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ABSTRACT 

 

 

 

 

Wastewater Treatment Plant (WWTP) is highly complex with the 

nonlinearity of control parameters and difficult to be controlled. The need for simple 

but effective control strategy to handle the nonlinearities of the wastewater plant is 

obviously demanded. The thesis emphasizes on multivariable model identification 

and nonlinear proportional integral (PI) controller to improve the operation of 

wastewater plant. Good models were resulted by subspace method based on N4SID 

algorithm with generated multi-level input signal. The nonlinear PI controller (Non-

PI) with adaptive rate variation was developed to accommodate the nonlinearity of 

the WWTP, and hence, improving the adaptability and robustness of the classical 

linear PI controller. The Non-PI was designed by cascading a sector-bounded 

nonlinear gain to linear PI while the rate variation is adapted based on adaptive 

interaction algorithm. The effectiveness of the Non-PI has been proven by significant 

improvement under various dynamic influents. In the process of activated sludge, 

better average effluent qualities, less number and percentage of effluent violations 

were resulted. Besides, more than 30% of integral squared error and 14% of integral 

absolute error were reduced by the Non-PI controller compared to the benchmark PI 

for dissolved oxygen control and nitrate in nitrogen removal control, respectively. 
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ABSTRAK 

 

 

 

 

Loji Rawatan Sisa Air (WWTP) adalah sangat kompleks dengan parameter 

pengawal tak linear dan sukar untuk dikawal. Keperluan strategi pengawal yang 

mudah tetapi berkesan bagi mengatasi ketaklelurusan loji air sisa adalah sangat 

diperlukan. Tesis ini menekankan pengenalpastian model berbilang pemboleh ubah 

dan reka bentuk pengawal kadar kamir (PI) tak linear bagi memperbaiki operasi 

WWTP. Model terbaik dihasilkan melalui kaedah keadaan-ruang berdasarkan 

algoritma N4SID dengan menggunakan isyarat masukan pelbagai aras yang 

dihasilkan. Pengawal PI tak linear (Non-PI) dengan pengubahsuain kadar perubahan 

gandaan dibangunkan bagi menampung kesan tak linear WWTP seterusnya 

memperbaiki penyesuaian dan keteguhan pengawal klasik PI linear. Pengawal Non-

PI dibangunkan secara lata dengan disempadani gandaan tak linear kepada PI linear 

sementara kadar perubahan gandaan diubah suai berdasarkan algoritma hubungan 

pengubahsuaian. Keberkesanan pengawal Non-PI berjaya dibuktikan dengan 

penambahbaikan yang jelas di bawah keadaan cuaca yang berbeza. Bagi proses enap 

cemar teraktif, purata kualiti kumbahan yang lebih baik dan bilangan pelanggaran 

kumbahan yang lebih rendah dapat dihasilkan. Sementara itu, lebih daripada 30% 

ralat kamiran kuasa dua dan 14% ralat kamiran nyata telah dikurangkan oleh 

pengawal Non-PI berbanding penanda aras PI bagi pengawal oksigen terlarut dan 

nitrat dalam pengawal pembuangan nitrat setiap satu.   
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CHAPTER 1 

 

 

1.  

 

INTRODUCTION 

 

 

 

 Background Study 

 

 

Wastewater treatment plant (WWTP) is subject to large disturbances in flows 

and loads together with uncertainties concerning the composition of the influent 

wastewater. The aim of WWTP is to remove the suspended substances, organic 

material and phosphate from the water before releasing it to the recipient. Several 

stages of the treatment are carried out in the WWTP. These basically include the 

mechanical removal of floating and settle able solids as the first treatment, continued 

by a biological treatment for nutrients and organic matter abatement, sludge processing 

and chemical treatment. However, the best technology available shall be used to 

control the discharge of pollutants emphasized in biological process; called activated 

sludge process (ASP) (Vlad et al., 2012; Wu and Luo, 2012). In ASP, the organic 

matters from raw water (influent) in generally are oxidized by microorganisms to 

producing treated water (effluent). Some of the organic matters are converted to carbon 

dioxide while the remaining is integrated into new cell mass. A sludge that contains 

both living and dead microorganisms thus containing phosphorous and nitrogen are 

then produced by the new cell mass (Rehnström, 2000).  
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Benchmark Simulation Model No. 1 (BSM1) is a preferable platform to 

evaluate the effectiveness of the control design strategies for the activated sludge 

system (Yong et al., 2006). The initial BSM1 was developed by COST 264 and COST 

682 Working Group No. 2, but now is under the IWA Task Group. The BSM1 is in 

general a simulation environment which integrated with a plant layout, a simulation 

model, influent loads, test procedures and evaluation criteria. These items have been  

pursued to mimic the accepted standards and realism of the WWTP. Nitrification 

process with predenitrification configuration that is regularly applied to achieve 

biological nitrogen removal in full-scale plants are developed in the plant. The detail of 

BSM1 can be referred in Alex et al. (2008).   

 

 

According to BSM1, two important processes are involved; nitrification and 

denitrification. Nitrification is a process in which ammonium is oxidized to nitrate.  

The nitrification is implemented under aerobic conditions with the presence of oxygen. 

However, the nitrate formed by nitrification process, sequentially is converted into 

gaseous nitrogen in denitrification process (Samuelsson et al., 2005). Note that the 

denitrification is conducted under anoxic condition with absence of oxygen. In 

nitrification, DO is needed by microorganisms and control of this variable is of 

significant importance to ensure that all the reactions operate effectively. The DO 

control has been practiced for many years in wastewater control. In fact, the nitrogen 

removal in ASP requires a two-step procedure which takes place simultaneously 

nitrification and denitrification processes.  

 

 

In fact, the WWTP is significantly known as a complex multivariable or a 

large-scale plant that asks for great demands on control design strategy. The main 

goal for a wastewater control is generally to satisfy strict effluent requirements 

and minimize costs while maintaining water quality (Amand, 2011). Due to 

continuously changing conditions with the nonlinearity effect of the control 

parameters, the proposed control strategy that is potential to maintain a balance of DO 

concentration and nitrogen removal process during the set-point changes is highly 

necessitated. Further, enhancement of the nonlinear PI controller with adaptive 

features is aimed for effective wastewater control strategy. 
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 Problem Statement and Significance of the Research 

 

 

A basic knowledge of biotechnology of the WWTP that covers model 

identification and control design strategies aiming to improve the process of activated 

sludge is highlighted in the study. Modelling can be defined as a process to describe 

the dynamic behaviour of a system (Ljung, 1998). Two basic ways of modelling 

includes the mathematical modelling which is analytical approach that commonly use 

the physics law to represents the process’ behavious. Another is system identification 

that referred to experimental approach. The experiments are performed on the system 

while the model is then fitted based on the data recorded (Soderstrom and Stoica, 

2001). The biological process of the ASP was first developed on IAWQ’s Activated 

Sludge Model No. 1 (ASM1) (Henze et al., 1987).  It then continued by a series of 

mathematical models known as Activated Sludge Model No. 1 (ASM2) and Activated 

Sludge Model No. 3 (ASM3). Among them, the ASM1 is the most successful one used 

to represent the processes dynamics of the ASP (Yang et al., 2014; Wu and Luo, 

2012). Undoubtly, derivation on physical behaviour of the system offering more 

exciting appearances, but it is clearly difficult and time consuming specifically when 

dealing with a large system. The direct usage of the ASM1 is difficult for control 

purposes since more computer intensive, hardest calibration and longer time 

consuming will be asked (Yang et al., 2014; Samuelsson, 2005; Stare et al., 2007). 

Therefore, system identification technique becomes a good alternative in predicting the 

behaviour of the activated sludge. To compensate for the nonlinearity effect in signal 

excitation caused by multi-level signal of the wastewater data, a multi-level pseudo 

random input signals is generated and applied in model identification.  

 

 

The development of the control design strategies and the ability to perform in 

the process of activated sludge is next covered. In general, a multi-input multi-

output (MIMO) system is visibly described as a system with more than one 

control loop. Changes in any input will generally affect all the outputs due to 

interaction between the inputs and outputs variables (Wang et al., 2005). 

However, a non-interacting plant would be resulted if the first input signal only 

effects the first output signal, similarly the second input signal only effects the 
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second output signal and so on (Skogestad and Postlethwaite, 2005). Two 

solution packages referring to central control structure and decentralized control 

structure that are always proposed to tackle the stability and the improvement of the 

MIMO control performances (Khaki-Sedigh and Moaveni, 2009). Each of them has 

their advantages and deficiencies to effectively operate the WWTP. Basically, a non-

diagonal transfer function matrices refer to centralized controllers that describing the 

highly interactive loops in the process. Meanwhile, independent feedback controllers 

are normally used to control a subgroup of the plant outputs with a subgroup of the 

plant inputs in decentralized control. 

 

 

The WWTP has very wide dynamic time scales thus can be divided into three 

different scales; slow processes, medium scale processes and fast processes (Steffens 

and Lant, 1999; Wahab, 2009). The growth of biological processes such as biomass 

growth is considered as a slow process. The medium scale processes refer to the 

dynamic concentrations and nutrient removal while the fast scale processes denote the 

flow dynamics and the DO. The slow process has a time constant of days or even up to 

months and regularly handled by supervisory control. The medium scale processes has 

a time constant of minutes or up to hours are normally asked for more advanced 

process control while the basic control strategies may be considered for the fast 

process with in minutes of the time constant. Useful review related to biological 

activated sludge process can be referred to the work presented by Jeppsson (1996). The 

dynamic natures of the WWTP time scales challenge the development of the controller 

thus  ask for simple but effective controller design strategies. 

 

 

The interest in more advanced control strategies is always demanded due to the 

tighter effluent quality of the WWTP (Samuelsson, 2005). It was observed that 

aeration process is a vital part of the whole function of the ASP (Amand, 2011; 

Holenda, 2007; Wu and Luo, 2012). Surface mechanical type aerators or diffused 

aeration systems is typically applied to deliver oxygen to the aeration system. In order 

to break the air into bubbles as they are dispersed through the aeration tank, the 

aerators or diffused aeration system with a high volume air compressor (blower), low 

pressure, air piping system and diffusers are commonly applied. However, it is a 
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nontrivial task to transport the oxygen from the air bubbles to the cells of the 

microorganisms, thus the process is commonly described by the oxygen mass transfer 

coefficient, KLa. KLa, in general is nonlinear and depends on the aeration actuating 

system and the sludge conditions (Holenda et al., 2008). The KLa indicates the rate at 

which the oxygen is transferred to the wastewater by aeration system and it is always 

used as a manipulated variable for DO control. To explain the aeration model, a DO 

mass balance around complete stirred tank reactor is usually presented (Alex et al., 

2008). The DO concentration in the aerobic part should be sufficiently high, so that 

enough oxygen can be supplied to the microorganisms in the sludge. The organic 

matter is then degraded and ammonium is adequately converted to nitrate. However, 

an excessively high DO will ask for higher airflow rate, thus leading to higher energy 

consumption and deteriorating the sludge quality. The importance of DO control is 

heavily discussed such the work by  Lindberg (1997); Carlsson and Lindberg (2004); 

Brdys et al. (2002), and Sanchez et al. (2003).  

 

 

Meanwhile, extreme concentration of nitrogen in the effluent invites several 

drawbacks. The growth of algae and aquatic plants are strongly inspired by nitrogen. 

This may causes deficiency of oxygen due to the degradation process (Lindberg, 1997; 

Samuelsson, 2005). Consequently, minimization of the nitrogen level in the incoming 

wastewater is obviously required thus can be solved by nitrogen removal control. 

 

 

The improvement of balance DO concentration in aerated tanks and the 

nitrogen removal process contribute to a big interest in activated sludge control. 

However, one of the main problems in controlling the DO concentration is the 

nonlinear natures of the process dynamic (Piotrowski et al., 2008; Han et al., 2008; 

Holenda, 2007). Consequently, it is hard to achieve high control performance in all 

operating conditions with a linear controller. A controller that is capable to maintain a 

balance of DO level during the set-point changes is highly demanded. In fact, the 

biological nitrogen removal in activated sludge WWTP requires a two-step procedure 

taking place simultaneously, nitrification and denitrification. The relationships 

between the control inputs and the outputs in both processes are complex whereas, the 

biological nitrogen removal itself is nonlinear and time varying (Samuelsson, 2005; 
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Lindberg, 1997). To these reasons, a simple but effective controller that has potential 

to handle the complexity of both processes are aimed in this work.  

 

 

The proportional-integral-derivative (PID) technique is one of the control 

strategies that are frequently applied in industrial (Mcmillan, 2012), specifically for 

WWTP. The dominative usage of the PID control is undeniably even with the 

advances of modern control techniques. However, the PID controller is still faces with 

a great challenge to control a complex nonlinear system; specifically with randomness 

of the external disturbances. The classical PID controller is regularly adequate to 

control of a nominal physical process. Difficulties may come to the classical PID to 

perform well in high-performance control with changes operating conditions (Seraji, 

1998). Besides, the fixed control parameters in the classical PID controller lead to poor 

performance of transient response. This was supported by the limitation in the 

operating range of the controller specifically when it deals with complex nonlinear 

system (Aydogdu and Korkmaz, 2011). But, the design and analysis of the nonlinear 

PID controller are strongly complicated and difficult to be implemented (Yongping, 

2010)  while the question to design simple architecture of effective PID controller was 

appointed (Wang, 2012). In conjunction to these issues, modification of a linear PI 

controller using special nonlinear functions is claimed to be more attractive in 

engineering applications (Yongping, 2010). 

 

 

Based on the above discussion, a dynamic nonlinear PI (Non-PI) controller 

with changed parameters over time with respect to the error response based on the 

nonlinear function is proposed. The aim here is to compensate the nonlinearities 

behaviours of the WWTP and hence to improve the adaptability and robustness of the 

classical PI controller. Furthermore, initiative enhancement to simplify the Non-PI 

control structure by adapting the rate variation of the nonlinear gain is also targeted. 

The proposed Non-PI is focused on improving the balance of DO concentration in 

aerated tanks and the nitrogen removal process for effective activated sludge control. 
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 Research Objectives 

 

 

The objectives of this research can be outlined as follows: 

 

(i) To obtain linear state-space model with developed multi-level input 

signal for nonlinear activated sludge process. 

 

(ii) To design a nonlinear PI controller that is potential to accomodate  the 

dynamic natures of the activated sludge.  

 

(iii) To test the nonlinear PI controller to the nonlinear activated sludge 

process under different variations and disturbances.  

 

 

 

 

 Research Scope and Limitation 

 

 

The research scope and limitation of this work can be described as follows: 

 

(i) The model identification is implemented by subspace based method 

with N4SID algorithm. To obtain more information data in signal 

excitation, a multi-level perturbation input signal is generated. 

 

(ii) The simulation is emphasizes on the updated version of Benchmark 

Simulation Model No. 1 (BSM1) with updated sensors and noises as 

described in Alex et al. (2008) using Matlab@Simulink simulation 

platform. 

 

(iii) The biological parameter values of the BSM1 are correspond 

approximately to a temperature of 15
o
C.  

 



8 

(iv) The work concerns on the improvement of two case studies. Case I 

refers to the aeration process where the DO in all aerated tanks are 

considered. The Case II highlights on the nitrogen removal process 

which involve the simultaneous nitrification and denitrification 

processes. 

 

(v) For Case I, the manipulation of the oxygen mass transfer coefficient, 

KLa is constrained at 360/day
 
in controlling each DO tank. The sensor 

of class A with a measurement range of 0 to 10 mg/l and a 

measurement noise of 0.25 mg/l was applied. 

 

(vi) For Case II, the internal recycle flowrate,  Qintr and the KLa were 

manipulated in controlling the nitrate and the DO control loops, 

respectively. Again, the KLa was constrained at 360 day
-1 

while the Qintr 

was restricted up to 5 times of stabilized input flow rate, 92230 m
3
/day. 

A class B0 sensor with a measurement range of 0 to 20 mg/l and 

measurement noise of 0.5 mg/l was applied in nitrate control while 

similar sensor of class A in Case I is used for DO control.  

 

(vii) The improvement of the five effluents water quality are considered in 

the simulation. The flow-weighted average of the five effluent 

concentrations; total nitrogen (Ntot), biochemical oxygen demand 

(BOD5), chemical oxygen demand (COD), ammonia (SNH), and total 

suspended solids (TSS) are constrained to 18 g/l, 100 g/l, 4 g/l, 30 g/l 

and 10 g/l, respectively (Alex et al., 2008).   

 

(viii) The effectiveness of developed nonlinear PI is always compared to the 

performances of default benchmark PI controller; which is tuned and 

recommended by Alex et al. (2008). 
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 Organization of the Thesis 

 

 

Chapter 1 presents a brief introduction of the process of wastewater treatment 

plant. The problem statement, the objective , the scope and limitation of the research 

are discussed. 

 

 

In Chapter 2, the literature study on the wastewater treatment plant (WWTP), 

the system identification and control design techniques are presented. It then continued 

by critical literatures that motivates the implementation of the project. The theoretical 

part on multilevel pseudorandom input signal and the nonlinear PI controller are also 

discussed. 

  

 

Chapter 3 explaines the methodology part of the project that starts with the 

flow of project implementation. The simulation procedures, the exclusive study of the 

Benchmark Simulation Model No. 1 (BSM1) and the case studies involved are next 

presented. It then followed by the implementation of the state-space modelling, the 

development of the MPRS input signal and the nonlinear PI controller to the activated 

sludge process (ASP). 

 

 

Chapter 4 presents the simulation result of model identification and control 

design application. It discuss the performance of identified model, the results on RGA 

test continued by the performances of the proposed nonlinear PI controller under 

various weather condition and disturbances.  

 

 

The summary of the research findings and the recommendation of future 

research based on this study are presented in Chapter 5. 
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