode layer and it utilizes high energy consumption. Dense 

electrolyte layer has been compulsory since electrolyte acts as a barrier between 

electrodes, preventing the direct flow of fuel and oxidant whereas, anode should be 

porous to facilitate fuel and products. 

Therefore, the conventional techniques of adding pore formers and different 

ceramic particle sizes may be good alternatives to create pores in anode and enhance 

the particle packing of the electrolyte layer respectively. It was shown that the 

addition of  degradable pore-forming agent such as graphite (Lee, 2003), starch 

(Haslam et al., 2005), poly methyl methacrylate beads (PMMA) (Suzuki et al., 2009) 

into the anode suspension had successfully induced the macro-size pore in anode 

substrate after sintering. While, the addition of different particle sizes (especially 

nano-sized) is believed to improve the particle packing (Liu et al., 2006) thus 

increase the densification of electrolyte layer during sintering.  

Nevertheless, aforementioned techniques of using pore forming agent and 

different ceramic particle sizes have never been reported for fabricating 

electrolyte/anode dual-layer HF using the phase inversion-based co-extrusion and co-

sintering method. Hence, this study significantly reports on the effect of pore formers 

in generating anode with highly porous structure and the influence of particle sizes in 

producing electrolyte with dense and gas-tight property. As the results of excellent 

electrolyte densification for dual-layer HF at low co-sintering temperature, it may 

also preserve the porosity in anode layer and minimizes the energy consumption.  
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1.3 Objectives of Study 

The primary purpose of this work is to fabricate yttria-stabilized zirconia 

(YSZ) - based dual-layer hollow fibre consists of porous anode and dense electrolyte 

layer for high temperature MT-SOFC. The specific targets are as follows: 

i. To investigate the fabrication of porous anode using corn starch and 

polyetheretherketone (PEEK) as pore former via phase inversion-based 

casting method. 

 

 

ii. To examine the densification of thin electrolyte layer using different loading 

of ceramic particle size via phase inversion-based co-extrusion and co-

sintering method. 

 

 

iii. To analyze the properties of prepared anode and electrolyte in terms of their 

microstructure, crystal structure, mechanical strength, gas-tight and porosity.  

1.4 Scopes of Study 

In order to achieve the objectives of this research, the following scopes are 

outlined: 

i. Analyzing the sintering shrinkage behaviour of 30-70 wt% nickel oxide 

(NiO) loading in anode composition and also the YSZ electrolyte so that 

well-matched between layers are achieved during co-sintering process. 

 

 

ii. Investigating the addition of polyetheretherketone (PEEK) and corn starch as 

pore former with different loadings from 0-10 wt% into anode suspension as 

an effort to produce anode with adequate porosity and mechanical strength. 
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Phase inversion based-casting method and sintering are applied to produce 

the flat sheets thick anodes. 

 

 

iii. Characterizing the anode flat sheet before and after sintering in terms of 

microstructure, crystal structure, porosity, mechanical durability and thermal 

stability. 

 

 

iv. Examining the effect of different loading of YSZ particle sizes (i.e. Micron, 

submicron and nano-sized) in electrolyte suspension. HFs are formed through 

the phase inversion-based co-extrusion method using a triple orifice spinneret 

and followed by co-sintering at different temperature (1300, 1350, 1400 and 

1450 °C).  

 

 

v. Examining the properties of the precursor and sintered dual-layer HF using 

scanning electron microscopy (SEM), gas tightness test and 3-point bending 

test. 

 

 

iv. Comparing the properties of dual-layer HF before and after the anode, and 

electrolyte modifications. A modified dual-layer HF with a combination of 

the best pore former loading in anode and different loading of particle sizes in 

electrolyte was made via phase inversion-based co-extrusion and co-sintering 

method.  
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