PERFORMANCE EVALUATION OF CONFORMAL AND STRAIGHT COOLING CHANNELS ON INJECTION MOULDED PART

SHAYFULL ZAMREE BIN ABD RAHIM

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > DECEMBER 2015

In the name of Allah, Most Gracious, Most Merciful

To my beloved wife Azzurawaty Binti Yusuf, who is praying for me and who provided me with support, help and encouragement that greatly contributed to the successful completion of my studies.

To my daughter Nur Allya Syaffiyah, and to my sons Muhammad Amirun Azzwar and Muhammad Amirun Amzar who have brought wonderful fun, great motivation and bright inspiration into my life.

ACKNOWLEDGEMENT

Alhamdulillah, all praise is due to Allah S.W.T, the Most Beneficent and the Most Merciful, who has taught me what I knew not.

First and foremost, I wish to express special thanks, appreciation and deep gratitude to my main supervisor, Prof. Dr. Safian Sharif, who has provided continuous guidance, advice, encouragement, support and generous amount of time in helping me to complete this research. His remarkable unique ways and professionalism of handling my weaknesses has turned my simplistic mind to see and think in more rational and critical view. Special thanks also to Assoc. Prof. Dr. Azlan Mohd. Zain, my honourable co-supervisor, for his continuous guidance, committed support and invaluable advice throughout my study.

Sincere appreciation of course goes to my friends who gave me unselfish support and my family, especially my wife Azzurawaty Yusuf for her support and encouragement throughout the completion of this research. Without their endless sacrifices, constant love and steadfast support, I would never have reached this level. To my daughter Nur Allya Syaffiyah and my sons Muhammad Amirun Azzwar and Muhammad Amirun Amzar, it is to all of you I dedicate this effort.

Above all, I would like to offer my deepest appreciation and thanksgiving to Allah SWT. There is no way to measure what You've bestowed. You are The One who has made things possible. You deserve all glory and honour.

ABSTRACT

In injection moulding process, warpage is one of the main quality aspects measured for moulded parts while cycle time to produce a part indicates the efficiency of the process. Efficient cooling is a huge challenge to many mould designers for achieving a uniform thermal distribution in an injection mould where it affects both quality and productivity. The use of conformal cooling design has been reported as very effective to distribute thermal uniformly, thus able to improve part quality as well as reducing moulding cycle time. However, most of previous researchers only focused on simulation studies and they hardly performed experimental works to verify the simulation results. In this study, a Milled Groove Square Shape (MGSS) conformal cooling channel has been designed, simulated, fabricated and tested using a front panel housing as the case study. Performance evaluations on the MGSS conformal cooling channel and straight cooling channel were conducted using simulation and experimental works in terms of quality (warpage) and productivity (cycle time) of the moulded part. Mould and coolant input temperatures were varied in both evaluations, i.e. mould temperature (40 °C to 80 °C) and coolant temperature (25 °C to 65 °C). Results showed that the MGSS conformal cooling was superior with improved cycle time from 37.57% to 48.66% (simulation) and confirmed by experimental trials (27.89% to 36.15%). Simulated results showed that there is no warpage on the front panel housing in x direction for both types of cooling channels. However, experimental results indicated that warpage occurs in x direction in both cooling channel designs, but MGSS conformal cooling type demonstrates more reduction from 36.36% to 76%. Similarly, warpage in y direction recorded a remarkable improvement within the range of 34.3% to 41.5% and 16.7% to 35.48% respectively from the simulated and experimental results when employing the MGSS conformal cooling channel. The fabrication cost of the MGSS conformal cooling channel is approximately 3 % to 5 % higher which depends on the complexity of part shape as compared to the straight cooling channel. The finding shows that the MGSS conformal cooling channel design offers very encouraging results which is able to improve part quality as well as productivity at an acceptable manufacturing cost.

ABSTRAK

Dalam proses pengacuan suntikan, ledingan adalah salah satu aspek utama kualiti yang diukur pada bahagian yang dibentuk manakala kitaran masa untuk menghasilkannya menunjukkan kecekapan proses. Penyejukan yang cekap adalah satu cabaran yang besar kepada kebanyakan pereka bentuk acuan untuk mencapai agihan haba yang seragam dalam acuan suntikan di mana ia memberi kesan kepada kualiti dan produktiviti. Penggunaan reka bentuk penyejukan konformal telah dilaporkan sangat berkesan untuk mengagihkan haba secara seragam, dengan itu dapat meningkatkan kualiti bahagian dan juga mengurangkan masa kitaran pembentukan. Walau bagaimanapun, kebanyakan penyelidik terdahulu hanya memberi tumpuan kepada kajian simulasi dan mereka jarang melakukan kerja-kerja eksperimen untuk mengesahkan keputusan simulasi. Dalam kajian ini, saluran penyejukan konformal berbentuk segiempat alur terkisar (MGSS) telah direkabentuk, disimulasi, difabrikasi dan diuji menggunakan panel perumah hadapan sebagai kajian kes. Penilaian prestasi saluran penyejukan konformal MGSS dan saluran penyejukan lurus telah dibuat menggunakan simulasi dan kerja-kerja eksperimen dari segi kualiti (ledingan) dan produktiviti (masa kitaran) bahagian yang dibentuk. Suhu masukan acuan dan penyejuk telah diubah dalam kedua-dua penilaian, iaitu suhu acuan (40 °C hingga 80 °C) dan suhu penyejuk (25 °C hingga 65 °C). Keputusan menunjukkan bahawa penyejukan konformal MGSS adalah lebih baik dengan penurunan masa kitaran daripada 37.57% hingga 48.66% (simulasi) dan disahkan oleh ujian percubaan (27.89% hingga 36.15%). Keputusan simulasi menunjukkan tidak ada ledingan pada panel perumah hadapan dalam arah x untuk kedua-dua jenis saluran penyejukan. Walau bagaimanapun, keputusan dari eksperimen menunjukkan ledingan berlaku dalam arah x bagi kedua-kedua reka bentuk saluran penyejukan, tetapi penyejukan jenis konformal MGSS menunjukkan lebih pengurangan daripada 36.36% sehingga 76%. Begitu juga, ledingan dalam arah y telah merekodkan penambahbaikan yang memberangsangkan dalam julat 34.3% hingga 41.5% dan 16.7% hingga 35.48% masing-masing daripada keputusan simulasi dan eksperimen apabila menggunakan saluran penyejukan konformal MGSS. Kos anggaran fabrikasi saluran penyejukan konformal MGSS adalah diantara 3% sehingga 5% lebih tinggi, bergantung kepada kerumitan bentuk bahagian berbanding dengan saluran penyejukan lurus. Dapatan kajian menunjukkan bahawa reka bentuk saluran penyejukan konformal MGSS menawarkan hasil yang sangat memberangsangkan yang mampu untuk meningkatkan kualiti bahagian dan juga produktiviti dengan kos pembuatan yang boleh diterima.

TABLES OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	x
	LIST OF FIGURES	XV
	LIST OF ABBREVIATIONS	xxvi
	LIST OF SYMBOLS	xxviii
	LIST OF APPENDICES	xxxi
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Background of Study	2
	1.3 Problems Statement	3
	1.4 Objectives	5
	1.5 Scopes of Study	5
	1.6 Significance of the Study	6
	1.7 Organisation of the Thesis	6
2	LITERATURE REVIEW	8
	2.1 Introduction	8
	2.2 Injection Moulding Process	8
	2.3 Injection Moulding Defect	10

2.4	Shrinka	age	12
	2.4.1	Injection Moulding Processing Parameters	
		Affected Shrinkage	14
2.5	Warpag	ge	18
	2.5.1	Orientation Effects	28
	2.5.2	Area Shrinkage Effects	28
	2.5.3	Differential Cooling Effects	29
2.6	Applica	ation of Conformal Cooling in Rapid Tooling	30
2.7	Applica	ation of Conformal Cooling in Hard Tooling	41
2.8	Simula	tion Methods of Cooling Time in Injection	
	Mouldi	ng Process	54
2.9	Summa	ury	61
ME	тноро	DLOGY	62
3.1	Introdu	ction	62
3.2	Researc	ch Methodology	64
3.3	Injectio	on Moulding Machine	65
3.4	Injectic	on Mould for Front Panel Housing	68
3.5	Thermo	ocouples for Measuring Temperature	71
3.6	Data A	cquisition (DAQ)	72
3.7	Shrinka	age Measurement in Simulation	73
3.8	Measur	rement of Specimen using Coordinate	
	Measur	ing Machine (CMM)	76
3.9	Summa	ary	80
RES	SULTS A	AND DISCUSSION	81
4.1	Introdu	ction	81
4.2	Part De	esign	81
4.3	Type of	f Gate	82
4.4	Design	of the Gating System	83
	4.4.1	Estimated Pressure Drops	84
	4.4.2	Optimise Runner Diameter	86
	4.4.3	Pressure Drop at Runner	87
	4.4.4	Runner Cooling Time	87

3

4

		4.4.5	Shear Rate at the Gate Area	89
		4.4.6	Pressure Drop at the Gate Area	91
		4.4.7	Gate Freeze Time	91
		4.4.8	Pressure Drop at the Sprue Area	92
	4.5	Cooling	System Design	94
	4.6	Milled (Groove Square Shape (MGSS) Conformal	
		Cooling	Channels	102
	4.7	Analysi	s of Parameters Setting by Simulation	104
	4.8	Paramet	ters Setting for Experimental Works	120
	4.9	Analyse	es of Material Flow into Injection Moulds	121
		4.9.1	Cooling Time	122
		4.9.2	Cycle Time	125
		4.9.3	Shrinkage	128
		4.9.4	Warpage	142
	4.10	Injection	n Moulding Experiments	145
		4.10.1	Cooling Time	145
		4.10.2	Short shot defect	148
		4.10.3	Shrinkage	155
		4.10.4	Warpage	169
		4.10.5	Weight of the Moulded Part	175
	4.11	Addition	nal Experiment	176
		4.11.1	Shrinkage in Additional Experiment	177
		4.11.2	Warpage in Additional Experiment	184
	4.12	Summa	ry	193
5	CON	CLUSI	ON AND FUTURE WORKS	195
	5.1	Introduc	ction	195
	5.2	Researc	h Findings	195
		5.2.1	Cycle Time	196
		5.2.2	Warpage	197
	5.3	Future V	Works	199
REFERENCI	ES			200
Appendices A – G 2		210 - 229		

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Defects, root causes and countermeasures in injection	
	moulding process (Kazmer, 2007; Shoemaker, 2006)	11
2.2	Researches focused on conformal cooling channels in	
	rapid tooling for injection moulding process	33
2.3	Researches on conformal cooling channels in hard	
	tooling for injection moulding process	42
3.1	Material properties of a plastic resin	66
3.2	Technical Specifications for Injection Moulding	
	Machine, Nissei NEX1000	67
3.3	Material properties of a mould insert	69
3.4	Coolant properties	69
3.5	Coordinates of the nodes where the dimensions at	
	positions A, B, C, D, E and F on the front panel	
	housing were taken in AMI 2013 analysis	74
4.1	Recommended processing for ABS Toyolac 700-314	107
4.2	Final setting of filling controls for front panel housing	118
4.3	Parameters setting to run Cool (FEM)+Fill+Pack+Warp	
	analysis using AMI 2013 for the front panel housing	
	with normal water of 25 °C as a coolant	119
4.4	Parameters setting to run Cool (FEM)+Fill+Pack+Warp	
	analysis using AMI 2013 on the front panel housing	
	with MGSS conformal cooling channels	120

4.5	Parameters setting to run Cool (FEM)+Fill+Pack+Warp	
	analysis using AMI 2013 on the front panel housing	
	with straight cooling channels	120
4.6	Parameters setting for mould testing on an injection	
	moulding machine	121
4.7	Results of the cooling time and cycle time for the front	
	panel housing with straight and MGSS conformal	
	cooling channels when using normal water of 25 $^{\circ}$ C to	
	65 °C as a coolant from AMI 2013 analysis	125
4.8	The shrinkage on the front panel housing at positions A,	
	B, C, D, E and F as shown in Figures 3.12 and 3.13 with	
	straight drilled and MGSS conformal cooling channels	
	for the coolant temperatures within 25 $^{\circ}$ C to 65 $^{\circ}$ C	129
4.9	The differences in temperatures on the opposite walls at	
	position B with straight and MGSS conformal cooling	
	channels for the coolant temperatures between	
	25 °C to 65 °C	134
4.10	The differences in the temperature variations on the	
	walls of core and cavity inserts at position E with	
	straight and MGSS conformal cooling channels using	
	the coolant temperatures between 25 $^{\circ}$ C to 65 $^{\circ}$ C	139
4.11	The warpage on the front panel housing in x direction as	
	shown in Figure 3.12 with straight and MGSS conformal	
	cooling channels for the coolant temperatures between	
	25 °C to 65 °C	143
4.12	The warpage on the front panel housing in y direction as	
	shown in Figure 3.13 with straight and MGSS conformal	
	cooling channels for the coolant temperatures between	
	25 °C to 65 °C	144
4.13	The cooling times of the front panel housing from	
	analytical, simulation and experiment procedures with	
	straight and MGSS conformal cooling channels for the	
	coolant temperatures within 25 °C to 65 °C	146

4.14	The dimensions of the front panel housing at positions A,	
	B, C, D, E and F as shown in Figures 3.12 and 3.13 with	
	straight cooling channels for the coolant temperatures	
	between 40 °C to 65 °C	158
4.15	The dimensions of the front panel housing at positions A,	
	B, C, D, E and F as shown in Figures 3.12 and 3.13 with	
	MGSS conformal cooling channels for the coolant	
	temperatures between 30 $^{\circ}$ C to 65 $^{\circ}$ C	159
4.16	The differences between design and actual dimensions at	
	positions A, B and C as shown in Figure 3.12, on the	
	front panel housing with straight and MGSS conformal	
	cooling channels for the coolant temperatures between	
	30 °C to 65 °C	162
4.17	The differences between design and actual dimensions at	
	positions D, E and F as shown in Figure 3.13 on the front	
	panel housing with straight and MGSS conformal cooling	
	channels for the coolant temperatures within	
	30 °C to 65 °C	166
4.18	The warpage values on the front panel housing in x and y	
	directions as shown in Figures 3.12 and 3.13 with straight	
	and MGSS conformal cooling channels for the coolant	
	temperatures between 25 $^{\circ}$ C to 65 $^{\circ}$ C from AMI 2013	
	analysis	170
4.19	The warpage values on the front panel housing in x and y	
	directions as shown in Figures 3.12 and 3.13 with	
	straight and MGSS conformal cooling channels for the	
	coolant temperatures between $30 ^{\circ}$ C to $65 ^{\circ}$ C from the	
	experiment	172
4.20	The weight of the front panel housing produced from the	
	experiment with straight and MGSS conformal cooling	
	channels for the coolant temperatures between	
	$30 ^{\circ}\mathrm{C}$ to $65 ^{\circ}\mathrm{C}$	175

4.21	The cooling time added in additional experiments using	
	MGSS conformal cooling channels for the coolant	
	temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	176
4.22	The differences (Diff.) between design and actual	
	dimensions at positions A, B and C as shown in	
	Figure 3.12 on the front panel housing with straight	
	and MGSS conformal cooling channels for the coolant	
	temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	179
4.23	The differences (Diff.) between design and actual	
	dimensions at positions D, E and F as shown in	
	Figure 3.13 on the front panel housing with straight and	
	MGSS conformal cooling channels for the coolant	
	temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	180
4.24	The warpage on the front panel housing at positions A, B	
	and C as shown in Figure 3.12 with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 40 °C to 65 °C	186
4.25	The warpage on the front panel housing at positions D, E	
	and F as shown in Figure 3.13 with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 40 °C to 65 °C	187
4.26	The improvement on the cycle time with MGSS	
	conformal cooling channels with an added cooling time	
	of 5 s	188
4.27	The improvement on the warpage in x direction of the	
	front panel housing with MGSS conformal cooling	
	channels with an added cooling time of 5 s for the	
	coolant temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	188
4.28	The improvement on the warpage in y direction of the	
	front panel housing with straight and MGSS conformal	
	cooling channels for the coolant temperatures between	
	40 °C to 65 °C	189

4.29	The percentage of shrinkage at positions A, B, C, D, E	
	and F on the front panel housing with straight and MGSS	
	conformal cooling channels with an added 5 s of cooling	
	time for the coolant temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	190
4.30	The percentage of shrinkage from simulation using	
	AMI 2013 at positions A, B, C, D, E and F on the front	
	panel housing with straight and MGSS conformal cooling	
	channels with an added 5 s of cooling time for the coolant	
	temperatures between 25 °C to 65 °C	192

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Injection moulding machine (Geddes, 2011)	9
2.2	Effect of the machine parameters setting on the shrinkage	
	of the moulded parts (Shoemaker, 2006)	14
2.3	Relationship of cooling channels designed with the	
	product quality and productivity (Lin and Chou, 2002)	19
2.4	Mould designed for the flat part with the straight drilled	
	cooling channels (Jacques, 1982)	20
2.5	Warpage defect on the moulded part due to difference	
	in cooling fluid temperatures between core and cavity	
	inserts for part thicknesses shown as predicted by model	
	(Jacques, 1982)	20
2.6	Finite element meshed model for rectangle cover	
	(Huang and Tai, 2001)	21
2.7	Meshed model of bus ceiling lamp base with straight	
	drilled cooling channels (Kurtaran et al., 2005)	22
2.8	Meshed model for button base	
	(Ozcelik and Erzurumlu, 2006)	22
2.9	Meshed model of the experimental part	
	(Erzurumlu and Ozcelik, 2006)	23
2.10	Rib layout on the moulded part	
	(Erzurumlu and Ozcelik, 2006)	23

2.11	Rib ross section on the moulded part	
	(Erzurumlu and Ozcelik, 2006)	24
2.12	Design of specimen for testing (Tang et al., 2006)	24
2.13	The procedure of the warpage measurement	
	(Tang <i>et al.</i> , 2007)	25
2.14	Thin shell part, (a) Geometric model (b) Finite element	
	model (Oktem et al., 2007)	26
2.15	Meshed model of digital camera case (Sun et al., 2010)	26
2.16	A plastic glas with a 60 mm diameter, 125 mm height and	
	thickness within 2 mm to 3 mm (Sanchez et al., 2012)	27
2.17	A rectangular box with 175 mm length, 18 mm width and	
	2 mm thickness (Sanchez et al., 2012)	27
2.18	Definition of area shrinkage (Shoemaker, 2006)	29
2.19	Warpage caused by differential cooling	
	(Shoemaker, 2006)	30
2.20	Warpage caused by differential cooling	
	(Shoemaker, 2006)	30
2.21	Cavity insert (a) and core insert (b) with straight-drilled	
	cooling channels (Sachs et al., 2000)	31
2.22	Cavity insert (a) and core insert (b) with conformal	
	cooling channels (Sachs et al., 2000)	32
2.23	Prototype and conformal cooling channels placed in	
	aluminium frame (Ferreira and Mateus, 2003)	36
2.24	Core and cavity inserts for rapid tooling in injection	
	moulding process (Ferreira and Mateus, 2003)	37
2.25	Mould inserts assembled into mould base for injection	
	moulding process (Ferreira and Mateus, 2003)	37
2.26	Conformal cooling channel on core plate and	
	straight-drilled cooling channel on cavity plate	
	(Rannar <i>et al.</i> , 2007)	38
2.27	Conventional with straight drilled cooling channels	
	(Rannar <i>et al.</i> , 2007)	38

2.28	Conventional with straight drilled cooling channel at	
	cavity plate and with a baffle at core plate	
	(Rannar <i>et al.</i> , 2007)	38
2.29	Rapid tooling with conformal cooling channels	
	(Ahn et al., 2010)	39
2.30	Rapid tooling with linear cooling channels	
	(Ahn et al., 2010)	39
2.31	Mould with profiled conformal cooling channels	
	(Altaf <i>et al.</i> , 2011)	40
2.32	Mould with circular conformal cooling channels	
	(Altaf <i>et al.</i> , 2011)	40
2.33	The cavity insert with the milled groove conformal	
	cooling channels (Sun et al., 2004)	41
2.34	3D modelling of the plastic part to be analysed	
	(Dimla et al., 2005)	46
2.35	Straight cooling channels designed for the core insert	
	(Dimla et al., 2005)	46
2.36	Straight cooling channels designed for the cavity insert	
	(Dimla et al., 2005)	47
2.37	Conformal cooling channel proposition for the core	
	insert (Dimla et al., 2005)	47
2.38	Conformal cooling channel proposition for the cavity	
	insert (Dimla et al., 2005)	48
2.39	Comparative cooling time between conformal and	
	conventional cooling channels	
	(Saifullah and Masood, 2007b)	48
2.40	3D model of mould with conformal cooling channels	
	(Saifullah and Masood, 2007b)	49
2.41	3D model of mould with straight drilled cooling	
	channels (Saifullah and Masood, 2007b)	49
2.42	Meshed model of plastic bowl (a) CSCC (b) SSCCC	
	(Saifullah et al., 2009)	50

2.43	(a) Mild steel core insert (left) and cavity insert with	
	SSCCC (b) CSCC of mild steel cavity insert	
	(Saifullah et al., 2009)	50
2.44	Cooling channels in a spiral form (Park and Pham, 2009)	51
2.45	Conventional cooling channels (Park and Pham, 2009)	51
2.46	Conformal cooling channels with the array of baffles	
	(Park and Dang, 2010)	52
2.47	Straight drilled cooling channel (Park and Dang, 2010)	52
2.48	Modelling of array of baffles cooling channels in	
	Moldflow software (Park and Dang, 2010)	52
2.49	Milled groove method for conformal cooling channels	
	(Dang and Park, 2011)	53
2.50	Cross-section of U-shape milled groove conformal	
	cooling channels (Dang and Park, 2011)	53
3.1	Flow chart of the study	63
3.2	The injection mould for front panel housing is	
	assembled into the injection moulding machine	66
3.3	Injection moulding machine, Nissei (NEX1000),	
	80 Tonnage used for mould testing	67
3.4	The digital weight scale (4 decimal points) used to	
	measure the weight of the front panel housing with	
	straight and MGSS conformal cooling channels for	
	the coolant temperatures between 30 $^{\circ}$ C to 65 $^{\circ}$ C from	
	the experiment.	68
3.5	Mould fabricated to compare the performance of	
	Straight and MGSS conformal cooling channels	69
3.6	Cross section at assembly view of core and cavity	
	inserts for the front panel housing with straight cooling	
	channels.	70
3.7	Cross section at assembly view of core and cavity inserts	
	with MGSS conformal cooling channels a) O-ring	
	assembled at core and cavity inserts, b) detailed	
	dimensions for the O-ring and slot	70

3.8	O-ring diameter of 2.0 mm assembled into the slot	
	1.5 mm x 2.5 mm at the core (a) and cavity (b) inserts	71
3.9	K-Type thermocouple.	71
3.10	T-Joint connection of thermocouple to measure the	
	temperature profile for coolant inlet and outlet at core	
	and cavity inserts.	72
3.11	Schematic diagram showing the connection of the	
	thermocouples (T1, T2, T3, T4 and T5) to the DAQ.	73
3.12	Measuring point on front panel housing to measure the	
	shrinkage which leads the warpage in x direction.	74
3.13	Measuring point on front panel housing to measure the	
	shrinkage which leads the warpage in y direction	75
3.14	Distance between nodes 726 (N726) and 599 (N599) at	
	position C (refer Table 3.4) before and after deformation	
	on front panel housing with straight cooling channels	
	using normal water of 25 °C as the coolant	75
3.15	Mitutoyo Coordinate Measuring Machine (CMM) used	
	to measure injected parts	76
3.16	Fixture fabricated to ensure the front panel housing is	
	stable during measuring process	77
3.17	Measuring the front panel housing by using CMM	77
3.18	Position of dimensions have been taken to evaluate the	
	warpage in x and y direction on the front panel housing	
	(top view)	78
3.19	Measuring point on the front panel housing to determine	
	the dimensions A to F (top view)	79
3.20	Measuring point on the front panel housing to determine	
	the dimensions A to C (front view)	79
3.21	Measuring point on the front panel housing to determine	
	the dimensions D to F (side view)	79
4.1	Front panel housing	82
4.2	Sub-marine gate designed for front panel housing	
	a) front panel housing with feeding system,	
	b) sub-marine gate on front panel housing.	83

4.3	Two important angles for sub-marine gate.	83
4.4	Gating system designed for the front panel housing	85
4.5	Dimensions of sub-marine gate	89
4.6	Dimensions of sprue for front panel housing	93
4.7	Straight cooling channels designed for front panel	
	housing	96
4.8	Dimensions of straight cooling channels designed for	
	front panel housing	97
4.9	MGSS conformal cooling channels milled directly on	
	the cavity insert a) cavity insert assembled with the	
	O-ring, b) exploded view of the cavity insert	103
4.10	MGSS conformal cooling channels milled directly on the	
	core insert a) core insert assembled with the O-ring,	
	b) exploded view of the core insert	103
4.11	Cross sectional area of square and circular shape of	
	cooling channels	104
4.12	Flow chart of model preparation for AMI 2013 analysis	105
4.13	Meshed model for straight cooling channels	106
4.14	Meshed model for MGSS conformal cooling channels	107
4.15	Flow chart in finding the appropriate parameters setting	
	in injection moulding machine using AMI 2013	108
4.16	Result of fill time from Fill Analysis for straight cooling	
	channels	109
4.17	Result of fill time from Fill Analysis for MGSS	
	conformal cooling channels	110
4.18	Result of shear rate from Fill Analysis for straight	
	cooling channels	110
4.19	Result of shear rate from Fill Analysis for MGSS	
	conformal cooling channels	111
4.20	Maximum injection pressure required to fill the front	
	panel housing with straight cooling channels	112
4.21	Maximum injection pressure required to fill the front	
	panel housing with MGSS conformal cooling channels	112

4.22	Velocity to pressure switch-over point for both types of	
	cooling channels	113
4.23	Injection time plus packing time for front panel housing	
	with both types of cooling channels	113
4.24	Time to reach the ejection temperature (cooling time)	
	for front panel housing with straight cooling channels	114
4.25	Time to reach the ejection temperature (cooling time)	
	for front panel housing with MGSS conformal cooling	
	channels	115
4.26	Volume of gating system and front panel housing	115
4.27	Ram speed, mm/s versus Ram position, mm	118
4.28	Time to reach the ejection temperature (cooling time) for	
	front panel housing with straight cooling channels using	
	normal water of 25 °C as a coolant	124
4.29	Time to reach the ejection temperature (cooling time) for	
	front panel housing with MGSS conformal cooling	
	channels using normal water of 25 $^{\circ}$ C as a coolant	124
4.30	Fill + Pack time versus coolant temperatures (within	
	25 °C to 65 °C) for the front panel housing with straight	
	and MGSS conformal cooling channels from AMI 2013	
	analysis	126
4.31	Cycle time of the front panel housing with straight	
	and MGSS conformal cooling channels for the coolant	
	temperatures within 25 °C to 65 °C	127
4.32	The dimensions at position A as shown in Figure 3.12	
	on the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 25 °C to 65 °C	131
4.33	The dimensions at position B as shown in Figure 3.12	
	on the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 25 °C to 65 °C	132

4.34	The dimensions at position C as shown in Figure 3.12	
	on the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 25 °C to 65 °C	132
4.35	Temperature variations on the cross section of the walls	
	of core and cavity inserts at position B with straight	
	cooling channels using normal water of 25 $^{\circ}$ C as a	
	coolant	133
4.36	Temperature variations on the cross section of the walls	
	of core and cavity inserts at position B with MGSS	
	conformal cooling channels using normal water of 25 $^{\circ}$ C	
	as a coolant	134
4.37	The dimensions at position D as shown in Figure 3.13 on	
	the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 25 °C to 65 °C	136
4.38	The dimensions at position E as shown in Figure 3.13 on	
	the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 25 °C to 65 °C	137
4.39	Temperature variations at the cross section of the walls	
	of core and cavity inserts at position E with straight	
	cooling channels using the coolant temperature of 25 $^{\circ}C$	138
4.40	Temperature variations at the cross section of the walls	
	of core and cavity inserts at position E with MGSS	
	conformal cooling channels using the coolant	
	temperature of 25 °C	138
4.41	The dimensions at position F as shown in Figure 3.13 on	
	the front panel housing with straight drilled and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 25 °C to 65 °C	141

4.42	The cooling times of the front panel housing from	
	analytical, simulation and experiment procedures with	
	straight and MGSS conformal cooling channels for the	
	coolant temperatures within $25 ^{\circ}$ C to $65 ^{\circ}$ C	147
4.43	Short-shot defect occurred on the front panel housing for	
	the coolant temperature of 25 $^{\circ}$ C with straight cooling	
	channels	149
4.44	Short-shot defect occurred on the front panel housing for	
	the coolant temperature of 30 $^{\circ}$ C with straight cooling	
	channels	149
4.45	Short-shot defect occurred on the front panel housing for	
	the coolant temperature of 35 °C with straight cooling	
	channels	150
4.46	Short-shot defect occurred on the front panel housing for	
	the coolant temperature of 25 $^{\circ}$ C with MGSS conformal	
	cooling channels	150
4.47	Thermal distribution on the surface of the core inserts	
	with the coolant temperature of 25 °C using straight	
	cooling channels	151
4.48	Thermal distribution on the surface of the cavity inserts	
	with the coolant temperature of 25 $^{\circ}$ C using straight	
	cooling channels	152
4.49	Thermal distribution on the surface of the core inserts	
	with the coolant temperature of 40 $^{\circ}$ C using straight	
	cooling channels	152
4.50	Thermal distribution on the surface of the cavity inserts	
	with the coolant temperature of 40 $^{\circ}$ C using straight	
	cooling channels	153
4.51	Thermal distribution on the surface of the core inserts	
	with the coolant temperature of 25 $^{\circ}$ C using MGSS	
	conformal cooling channels	153
4.52	Thermal distribution on the surface of the cavity inserts	
	with the coolant temperature of 25 °C using MGSS	
	conformal cooling channels	154

4.53	Thermal distribution on the surface of the core inserts	
	with the coolant temperature of 40 $^{\circ}$ C using MGSS	
	conformal cooling channels	154
4.54	Thermal distribution on the surface of the cavity inserts	
	with the coolant temperature of 40 $^{\circ}$ C using MGSS	
	conformal cooling channels	155
4.55	The dimensions at position A as shown in Figure 3.12	
	on the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 30 °C to 65 °C	163
4.56	The dimensions at position B as shown in Figure 3.12	
	on the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 30 °C to 65 °C	163
4.57	The dimensions at position C as shown in Figure 3.12	
	on the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 30 °C to 65 °C	164
4.58	The dimensions at position D as shown in Figure 3.13	
	on the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 30 °C to 65 °C	167
4.59	The dimensions at position E as shown in Figure 3.13	
	on the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 30 °C to 65 °C	167
4.60	The dimensions at position F as shown in Figure 3.13	
	on the front panel housing with straight and MGSS	
	conformal cooling channels for the coolant temperatures	
	between 30 °C to 65 °C	168
4.61	The shrinkage at position A with straight, MGSS	
	conformal cooling channels, MGSS conformal cooling	
	channels with added 5 s, 10 s and 15 s cooling time	
	using the coolant temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	181

4.62	The shrinkage at position B with straight, MGSS	
	conformal cooling channels, MGSS conformal cooling	
	channels with added 5 s, 10 s and 15 s cooling time	
	using the coolant temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	181
4.63	The shrinkage at position C with straight, MGSS	
	conformal cooling channels, MGSS conformal cooling	
	channels with added 5 s, 10 s and 15 s cooling time	
	using the coolant temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	182
4.64	The shrinkage at position D with straight, MGSS	
	conformal cooling channels, MGSS conformal cooling	
	channels with added 5 s, 10 s and 15 s cooling time	
	using the coolant temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	182
4.65	The shrinkage at position E with straight, MGSS	
	conformal cooling channels, MGSS conformal cooling	
	channels with added 5 s, 10 s and 15 s cooling time	
	using the coolant temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	183
4.66	The shrinkage at position F with straight, MGSS	
	conformal cooling channels, MGSS conformal cooling	
	channels with added 5 s, 10 s and 15 s cooling time	
	using the coolant temperatures between 40 $^{\circ}$ C to 65 $^{\circ}$ C	183

LIST OF ABBREVIATIONS

ABS	-	Acrylonitrile Butadiene Styrene
AMI	-	Autodesk Moldflow Insight
ANSYS	-	Analysis System
CAD	-	Computer Aided Design
CAE	-	Computer Aided Engineering
CMM	-	Coordinate Measuring Machine
CNC	-	Computer Numerical Control
CSCC	-	Conventional Straight Cooling Channels
DMD	-	Direct Metal Deposition
DMLS	-	Direct Metal Laser Sintering
DMT	-	Direct Metal Tooling
EBM	-	Electron Beam Melting
FEA	-	Finite Element Analysis
LCD TV	-	Liquid - crystal display television
MGSS	-	Milled Grooved Square Shape
PA	-	Polyamide
PC	-	Polycarbonate
PMMA	-	Poly(methyl methacrylate)
POM	-	Polyoxymethylene
РР	-	Polypropylene
RHCM	-	Rapid Heat Cycle Moulding
RP	-	Rapid Prototyping
RT	-	Rapid Tooling
R&D	-	Research and Development
SLS	-	Selective Laser Sintering
SM	-	Shot Material
SSCCC	-	Square Section Conformal Cooling Channel

3DP - Three Dimensional Printing

LIST OF SYMBOLS

D	-	Gate diameter
α	-	Thermal diffusivity
T _{melt}	-	Melt temperature
T _{coolant}	-	Coolant temperature
T_{no_flow}	-	No flow melt temperature
\dot{Q}_m	-	Heat flux from the molten plastic
\dot{Q}_c	-	Heat flux exchange with coolant
\dot{Q}_e	-	Heat flux exchange with environment
T_M	-	Melt temperature
T_E	-	Ejection temperature
c _p	-	Specific heat
$ ho_m$	-	Melt density
S	-	Part thickness
x	-	Pitch of the cooling channels
α	-	Heat transfer coefficient of coolant
k _{st}	-	Thermal conductivity of the mould steel
T_w	-	Mould temperature
T_C	-	Coolant temperature
S _e	-	Shape factor
у	-	Distance from centre of the cooling channels to the mould
		surface
R _e	-	Reynolds number
и	-	Velocity of the coolant
v	-	Kinematic viscosity of the coolant
t _{cp}	-	Cooling time of the moulded part in the form of plate
а	-	Thermal diffusivity

k_m	-	Thermal conductivity of the plastic material
P_i	-	Pressure drop for feeding segment
L_i	-	Length of the segment
L_{Total}	-	Total length of the feeding system
ΔP_{max}	-	Maximum pressure drop
R	-	Radius of runner
Κ	-	Reference viscosity of the polymer melts at the melt
		temperature
L	-	Length of runner
n	-	Reference viscosity of the polymer melts at the melt
		temperature
\dot{V}_{melt}	-	Volumetric flow rate
Р	-	Pressure
t _c	-	Cooling time
D	-	Diameter of the runner
T _{e ject}	-	Ejection temperature
h	-	Thickness of the part
Ϋ́	-	Shear rate
W	-	Width of the gate
h	-	Thickness of the gate
R	-	Radius of the gate
t _s	-	Gate freezing time
D	-	Diameter of the gate
$Q_{molding}$	-	Total amount of heat needs to be removed by the cooling
		system
$m_{molding}$	-	Weight of the moulded part to be moulded
$\dot{Q}_{cooling}$	-	Amount of energy that must be removed per second of cooling
_		time
\dot{Q}_{line}	-	Heat transfer rate per cooling line
n _{lines}	-	Numbers of cooling lines
<i>V _{coolant}</i> −	-	Coolant flow rate
$\Delta T_{coolant}$	_	The differences of the temperatures between the inlet and
		outlet of the coolant

$ ho_{coolant}$	-	Density of the coolant
$C_{p,coolant}$	-	Specific heat of the coolant
D	-	Diameter of the cooling channels
$\mu_{coolant}$	-	Viscosity of the coolant
ΔP	-	Half of the maximum pressure supplied from the coolant
		controller
L _{line}	-	Length of the cooling channels
$h_{conduction}$	-	Effective heat conduction coefficient
K _{mold}	-	Thermal conductivity of the mould material
H _{line}	-	Maximum depth of cooling channels

LIST OF APPENDICES

APPENDIX	K
----------	---

TITLE

PAGE

	А	List of publications	210
	В	List of exhibition awards	211
	С	List of exhibition medals	213
	D	2D Drawing of front panel housing	214
	E	2D Drawing of jig	215
	F1	Special Award from Chinese Innovation & Invention	
		Society - Taiwan (CIIS), International Warsaw	
		Invention Show (IWIS) 2013, Warsaw, Poland	216
	F2	Special Award from Korea Invention News,	
		International Warsaw Invention Show (IWIS) 2013,	
		Warsaw, Poland	217
	F3	Award in Invention Academics & Education Order of	
		Merit Category, World Inventor Award Festival (WIAF)	
		2013, Seol, Korea	218
	F4	Award in Manufacturing Order of Merit Category,	
		World Inventor Award Festival (WIAF) 2013, Seol,	
		Korea	219
	F5	Special Award, Honor of Invention from World	
		Invention Intelectual Property Associations, Invention,	
		Innovation & Technology Exhibition (ITEX) 2014,	
		Kuala Lumpur Convention Centre (KLCC), Malaysia	220
	F6	Leading Innovation Award from International	
		Intelectual Property Netwrok Forum, International	
		Exhibition on Invention Kunshan (IEIK) 2014,	
		Kunshan, China	221

F7	Special Award from Korea University Invention	
	Association, International Exhibition on Invention	
	Kunshan (IEIK) 2014, Kunshan, China	222
F8	Special Award from Crotian Inventors Association,	
	International Exhibition on Invention Kunshan (IEIK)	
	2014, Kunshan, China	223
G1	Gold Medal, International Warsaw Invention Show	
	(IWIS) 2013, Warsaw, Poland	224
G2	Silver Medal, European Exhibition of Creativity and	
	Innovation (EUROINVENT) 2014, Iasi, Romania	225
G3	Gold Medal, Invention, Innovation & Technology	
	Exhibition (ITEX) 2014, Kuala Lumpur Convention	
	Centre (KLCC), Malaysia	226
G4	Gold Medal, Ekspo Rekacipta dan Penyelidikan	
	UniMAP 2014, University Malaysia Perlis, Malaysia	227
G5	Bronze Medal, International Exhibition on Invention	
	Kunshan (IEIK) 2014, Kunshan, China	228
G6	Silver Medal, Malaysia Technology Expo (MTE) 2014,	
	Kuala Lumpur Convention Centre (KLCC), Malaysia	229

CHAPTER 1

INTRODUCTION

1.1 Introduction

Injection moulding process has been widely used in the manufacturing of plastic products with various types of shapes due to its high productivity and low cost for high volume production (Cho *et al.*, 2009; Lin, 2002; Spina, 2004). The important stages in injection moulding process are injection (filling), packing, cooling and ejection (Lin, 2002; Saifullah *et al.*, 2009; Tang *et al.*, 2006). During the injection stage, molten plastics are injected into the cavities. In the packing stage the molten plastics are continuously injected into the cavities until the gate freezes to fill in the leaving space due to plastic shrinkage during solidification. After the molten plastics solidify and are rigid enough at the cooling stage, the mould opens allowing the moulded parts to be ejected out of the mould. The mould then closes and the process continues for the next cycle (Bozdana and Eyercioglu, 2002). Among all the stages, cooling is the most significant phase that affects the productivity and the quality of the moulded parts (Hassan *et al.*, 2010b; Tang *et al.*, 2006). It contributes approximately 70% to 80% of the cycle time in injection moulding process (Saifullah and Masood, 2007b; Subramanian *et al.*, 2005).

As such, in order to improve the cycle time in the injection moulding process, it is essential that the cooling time is reduced (Hassan *et al.*, 2010b).

1.2 Background of Study

The cost-effectiveness of the injection moulding process mainly depends on the moulding cycle time whereby the cooling stage is the primary stage influencing the cycle time and the production rate of the moulded parts (Hassan *et al.*, 2010b; Saifullah *et al.*, 2009). In addition, the design of cooling channels in the injection moulds affects the quality of moulded plastic part (Dimla *et al.*, 2005; Hassan *et al.*, 2010b; Li, 2007). The undesirable defects that commonly affect the quality of the moulded parts include hot spots, sink marks, differential shrinkage, thermal residual stress and warpage. All these defects can be minimized with an efficient cooling channel system which results in a uniform temperature distribution in the inserts of the injection mould (Chen *et al.*, 2000; Wang and Young, 2005).

Traditionally, simple cooling channels are designed with straight holes in the core and cavity inserts of the mould. It is simple to design and easy to fabricate using a conventional machining process such as drilling. Nowadays, many researchers and mould designers are trying to improve the efficiency of cooling channels by focusing on how to optimize the layout of the cooling channels system in terms of shape, size and location (Dang and Park, 2011; Hassan et al., 2010a; Lam et al., 2004; Shoemaker, 2006; Zhou et al., 2009). On the other hand, some researchers studied on how to design and fabricate conformal cooling channels in order to ensure uniform thermal distribution and to increase the cooling efficiency (Ahn et al., 2010; Altaf et al., 2011; Dimla et al., 2005; Park and Pham, 2009; Park and Dang, 2010; Saifullah et al., 2009). Over the years, conformal cooling channels have proven more efficient as compared to conventional cooling channels in terms of production rate and parts quality (Saifullah and Masood, 2007b; Xu et al., 2001). Several investigations on conformal cooling channels have been conducted which involved fabricating the channels as close as possible to the surface of the mould cavities in order to increase the efficiency of heat absorption from molten plastic thus ensuring the moulded parts to be cooled uniformly (Saifullah and Masood, 2007a; Saifullah et al., 2009). The application of conformal cooling channels began when rapid tooling was first introduced because of its simple fabrication process with various technologies as

compared to the conventional drilling and milling on hard tooling materials of the injection moulds.

In recent years, the high efficiency of conformal cooling channels in rapid tooling over conventional cooling channels has triggered many researchers to investigate its effectiveness on hard tooling for injection moulding process. Designing such cooling channels is always a big challenge because of its limitation in the fabrication process which involves free-form machining of the cooling channels that follows exactly the profile of the injected plastic parts.

1.3 Problems Statement

Warpage defect is a common issue in an injection moulding process due to non-uniform temperature variation causing differential shrinkage on the moulded parts (Fischer, 2003; Kazmer, 2007; Malloy, 2010). In designing plastic injection moulds, it is difficult to achieve efficient cooling with uniform thermal distribution by using traditional design of simple cooling channels with straight holes. To overcome these issues, the use of conformal cooling channels with uniform distance between the centre of the cooling channels and the mould surfaces was introduced which offers a better thermal distribution and reduction in cooling time.

Many researchers have studied the designing of conformal cooling channels on hard tooling for injection moulding process (Dang and Park, 2011; Park and Pham, 2009; Park and Dang, 2010; Saifullah and Masood, 2007a; Saifullah and Masood, 2007b; Saifullah *et al.*, 2009; Sun *et al.*, 2004). Similar to the findings on conformal cooling channels in rapid tooling, its efficiency and performance are proven superior in terms of the uniformity of thermal distribution, improvement on parts deflection, cooling time reduction and unquestionably the reduction in an injection moulding cycle time. However, most of the researches were focused on the simulation works or computer modelling which lack supports and verifications of real experimental data (Dang and Park, 2011; Park and Pham, 2009; Park and Dang, 2010; Saifullah and Masood, 2007a; Saifullah and Masood, 2007b; Sun *et al.*, 2004). Simulation results could not provide a full and accurate solutions to the actual problems in real production. Only Saifullah *et al.* (2009) had performed experimental works and compared to the simulation results. However, the experimental work only consider a circular part which is too simple. Besides that, most researchers only proposed the cooling channels in simulation without any consideration on mould fabrication. In addition, most of them used coolant temperature of 25°C and 35°C in their study which did not fulfilled the recommended temperature suggested by the material manufacturer. Therefore the results are questionable and less beneficial to the injection moulding society.

Hence, in this study extensive investigation involving experimental works were conducted in order to assist the moulding industries, particularly in small and medium enterprise, in improving the quality of plastic parts produced. A Milled Grooved Square Shape (MGSS) conformal cooling channels which are easy to design, fabricate and assemble is developed taking into the consideration on the fabrication of the conformal cooling channels, especially in hard tooling. The performance of the MGSS conformal cooling channels in term of productivity (cycle time) and quality (warpage) was compared to the conventional straight cooling channels with a same layout and cross sectional area through simulation and experimental works. Thus, the efficiency of the MGSS conformal cooling channels was validated clearly. This study is able to address the following questions:

- 1. Can the MGSS conformal cooling channels be fabricated and used in real injection moulding processes?
- 2. How much a MGSS conformal cooling channels can improve the productivity of the injection moulding process as compared to the conventional straight cooling channels?
- 3. How much improvement on the quality of the moulded parts of a MGSS conformal cooling channels as compared to the conventional straight cooling channels?
- 4. What are the variation of the experimental results against the simulation results in terms of productivity and quality of the moulded parts?

1.4 **Objectives**

The main objectives of this study are:

- 1. To design and fabricate of conformal cooling channels for moulds used in the injection moulding process of a plastic part.
- To evaluate the performance of MGSS conformal cooling channels in injection moulding process on the productivity and quality of the moulded parts by simulation.
- 3. To experimentally compare the quality and productivity of the moulded parts produced using a MGSS conformal cooling channels mould against the simulation results in term of shrinkage, warpage, cooling time and cycle time.

1.5 Scopes of Study

The scope of this study involves designing, fabrication and testing of the plastic injection moulds with a MGSS conformal cooling channels in the injection moulding of a front panel housing made from Acrylonitrile Butadiene Styrene (ABS) material. Comparative study was conducted between the MGSS conformal cooling channels and the straight cooling channels for the coolant temperature of 25 °C to 65 ^oC in order to obtain the mould temperature of 40 ^oC to 80 ^oC as per recommended by the plastic material manufacturer. Performance evaluations were conducted by simulation and validated experimentally with regards to productivity (cycle time) and quality (warpage) of the moulded parts. In this study, the values of the melt temperature, injection rate, packing pressure and part thickness were kept constant. The parameters that were varied are mould temperature, filling time and packing time. The mould temperature depends on the coolant temperature while the filling and packing time depend on the mould temperature from the Fill + Pack analysis form simulation. Therefore, in order to control the mould temperature, filling and packing time, the coolant temperature needs to be controlled. A commercial Computer Aided Engineering (CAE) software, Autodesk Moldflow Insight 2013 was used for the analysis and simulation works in this study. Meanwhile a 80 Tonne Nissei NEX1000 injection moulding machine at the production laboratory, School of Manufacturing Engineering, Universiti Malaysia Perlis was used to perform the experimental works.

1.6 Significance of the Study

This study provides useful scientific knowledge and solution to plastic manufacturing industries pertaining to plastic injection moulding in improving the quality (warpage) and productivity (cycle time) of the moulded parts through the MGSS conformal cooling channels of an injection mould. MGSS conformal cooling channels has been developed and proven to be used in the real injection moulding process. Slight difference exists between the results from simulation and experimental because of the few assumptions used in Autodesk Moldflow Insight 2013. However, the experimental results are in line with the simulation results whereby the MGSS conformal cooling channels is able to improve the quality and productivity of the moulded parts produced. The fabrication cost of MGSS conformal cooling channels for the front panel housing is approximately to be within 3 % to 5 % higher as compared to the straight cooling channels. However, the fabrication cost of MGSS conformal cooling channels depends mainly on the shape complexity of the moulded parts.

1.7 Organisation of the Thesis

This thesis begins with an introductory chapter that describes the general information of conventional injection moulding, problems statement, objectives, scopes and significance of this study. In Chapter 2, a thorough discussion of the literature on the performance of conformal cooling channels in rapid and hard tooling for injection moulding with different approaches to improve the quality and productivity of moulded parts are highlighted. In Chapter 3, detailed methodologies from part design, design of gating system, analysis using Autodesk Moldflow 2013

and experimental are presented. The simulation and experimental results are discussed in Chapter 4 whereas Chapter 5 concludes all of the findings of the study.

REFERENCES

- Ahn, D. G., Park, S. H. and Kim, H. S. (2010). Manufacture of an injection mould with rapid and uniform cooling characteristics for the fan parts using a DMT process. *International Journal of Precision Engineering and Manufacturing*, 11 (6): 915-924.
- Akay, M., Ozden, S. and Tansey, T. (1996). Prediction of process-induced warpage in injection molded thermoplastics. *Polymer Engineering & Science*, 36 (13): 1839-1846.
- Alam, M. M. and Kumar, D. (2013). Reducing shrinkage in plastic injection moulding using taguchi method in tata magic head light. *International Journal of Science and Research*, 2 (2): 107-110.
- Al-Kaabneh, F. A.-K., Barghash, M. and Mishael, I. (2013). A combined analytical hierarchical process (AHP) and taguchi experimental design (TED) for plastic injection molding process settings. *The International Journal of Advanced Manufacturing Technology*, 66 (5-8): 679-694.
- Altaf, K., Raghavan, V. R. and Rani, A. M. A. (2011). Comparative thermal analysis of circular and profiled cooling channels for injection mold tools. *Journal of Applied Sciences*, 11 (11): 2068-2071.
- Altan, M. (2010). Reducing shrinkage in injection moldings via the taguchi, ANOVA and neural network methods. *Materials & Design*, 31 (1): 599-604.
- Annicchiarico, D. and Alcock, J. R. (2014). Review of factors that affect shrinkage of molded part in injection molding. *Materials and Manufacturing Processes*, 29 (6): 662-682.
- Azdast, T. and Behravesh, A. H. (2008). An analytical study of constrained shrinkage of injection molded semi-crystalline plastic parts. *Polymer-Plastics Technology and Engineering*, 47 (12): 1265-1272.

- Bozdana, A. T. and Eyercioglu, O. (2002). Development of an expert system for the determination of injection moulding parameters of thermoplastic materials:
 EX-PIMM. *Journal of Materials Processing Technology*, 128 (1-3): 113-122.
- British Standards Institution, (2008). Plastics standard atmospheres for conditioning and testing, BS EN ISO 291. London: British Standards Institution.
- Chen, C. C., Su, P. L. and Lin, Y. C. (2009). Analysis and modeling of effective parameters for dimension shrinkage variation of injection molded part with thin shell feature using response surface methodology. *The International Journal of Advanced Manufacturing Technology*, 45 (11-12): 1087-1095.
- Chen, C. C. A. and Chang, S. W. (2008). Shrinkage analysis on convex shell by injection molding. *International Polymer Processing*, 23 (1): 65-71.
- Chen, C. P., Chuang, M. T., Hsiao, Y. H., Yang, Y. K. and Tsai, C. H. (2009). Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis. *Expert Systems with Applications*, 36 (7): 10752-10759.
- Chen, S. C., Jong, W. R. and Chang, J. A. (2006). Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line. *Journal of Applied Polymer Science*, 101 (2): 1174-1180.
- Chen, S. C., Lin, Y. W., Chien, R. D. and Li, H. M. (2008). Variable mold temperature to improve surface quality of microcellular injection molded parts using induction heating technology. *Advances in Polymer Technology*, 27 (4): 224-232.
- Chen, W. C., Tai, P. H., Wang, M. W., Deng, W. J. and Chen, C. T. (2008). A neural network-based approach for dynamic quality prediction in a plastic injection molding process. *Expert Systems with Applications*, 35 (3): 843-849.
- Chen, X., Lam, Y. C. and Li, D. Q. (2000). Analysis of thermal residual stress in plastic injection molding. *Journal of Materials Processing Technology*, 101 (1-3): 275-280.
- Chiang, K. T. and Chang, F. P. (2006). Application of grey-fuzzy logic on the optimal process design of an injection-molded part with a thin shell feature. *International Communications in Heat and Mass Transfer*, 33 (1): 94-101.

- Chiang, K. T. and Chang, F. P. (2007). Analysis of shrinkage and warpage in an injection-molded part with a thin shell feature using the response surface methodology. *The International Journal of Advanced Manufacturing Technology*, 35 (5-6): 468-479.
- Cho, K. J., Koh, J. S., Kim, S., Chu, W. S., Hong, Y. and Ahn, S. H. (2009). Review of manufacturing processes for soft biomimetic robots. *International Journal of Precision Engineering and Manufacturing*, 10 (3): 171-181.
- Crawford, R. J. (1989). Plastic engineering. 2nd ed. Oxford: Pergamond.
- Dang, X. P. and Park, H. S. (2011). Design of U-shape milled groove conformal cooling channels for plastic injection mold. *International Journal of Precision Engineering and Manufacturing*, 12 (1): 73-84.
- Dangayach, G. S. and Kumar, D. (2012). Reduction in defect rate by taguchi method in plastic injection molded components. *Advanced Materials Research*, 488-489: 269-273.
- Dimla, D. E., Camilotto, M. and Miani, F. (2005). Design and optimisation of conformal cooling channels in injection moulding tools. *Journal of Materials Processing Technology*, 164-165: 1294-1300.
- Elleithy, R., Ali, I., Al-Haj Ali, M. and Al-Zahrani, S. M. (2011). Different factors affecting the mechanical and thermo-mechanical properties of HDPE reinforced with micro-CaCO3. *Journal of Reinforced Plastics and Composites*, 30 (9): 769-780.
- Erzurumlu, T. and Ozcelik, B. (2006). Minimization of warpage and sink index in injection-molded thermoplastic parts using taguchi optimization method. *Materials & Design*, 27 (10): 853-861.
- Fernandes, C., Pontes, A. J., Viana, J. C. and Gaspar Cunha, A. (2010). Using multiobjective evolutionary algorithms in the optimization of operating conditions of polymer injection molding. *Polymer Engineering & Science*, 50 (8): 1667-1678.
- Ferreira, J. C. and Mateus, A. (2003). Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding. *Journal of Materials Processing Technology*, 142 (2): 508-516.
- Fischer, J. (2003). Handbook of molded part shrinkage and warpage. United States of America: Plastics Design Library / William Andrew, Inc.

- Geddes, C. (2011). 3D-forming process: plastics injection moulding. Edinburgh, Scotland: Scottish Plastics And Rubber Association.
- Guan, W. and Huang, H. (2011). Effect of backward melt flow on injectioncompression molded part thickness distribution. In Annual Technical Conference (ANTEC). 1523.
- Harris, R. A., Newlyn, H. A., Hague, R. J. M. and Dickens, P. M. (2003). Part shrinkage anomalies from stereolitography injection mould tooling. *International Journal of Machine Tools and Manufacture*, 43 (9): 879-887.
- Hassan, H., Regnier, N., Le Bot, C. and Defaye, G. (2010a). 3D study of cooling system effect on the heat transfer during polymer injection molding. *International Journal of Thermal Sciences*, 49 (1): 161-169.
- Hassan, H., Regnier, N., Pujos, C., Arquis, E. and Defaye, G. (2010b). Modeling the effect of cooling system on the shrinkage and temperature of the polymer by injection molding. *Applied Thermal Engineering*, 30 (13): 1547-1557.
- Huang, M. C. and Tai, C. C. (2001). The effective factors in the warpage problem of an injection-molded part with a thin shell feature. *Journal of Materials Processing Technology*, 110 (1): 1-9.
- Huang, M. S. and Tai, N. S. (2009). Experimental rapid surface heating by induction for micro-injection molding of light-guided plates. *Journal of Applied Polymer Science*, 113 (2): 1345-1354.
- Jacques, M. S. (1982). An analysis of thermal warpage in injection molded flat parts due to unbalanced cooling. *Polymer Engineering & Science*, 22 (4): 241-247.
- Jansen, K. M. B., Pantani, R. and Titomanlio, G. (1998a). As-molded shrinkage measurements on polystyrene injection molded products. *Polymer Engineering & Science*, 38 (2): 254-264.
- Jansen, K. M. B., Van Dijk, D. J. and Husselman, M. H. (1998b). Effect of processing conditions on shrinkage in injection molding. *Polymer Engineering & Science*, 38 (5): 838-846.
- Jin, J., Yu, H. Y. and Lv, S. (2009). Optimization of plastic injection molding process parameters for thin-wall plastics injection molding. *Advanced Materials Research*, 69-70: 525-529.
- Kazmer, D. (2007). Injection mold design engineering. Munich: Hanser.
- Kikuchi, H. and Koyama, K. (1996). Generalized warpage parameter. *Polymer Engineering & Science*, 36 (10): 1309-1316.

- King, D. and Tansey, T. (2003). Rapid tooling: selective laser sintering injection tooling. *Journal of Materials Processing Technology*, 132 (1-3): 42-48.
- Kramschuster, A., Cavitt, R., Ermer, D., Chen, Z. and Turng, L. S. (2005). Quantitative study of shrinkage and warpage behavior for microcellular and conventional injection molding. *Polymer Engineering & Science*, 45 (10): 1408-1418.
- Kramschuster, A., Cavitt, R., Ermer, D., Chen, Z. and Turng, L. S. (2006). Effect of processing conditions on shrinkage and warpage and morphology of injection moulded parts using microcellular injection moulding. *Plastics, Rubber and Composites*, 35 (5): 198-209.
- Kurtaran, H., Ozcelik, B. and Erzurumlu, T. (2005). Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm. *Journal of Materials Processing Technology*, 169 (2): 314-319.
- Lam, Y. C., Zhai, L. Y., Tai, K. and Fok, S. C. (2004). An evolutionary approach for cooling system optimization in plastic injection moulding. *International Journal of Production Research*, 42 (10): 2047-2061.
- Lee, B. H. and Kim, B. H. (1995). Optimization of part wall thicknesses to reduce warpage of injection-molded parts based on the modified complex method. *Polymer-Plastics Technology and Engineering*, 34 (5): 793-811.
- Leo, V. and Cuvelliez, C. (1996). The effect of the packing parameters, gate geometry, and mold elasticity on the final dimensions of a molded part. *Polymer Engineering & Science*, 36 (15): 1961-1971.
- Li, C. L. (2007). Part segmentation by superquadric fitting-a new approach towards automatic design of cooling system for plastic injection mould. *The International Journal of Advanced Manufacturing Technology*, 35 (1-2): 102-114.
- Li, X. and Gong, N. (2011). Fatigue source analysis of dynamic mold temperature injection mold for large plastic parts *Advanced Materials Research*, 305: 210-213.
- Liao, S. J., Chang, D. Y., Chen, H. J., Tsou, L. S., Ho, J. R., Yau, H. T., Hsieh, W. H., Wang, J. T. and Su, Y. C. (2004). Optimal process conditions of shrinkage and warpage of thin-wall parts. *Polymer Engineering & Science*, 44 (5): 917-928.

- Lin, J. C. (2002). Optimum cooling system design of a free-form injection mold using an abductive network. *Journal of Materials Processing Technology*, 120 (1-3): 226-236.
- Lin, Z. C. and Chou, M. H. (2002). Design of the cooling channels in nonrectangular plastic flat injection mold. *Journal of Manufacturing Systems*, 21 (3): 167-186.
- Liu, C. and Manzione, L. T. (1996). Process studies in precision injection molding. I: process parameters and precision. *Polymer Engineering & Science*, 36 (1): 1-9.
- Liu, F., Zeng, S., Zhou, H. and Li, J. (2012). A study on the distinguishing responses of shrinkage and warpage to processing conditions in injection molding. *Journal of Applied Polymer Science*, 125 (1): 731-744.
- Malloy, R. A. (2010). Plastic part design for injection moulding. 2nd ed. Munich: Hanser.
- Mamat, A., Trochu, T. F. and Sanschagrin, B. (1995). Analysis of shrinkage by dual kriging for filled and unfilled polypropylene molded parts. *Polymer Engineering & Science*, 35 (19): 1511-1520.
- Mathivanan, D. and Parthasarathy, N. S. (2009). Sink-mark minimization in injection molding through response surface regression modeling and genetic algorithm.
 The International Journal of Advanced Manufacturing Technology, 45 (9-10): 867-874.
- Mazumder, J., Dutta, D., Kikuchi, N. and Ghosh, A. (2000). Closed loop direct metal deposition: art to part. *Optics and Lasers in Engineering*, 34 (4-6): 397-414.
- Mehat, N. M., Kamaruddin, S. and Othman, A. R. (2012). A study of hybrid optimization of injection moulding process parameters for plastic gear. *Advanced Materials Research*, 591-593: 2135-2138.
- Mulyana, R., Daniel, T., Min, Y., Castro, J. M. and Lee, L. J. (2010). The use of water containing TPO/activated carbon in injection molding. *In Annual Technical Conference (ANTEC)*, Orlando, FL, United States. 1339-1343.
- Oktem, H., Erzurumlu, T. and Uzman, I. (2007). Application of taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. *Materials & Design*, 28 (4): 1271-1278.

- Othman, M. H., Shamsudin, S. and Hasan, S. (2012). The effects of parameter settings on shrinkage and warpage in injection molding through cadmould 3D-F simulation and taguchi method. *Applied Mechanics and Materials*, 229-231: 2536-2540.
- Ozcelik, B. and Erzurumlu, T. (2006). Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. *Journal of Materials Processing Technology*, 171 (3): 437-445.
- Pantani, R., Jansen, K. M. B. and Titomanlio, G. (1997). In-mould shrinkage measurements of PS samples with strain gages. *International Polymer Processing*, 12 (4): 396-402.
- Park, H. S. and Pham, N. H. (2009). Design of conformal cooling channels for an automotive part. *International Journal of Automotive Technology*, 10 (1): 87-93.
- Park, H. S. and Dang, X. P. (2010). Optimization of conformal cooling channels with array of baffles for plastic injection mold. *International Journal of Precision Engineering and Manufacturing*, 11 (6): 879-890.
- Park, K., Sohn, D. H. and Cho, K. H. (2010). Eliminating weldlines of an injectionmolded part with the aid of high-frequency induction heating. *Journal of Mechanical Science and Technology*, 24 (1): 149-152.
- Park, S. J. and Kwon, T. H. (1998). Optimal cooling system design for the injection molding process. *Polymer Engineering & Science*, 38 (9): 1450-1462.
- Plastics Today, Staff. (2014). Global injection molding plastics market expected to reach \$277.78 billion by 2020. Plastics Today.
- Rannar, L. E., Glad, A. and Gustafson, C. G. (2007). Efficient cooling with tool inserts manufactured by electron beam melting. *Rapid Prototyping Journal*, 13 (3): 128-135.
- Rao, N. S., Schumacher, G., Schott, N. R. and O'brien, K. T. (2002). Optimization of cooling systems in injection molds by an easily applicable analytical model. *Journal of Reinforced Plastics and Composites*, 21 (5): 451-459.
- Rao, N. S. and Schumacher, G. (2004). Design formulas for plastics engineers. 2 ed. Munich: Hanser.

- Sachs, E., Wylonis, E., Allen, S., Cima, M. and Guo, H. (2000). Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. *Polymer Engineering & Science*, 40 (5): 1232-1247.
- Saifullah, A. B. M. and Masood, S. H. (2007a). Cycle time reduction in injection moulding with conformal cooling channels. *Proceedings of The International Conference on Mechanical Engineering*, Dhaka, Bangladesh. December 29-31, 2007. 1-4.
- Saifullah, A. B. M. and Masood, S. H. (2007b). Finite element thermal analysis of conformal cooling channels in injection moulding. *Proceedings of the 5th Australasian Congress on Applied Mechanics*, Brisbane, Australia. December 10-12, 2007. 337-341.
- Saifullah, A. B. M., Masood, S. H. and Sbarski, I. (2009). New cooling channel design for injection moulding. *Proceedings of the World Congress on Engineering*, London, U.K. July 1-3, 2009. 700-703.
- Sanchez, R., Aisa, J., Martinez, A. and Mercado, D. (2012). On the relationship between cooling setup and warpage in injection molding. *Measurement*, 45 (5): 1051-1056.
- Santis, F. D., Pantani, R., Speranza, V. and Titomanlio, G. (2010). Analysis of shrinkage development of a semicrystalline polymer during injection molding. *Industrial & Engineering Chemistry Research*, 49 (5): 2469-2476.
- Sepe, M. (2013). Dimensional stability after molding: part 1. Plastics Technology
- Shayfull, Z., Sharif, S., Zain, A. M., Ghazali, M. F. and Saad, R. M. (2014). Potential of conformal cooling channels in rapid heat cycle molding: a review. *Advances in Polymer Technology*, 33 (1): 1-24.
- Shoemaker, J. (2006). Moldflow design guide: a resource for plastics engineers. 1st ed. Framingham, Massachusetts, USA: Hanser.
- Spina, R. (2004). Injection moulding of automotive components: comparison between hot runner systems for a case study. *Journal of Materials Processing Technology*, 155-156: 1497-1504.
- Subramanian, N. R., Tingyu, L. and Seng, Y. A. (2005). Optimizing warpage analysis for an optical housing. *Mechatronics*, 15 (1): 111-127.

- Sun, B., Wu, Z., Gu, B. and Huang, X. (2010). Optimization of injection molding process parameters based on response surface methodology and genetic algorithm. *Proceedings of 2nd International Conference on Computer Engineering and Technology (IEEE)*, Chengdu, China. April 16-18, 2010. 397-400.
- Sun, Y. F. (2003). Finite Element Method in Cooling Analysis and Design of Plastic Injection Moulds: National University of Singapore.
- Sun, Y. F., Lee, K. S. and Nee, A. Y. C. (2004). Design and FEM analysis of the milled groove insert method for cooling of plastic injection moulds. *The International Journal of Advanced Manufacturing Technology*, 24 (9-10): 715-726.
- Tang, S. H., Kong, Y. M., Sapuan, S. M., Samin, R. and Sulaiman, S. (2006). Design and thermal analysis of plastic injection mould. *Journal of Materials Processing Technology*, 171 (2): 259-267.
- Tang, S. H., Tan, Y. J., Sapuan, S. M., Sulaiman, S., Ismail, N. and Samin, R. (2007). The use of taguchi method in the design of plastic injection mould for reducing warpage. *Journal of Materials Processing Technology*, 182 (1-3): 418-426.
- Titomanlio, G. and Jansen, K. M. B. (1996). In-mold shrinkage and stress prediction in injection molding. *Polymer Engineering & Science*, 36 (15): 2041-2049.
- Wang, T. H. and Young, W. B. (2005). Study on residual stresses of thin-walled injection molding. *European Polymer Journal*, 41 (10): 2511-2517.
- Wu, C. H. and Huang, Y. J. (2007). The influence of cavity deformation on the shrinkage and warpage of an injection-molded part. *The International Journal of Advanced Manufacturing Technology*, 32 (11-12): 1144-1154.
- Xu, X., Sachs, E. and Allen, S. (2001). The design of conformal cooling channels in injection molding tooling. *Polymer Engineering & Science*, 41 (7): 1265-1279.
- Xu, Y. J., Yang, W., Xie, B. H., Liu, Z. Y. and Yang, M. B. (2009). Effect of injection parameters and addition of nanoscale materials on the shrinkage of polypropylene copolymer. *Journal of Macromolecular Science, Part B*, 48 (3): 573-586.

- Yao, D. and Kim, B. (2002). Development of rapid heating and cooling systems for injection molding applications. *Polymer Engineering & Science*, 42 (12): 2471-2481.
- Zhang, Z. and Jiang, B. (2007). Optimal process design of shrinkage and sink marks in injection molding. *Journal of Wuhan University of Technology-Mater. Sci. Ed.*, 22 (3): 404-407.
- Zhou, H. and Li, D. (2005). Mold cooling simulation of the pressing process in TV panel production. Simulation Modelling Practice and Theory, 13 (3): 273-285.
- Zhou, H., Zhang, Y., Wen, J. and Li, D. (2009). An acceleration method for the BEM-based cooling simulation of injection molding. *Engineering Analysis* with Boundary Elements, 33 (8–9): 1022-1030.

APPENDIX A

- Z. Shayfull, S. Sharif, Azlan Mohd Zain, R. Mohd Saad and S.M. Nasir, Improving the Quality and Productivity of Molded Parts with a New Design of Conformal Cooling Channels for the Injection Molding Process, *Advances in Polymer Technology*, DOI: 10.1002/adv.21524, 2015. Impact Factor: 1.045.
- Z. Shayfull, S. Sharif, Azlan Mohd Zain, M.F. Ghazali and R. Mohd Saad Potential of Conformal Cooling Channels in Rapid Heat Cycle Molding: A Review, *Advances in Polymer Technology*, 33(1): 1-24, 2014. Impact Factor: 1.045.
- Z. Shayfull, S. Sharif, Azlan Mohd Zain, R. Mohd Saad and M.A. Fairuz, Warpage analysis with straight drilled and conformal cooling channels on front panel housing by using taguchi method, *Key Engineering Materials* 594, 593-603, 2014. (Scopus).
- Z. Shayfull, S. Sharif, Azlan Mohd Zain, R. Mohd Saad, and M. A. Fairuz, Milled Groove Square Shape Conformal Cooling Channels in Injection Molding Process, *Materials and Manufacturing Processes*, 28: 884–891, 2013. Impact Factor: 1.486.
- Z. Shayfull, M. Fathullah, S. Sharif, S.M. Nasir, N.A. Shuaib, Warpage analysis on ultra-thin shell by using taguchi method and analysis of variance (ANOVA) for three-plate mold. International Review of Mechanical Engineering, Vol. 5, No. 6, 1116-1124, September 2011. (Scopus).
- M. Fathullah, Z. Shayfull, S. Sharif, N.A. Shuaib, S.M. Nasir, A study on two plate and three plate mold of ultra thin plates in minimizing warpage issue. International Review of Mechanical Engineering, Vol. 5, No. 7, 1189-1195, November 2011. (Scopus).

APPENDIX B

- Special Award from Chinese Innovation & Invention Society Taiwan (CIIS), New Design of Milled Groove Square Shape Conformal Cooling Channels in Injection Molding Process, International Warsaw Invention Show (IWIS) 2013, Warsaw, Poland.
- Special Award from Korea Invention News, New Design of Milled Groove Square Shape Conformal Cooling Channels in Injection Molding Process, International Warsaw Invention Show (IWIS) 2013, Warsaw, Poland.
- Award in Invention Academics & Education Order of Merit Category, World Inventor Award Festival (WIAF) 2013, New Design of Milled Groove Square Shape Conformal Cooling Channels in Injection Molding Process, Seol, Korea.
- Award in Manufacturing Order of Merit Category, World Inventor Award Festival (WIAF) 2013, New Design of Milled Groove Square Shape Conformal Cooling Channels in Injection Molding Process, Seol, Korea.
- 5. Special Award, Honor of Invention from World Invention Intelectual Property Associations, A New Design of Milled Groove Square Shape Conformal Cooling Channels (Milled Grooved Square Shape Conformal Cooling Channels) in Injection Molding Process, Invention, Innovation & Technology Exhibition (ITEX) 2014, Kuala Lumpur Convention Centre (KLCC), Malaysia
- 6. Leading Innovation Award from International Intelectual Property Netwrok Forum, Improving Productivity and Quality In Conventional and Rapid Heat Cycle Molding With A New Design of Conformal Cooling Channels, International Exhibition on Invention Kunshan (IEIK) 2014, Kunshan, China.

- 7. Special Award from Korea University Invention Association, Improving Productivity and Quality In Conventional and Rapid Heat Cycle Molding With A New Design of Conformal Cooling Channels, International Exhibition on Invention Kunshan (IEIK) 2014, Kunshan, China.
- 8. Special Award from Crotian Inventors Association, Improving Productivity and Quality In Conventional and Rapid Heat Cycle Molding With A New Design of Conformal Cooling Channels, International Exhibition on Invention Kunshan (IEIK) 2014, Kunshan, China.

APPENDIX C

- Gold Medal, New Design of Milled Groove Square Shape Conformal Cooling Channels in Injection Molding Process, International Warsaw Invention Show (IWIS) 2013, Warsaw, Poland.
- Silver Medal, Improving Quality and Productivity in Rapid Heat Cycle Moulding with A New Design of Conformal Cooling Channels, European Exhibition of Creativity and Innovation (EUROINVENT) 2014, Iasi, Romania.
- Gold Medal, A New Design of Milled Groove Square Shape Conformal Cooling Channels (Milled Grooved Square Shape Conformal Cooling Channels) in Injection Molding Process, Innovation & Technology Exhibition (ITEX) 2014, Kuala Lumpur Convention Centre (KLCC), Malaysia.
- Gold Medal, Design of Milled Groove Square Shape (MGSS) Conformal Cooling Channels in Injection Molding Process, Ekspo Rekacipta dan Penyelidikan UniMAP 2014, University Malaysia Perlis, Malaysia.
- Bronze Medal, Improving Productivity and Quality In Conventional and Rapid Heat Cycle Molding With A New Design of Conformal Cooling Channels, International Exhibition on Invention Kunshan (IEIK) 2014, Kunshan, China.
- Silver Medal, Improving Productivity and Quality In Injection Molding Process with a New Design of Conformal Cooling Channels, Malaysia Technology Expo (MTE) 2014, Kuala Lumpur Convention Centre (KLCC), Malaysia.