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ABSTRACT 

 

 

 

 

 Accurate information on future river flow is a fundamental key for water 

resources planning, and management. Traditionally, single models have been introduced 

to predict the future value of river flow.  However, single models may not be suitable to 

capture the nonlinear and non-stationary nature of the data. In this study, a three-step-

prediction method based on Empirical Mode Decomposition (EMD), Kernel Principal 

Component Analysis (KPCA) and Least Square Support Vector Machine (LSSVM) 

model, referred to as EMD-KPCA-LSSVM is introduced. EMD is used to decompose 

the river flow data into several Intrinsic Mode Functions (IMFs) and residue. Then, 

KPCA is used to reduce the dimensionality of the dataset, which are then input into 

LSSVM for forecasting purposes. This study also presents comparison between the 

proposed model of EMD-KPCA-LSSVM with EMD-PCA-LSSVM, EMD-LSSVM, 

Benchmark EMD-LSSVM model proposed by previous researchers and few other 

benchmark models such as Single LSSVM and Support Vector Machine (SVM) model, 

EMD-SVM, PCA-LSSVM, and PCA-SVM.  These models are ranked based on five 

statistical measures namely Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), Correlation Coefficient ( r ), Correlation of Efficiency (CE) and Mean 

Absolute Percentage Error (MAPE). Then, the best ranked model is measured using 

Mean of Forecasting Error (MFE) to determine its under and over-predicted forecast 

rate. The results show that EMD-KPCA-LSSVM ranked first based on five measures for 

Muda, Selangor and Tualang Rivers. This model also indicates a small percentage of 

under-predicted values compared to the observed river flow values of 1.36%, 0.66%, 

4.8% and 2.32% for Muda, Bernam, Selangor and Tualang Rivers, respectively. The 

study concludes by recommending the application of an EMD-based combined model 

particularly with kernel-based dimension reduction approach for river flow forecasting 

due to better prediction results and stability than those achieved from single models.  
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ABSTRAK 

 

 

 

 

 Maklumat yang tepat mengenai masa hadapan aliran sungai adalah kunci asas 

kepada perancangan dan pengurusan sumber air. Secara tradisi, model tunggal telah 

diperkenalkan untuk meramalkan nilai masa depan bagi aliran sungai. Walau 

bagaimanapun, model tunggal mungkin tidak sesuai untuk mengenalpasti ketaklelurusan 

dan ketakpegunan yang wujud dalam data. Dalam kajian ini, kaedah tiga langkah-ramalan 

berdasarkan Mod Impirikal Penguraian (EMD), Kernel Utama Analisis Komponen (KPCA) 

dan model Kuasa Dua Terkecil Mesin Sokongan Vector (LSSVM), yang disebut sebagai 

EMD-KPCA-LSSVM diperkenalkan. EMD digunakan untuk menguraikan data aliran 

sungai kepada beberapa Fungsi Intrinsik Mod (IMFs) dan reja. Kemudian, KPCA digunakan 

untuk mengurangkan kedimensian set data yang kemudiannya dimasukkan ke dalam 

LSSVM untuk tujuan peramalan. Kajian ini juga membandingkan antara model cadangan 

EMD-KPCA-LSSVM dengan EMD-PCA-LSSVM, EMD-LSSVM, model Penanda Aras 

EMD-LSSVM yang dicadangkan oleh penyelidik sebelum ini dan beberapa model penanda 

aras lain seperti model tunggal LSSVM dan Mesin Sokongan Vector (SVM), EMD-SVM, 

PCA-LSSVM dan PCA-SVM. Model ini dinilai berdasarkan lima ukuran statistik iaitu 

Ralat Mutlak Min (MAE), Ralat Punca Min Kuasa Dua (RMSE), Pekali Kolerasi ( r ), 

Kecekapan Korelasi (CE) dan Peratus Ralat Mutlak Min (MAPE). Kemudian, model terbaik 

kedudukannya diukur menggunakan Min Ramalan Ralat (MFE) untuk menentukan kadar 

terkurang dan terlebih ramalan. Keputusan menunjukkan bahawa EMD-KPCA-LSSVM 

menduduki tempat pertama berdasarkan lima ukuran bagi Sungai Muda, Sungai Selangor 

dan Sungai Tualang. Model ini juga menunjukkan peratusan yang kecil bagi nilai terkurang 

ramal berbanding nilai aliran sungai yang direkodkan masing-masing sebanyak 1.36%, 

0.66%, 4.8% dan 2.32% bagi Sungai Muda, Bernam, Selangor dan Sungai Tualang. Kajian 

ini membuat kesimpulan dengan mengesyorkan penggunaan model berasaskan EMD 

terutamanya dengan pendekatan pengurangan dimensi berasakan Teras untuk ramalan aliran 

sungai kerana hasil ramalan yang lebih baik dan kestabilan yang dicapai berbanding dengan 

keputusan yang diperolehi daripada model tunggal. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

In general, hydrology is the scientific study of the characteristics of water, its 

distribution, its surface and its impact on the soil and the atmosphere.  Hydrological 

data such as flows and rainfall are the basic sets of information used in designing 

water resources systems.  The essential information about the characteristics and 

volume of the river flow are very important especially during monsoon season.  

Knowing and analysing the statistical properties of hydrological records and data 

such as rainfall or river flow, enables hydrologists to estimate future hydrological 

phenomena, especially in predicting the future river flow.  The flow is critical in 

many activities such as designing flood protections for urban areas and agricultural 

land.  The quantity of water can be measured from the river for water supply or 

irrigation.  River flow also plays a significant role in establishing some of the critical 

interactions that occur between physical, ecological, social or economic processes. 

 

 

Therefore, continuous hydrological data, such as the rainfall-runoff or river 

flow data are necessary.  With the help of the data, the pattern of the flow or the 

trend can be determined, thus the design and planning can be done accordingly.  For 

instance, heavy river flow may cause some damage to the environment such as 
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flood.  Flood, also referred to as ‘deluge’, is a natural disaster that could damage 

properties and infrastructure, harm animals, plants, and even human lives.  Flood 

occurs when the volume of water exceeds the capacity of the catchment area.  

Meanwhile, low river flow may also cause some major problems for water supply 

such as domestic consumption, transportation, industrial, as well as impeding the 

function of hydroelectric power plants.  

 

 

River flow is a fundamental component of a water resource system.  A 

reliable prediction of the river flow is always important for a thorough planning and 

smooth operation of the water resource system.  Because of this, the ability to 

forecast the future river flow will be beneficial to water management and help in 

flood control.  Moreover, reliable river flow prediction can prevent natural disasters 

such as floods, and optimize the management of water resources.  The extent of 

damage caused by flood undeniably highlights the importance of river flow 

forecasting (Knight and Shamseldin, 2006).  However, in order to issue flood 

warning as well as to manage the water resources properly, there is a need to 

enhance the prediction of future river flow. 

 

 

 

 

1.2 Problem Statement 

 

 

There is a variety of statistical modelling approaches developed to capture 

the properties of hydrological time series forecasting for a reliable prediction of 

water flow: such as the physically based distribution model known as ‘knowledge-

driven modelling’ and empirical models, known as ‘data-driven-based modelling’.  

Knowledge-driven modelling is also useful for predicting other catchment variables 

such size, shape, slope, and storage characteristics of the catchment, as well as 

geomorphologic characteristics like topography, land use patterns, vegetation, and 

soil types that affect the infiltration.  It is assumed that forecasting could be 
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improved if the catchment characteristic variables which affect the flow are included 

(Jain and Kumar, 2007; Dibike and Solomatine, 2001; Shabri and Suhartono, 2012). 

 

 

Although combining other variables may improve the prediction accuracy, in 

practice, for developing countries such as Malaysia, the information is often either 

difficult to obtain or unavailable.  Moreover, these variables and many of the 

combinations in generating river flow, make predication a complex process.  This 

difficulty is exacerbated by the complex nature of the data’s multiple inputs and 

parameters, which are varied in space and time and often not clearly understood 

(Zhang and Govindaraju, 2000; Jain and Kumar, 2007).  

 

 

On the contrary, data-driven model mathematically identifies the connection 

between the inputs and output without considering the internal physical mechanism 

of the catchment areas.  The data-driven model uses historical data that are based on 

extracting and reusing the information that are implicitly contained in the 

hydrological data without directly taking into account any physical load that 

underlies the rainfall-runoff process (Samsudin et al., 2011).  In river flow 

forecasting, the data-driven model, which uses previous river flow time series data, 

becomes increasingly popular (Kisi, 2008; 2009; Wang et al., 2009).  Many 

researchers only use the historical river flow data for forecasting future river flow as 

it offers fast computing time and requires minimum information (Adamowski and 

Sun, 2010; Kisi, 2004; 2008; Wang et al., 2009; Samsudin et al., 2011). 

 

 

Improving forecasting accuracy is fundamental yet it is one of the more 

difficult tasks faced by decision-makers in many areas.  Computer science and 

statistics have improved the data-driven modelling approaches in discovering the 

patterns in water resources time series data.  Using hybrid models has become a 

common practice to improve the forecasting accuracy.  Several studies have showed 

that hybrid models can be an effective way to improve predictions compared to the 

models that were used individually (Zhang, 2003; Jain and Kumar, 2007).  
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Recently, many researchers believe in the idea of ‘divide-and-conquer’ or the 

‘decompose-and-ensemble’ principle in constructing the forecasting model (Lin et 

al., 2012; Yu et al., 2008).  An Empirical Mode Decomposition (EMD) offers the 

solutions for nonlinearity and nonstationary issues by decomposing the nonlinearity 

and nonstationary behaviour of the time series into a series of valuable independent 

time resolutions (Tang et al., 2012).  Meanwhile, linear Principal Component 

Analysis (PCA) is widely used as a data pre-processing technique and commonly 

used for dimensionality reductions (Lee et al., 2004).  PCA is a statistical technique 

that can linearly transform a set of correlated variables into a smaller set of 

uncorrelated variables named Principal Components (PCs) where the first few PCs 

represent most of the information in the original data set.  

 

 

However, some researchers argued that PCA was not the best technique in 

dimensionality reductions as PCA only identifies the linear structure in a data set.  

Hence, Scholkopf et al. (1998) introduced a Kernel Principal Component Analysis 

(KPCA) to extract the nonlinear principal component features from the data.  KPCA 

has been successfully applied in recent years as a promising technique in various 

areas, such as de-noising images and dimensionality reductions (Lee et al., 2004).  

Researchers also believe that the combinations of two or more models are able to 

increase the prediction accuracies by applying the combination model as an 

alternative way to resolve the problem in the forecasting area.  There are many types 

of combination models, which are very helpful in forecasting area and the number of 

combination models are increasing every day.  On top of that, there are varieties of 

useful combination models in time series forecasting that can be used to predict 

future river flow. 

 

 

The aim of this study is to develop a new forecasting model, which is able to 

forecast the monthly river flow data, and at the same time overcome the weakness of 

the existing models such as Autoregressive Integrated Moving Average (ARIMA), 

Artificial Neural Network (ANN) and many others.  The first combination model 

used in this study is adapted from Chen and Wei (2012).  The first combination 

model measures the correlation between each of the IMFs produced by using EMD, 
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with the original time series data, using Pearson product moment correlation and 

Kendall rank correlation.  The meaningful signals are aggregated together as the 

new input for BPN forecasting stage.  Using the idea from Chen and Wei (2012), 

this study uses LSSVM instead of BPN as the forecasting tool.  

 

 

The second combination model is adopted from Ding et al. (2010) and Lin et 

al. (2010).  They have proposed EMD-LSSVM for precipitation and the foreign 

exchange rate forecasting is referred as the Benchmark EMD-LSSVM.  In the 

second combination model, EMD is used to decompose the data into several IMFs 

and residue.  The IMFs are forecasted using LSSVM individually.  Finally, the 

forecasted values are reconstructed as the sum of all components.  The third 

combination of models used in this study is by applying the idea from Zhou et al. 

(2013), which combined the EMD with feature extraction techniques with SVM 

model for signal recognition.  Using the idea from Zhou et al. (2013), this study 

aims to explore the application of combined models which used EMD, KPCA, and 

LSSVM, also referred as EMD-KPCA-LSSVM model and to test the capability and 

effectiveness of the proposed model with other models. 

 

 

This study attempts to adopt a three-steps-prediction based on EMD-KPCA-

LSSVM to forecast the monthly river flow in Malaysia.  Since previous researchers 

have employed EMD-SVM, EMD-LSSVM referred to as Benchmark EMD-LSSVM 

and KPCA-LSSVM in their research, it is expected that the three-steps-prediction 

using EMD-KPCA-LSSVM will be able to further enhance the forecasting accuracy 

of river flow. Therefore, the research questions are as stated below: 

 

 

1. How to design a three-steps-prediction architecture model based on EMD 

as the decomposition method with KPCA technique for dimensional 

reduction or feature extraction, and combined with LSSVM? 
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2. Will the proposed EMD-KPCA-LSSVM improve the prediction accuracy 

and at the same time outperform other models? 

 

 

Thus, the following issues are considered in order to solve these problems:  

 

 

i. As PCA is usually used for dimensional reductions, will KPCA 

outperform the PCA technique? 

 

 

ii. As the Benchmark EMD-LSSVM is employed in other forecasting areas, 

can Benchmark EMD-LSSVM be employed in the river flow 

forecasting? 

 

 

 

 

1.3 Research Goal 

 

 

The goal of this research is to develop and propose a three-steps-prediction 

model that combines EMD and KPCA with the LSSVM referred as EMD-KPCA-

LSSVM for river flow forecasting.  The results of the proposed model are compared 

with other models and are examined to determine whether the proposed model of 

EMD-KPCA-LSSVM significantly outperforms the others.  The proposed three-

steps-prediction of EMD-KPCA-LSSVM is expected to be useful for river flow 

forecasting. 
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1.4 Research Objectives  

 

 

In view of the aforementioned problems, this study intends to propose the 

three-steps-prediction model to predict the monthly river flow in Malaysia.  Some of 

the specific objectives of the study are: 

 

 

1. To explore the capability of combining EMD with LSSVM model for 

river flow forecasting.  

 

 

2. To design and develop a model based on EMD-KPCA-LSSVM, which 

combines decomposition, data pre-processing, and forecasting techniques 

for river flow forecasting. 

 

 

3. To evaluate the performance of the proposed model and compare it with 

other models which are SVM, LSSVM, PCA-SVM, PCA-LSSVM, 

EMD-SVM, EMD-LSSVM, Benchmark EMD-LSSVM, and EMD-PCA-

LSSVM. 

 

 

 

 

1.5 Research Scope  

 

 

The scope of this research includes: 

 

 

i. The research focused on proposing a new method for time series forecasting 

of EMD-KPCA-LSSVM, which combines the decomposition technique with 
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KPCA as the data pre-processing technique and LSSVM as a forecasting 

tool. 

 

 

ii. Real time series data of monthly river flows are taken from JPS, Malaysia 

from four different rivers that are selected as the case studies. 

 

 

iii. Radial basis function is selected as the kernel function for both SVM and 

LSSVM models. 

 

 

iv. The new obtained datasets from PCA and KPCA are set within two-cut-off 

values, which are from 70% to 90%. 

 

 

v. Several evaluation measures are used to verify the best models, which are 

mean absolute error (MAE), root mean square error (RMSE), correlation 

coefficient (r), mean absolute percentage error (MAPE), and Nash–Sutcliffe 

coefficient efficiency (CE). The model with smallest MAE, RMSE, and 

MAPE, and the largest values of r and CE is considered as the best model.  

 

 

 

 

1.6 Research Justification 

 

 

This research is expected to contribute towards the fulfilment of the need to 

produce an optimal architecture of the model, which is more flexible than before, as 

well as to improve the model’s prediction accuracy.  The obtained results are 

expected to demonstrate higher accuracy and superb predictive capability in 

comparison to some previous models available in the literature.  
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1.7 Significance of the Study 

 

 

Predicting the future river flow is very important where heavy river flow can 

cause problems such as flooding and erosion, while low river flow is likely to 

restrict the supply of water for domestic use, industrial and hydroelectric power 

generation.  The study reviews the effectiveness of the proposed model as an 

alternative tool in forecasting.  This research attempts to study the suitability of the 

data decomposition technique of EMD and the data pre-processing technique using 

the KPCA model where the original data are decomposed into several signals.   

KPCA is used for dimensionality reduction, and the newly obtained data are used to 

forecast the future value of the river flow.  As this study will provide the information 

of the future river flow value based on past time series data, it is required for the 

proposed model of EMD-KPCA-LSSVM to forecast the monthly river flow in 

Malaysia in order to produce a better result.  This will provide a better 

understanding of the trend of the river flow in Malaysia.  

 

 

 

 

1.8 Thesis Outline 

 

 

This thesis consists of six chapters and each of the chapters were discussed 

accordingly.  The first chapter presents the introduction of this study.  It describes 

the background of the study followed by the problem statements, the research goal, 

objective and the scope of study.  Chapter 1 ends with research justification and 

elaboration on the significance of the study. 

 

 

The second chapter provides an overview and the literature study of each of 

the models used in this research, as well as its latest application in hydrology.  The 

purpose of the literature review provided in this study is to review previous 

researches, which are related to the current study.  This chapter also review the 
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advantages of using combination or hybrid or conjunction models.  Chapter 2 

finishes with a table, summarizing the previous researches in hybrid models. 

 

 

Chapter 3 presents the research methodology which describes the 

characteristics of the catchment area and its locations.  This chapter also describes 

the application of ADF and BDS tests used in this research.  Furthermore, Chapter 3 

also describes the approaches employed in the forecasting area, which are EMD, 

PCA, KPCA, SVM, and LSSVM models.  Other than that, it also describes the 

proposed three-steps-prediction model based on the EMD-KPCA-LSSVM model.  

The statistical performances used in the study are also described in detail. 

 

 

Chapter 4 discussed the experiments and applications of the selected models, 

used in this study.  In this chapter, explanation and selection of PCs and KPCs, 

justification on IMFs and residue selections after decomposition are discusses in 

details.  The results of the Single SVM, Single LSSVM, PCA-based models which 

are PCA-SVM and PCA-LSSVM, EMD-based models which are EMD-SVM, 

EMD-LSSVM, and the three-steps-prediction model which are EMD-PCA-LSSVM 

and EMD-KPCA-LSSVM are presented and consequently, the best results of each 

model are selected.  

 

 

Chapter 5 carries the comparisons and discussions for models used in all the 

case studies.  The obtained results are also compared to EMD-LSSVM, proposed by 

Ding et al. (2010) and Lin et al. (2012) and which are referred as the Benchmark 

EMD-LSSM model.  The performance of each-based models which are PCA-based 

and EMD-based models are also discusses. 

 

 

Chapter 6 concludes the thesis by providing details conclusions drawn from 

the study and highlighting its contributions. This chapter also suggests 

recommendation for future research, in order to enhance the applicability and 

capability of the proposed model in either hydrological or forecasting area.  
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1.9 Research Framework 

 

 

To achieve the set out objectives, this study was conducted by following the 

presented workflow in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 : Research Framework
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