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ABSTRACT 

 

 

 

 

 Progressive freeze concentration (PFC) has emerged as a viable technology for 

concentration of liquid solution. For this present research, a new spiral finned 

crystallizer was designed and fabricated as the main component in the PFC system. 

The spiral finned crystallizer was designed with the aim of increasing productivity and 

quality of product. Further analysis on its performance, a process optimization and 

modelling study were carried out after the completion of the design. For the 

performance analysis, glucose solution was used as a liquid food model solution. The 

performance of the crystallizer was analysed through the system efficiency assessed 

in parallel with the effect of operating conditions. It was found that the effective 

partition constant (K) was satisfactorily low at intermediate coolant temperature, high 

circulation flowrate, intermediate circulation time and intermediate shaking speed. A 

low K value and a high solute recovery (Y) value represent the best performance of 

the PFC system. In terms of Y, the highest achieved was approximately 0.98 g of 

glucose obtained per 1 g of initial glucose. A mass validation was successfully 

obtained from the experimental results. The evaluation of the crystallizer in terms of 

ice production, fluid mechanic and heat transfer characteristics was also carried out. 

0.64 g/m2s1 of maximal ice production was attained, reflecting a good function of the 

spiral fin. A process optimization employing Response Surface Methodology (RSM) 

in Statistica software was applied to study the relationships of coolant temperature, 

circulation flowrate, circulation time and shaking speed on K and Y. The optimum 

conditions to produce the best K and Y were found to be 10.30 °C of coolant 

temperature, 3097.50 mL/min of circulation flowrate, 64 minutes of circulation time 

and 29.53 ohm of shaking speed. The best K predicted was 0.25 and 0.99 for Y. A heat 

transfer model was also successfully developed in order to study ice crystal mass 

formation. 
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ABSTRAK 

 

 

 

 

Pemekatan pembekuan progresif (PFC) telah muncul sebagai teknologi yang 

berdaya maju untuk pemekatan larutan cecair. Untuk kajian ini, satu penghablur 

bersirip lingkaran baru telah direka dan dibentuk sebagai komponen utama dalam 

sistem PFC. Penghablur bersirip lingkaran telah direka dengan tujuan untuk 

meningkatkan produktiviti dan kualiti produk. Analisa lanjut mengenai prestasinya, 

proses pengoptimuman dan kajian pemodelan telah dijalankan selepas selesai proses 

mereka bentuk. Untuk analisa prestasi, larutan glukosa telah digunakan sebagai larutan 

model makanan cecair. Prestasi penghablur dianalisa melalui kecekapan sistem yang 

ditaksirkan selari dengan kesan keadaan operasi. Telah didapati bahawa pemalar 

pemisahan berkesan (K) adalah rendah pada suhu penyejuk yang sederhana, kadar 

aliran peredaran yang tinggi, masa peredaran yang sederhana dan kelajuan gegaran 

yang sederhana. Nilai K yang rendah dan nilai dapatan bahan larut (Y) yang tinggi 

mewakili prestasi terbaik bagi sistem PFC. Dari segi nilai Y, nilai yang paling tinggi 

dicapai adalah lebih kurang 0.98 g glukosa diperolehi bagi setiap 1 g glukosa awal. 

Keseimbangan jisim telah berjaya mengesahkan keputusan ujikaji yang diperolehi. 

Penilaian bagi penghablur dari segi penghasilan ais, mekanik bendalir dan pemindahan 

haba telah dijalankan. 0.64 g/m2s1 pengeluaran ais maksimum telah dicapai, 

mencerminkan fungsi yang baik oleh sirip lingkaran. Proses pengoptimuman 

menggunakan kaedah  gerak balas permukaan (RSM) dalam perisian Statistica telah 

digunakan untuk mengkaji hubungan antara suhu penyejuk, kadar aliran peredaran, 

masa peredaran dan kelajuan gegaran pada K dan Y. Keadaan optimum untuk 

menghasilkan K dan Y yang terbaik adalah pada suhu penyejuk 10.30 °C, kadar aliran 

peredaran 3097.50 mL / min, masa peredaran 64 minit dan kelajuan gegaran 29.53 

ohm. Nilai K yang diramalkan adalah 0.25 dan 0.99 untuk Y. Model pemindahan haba 

juga telah berjaya dibangunkan untuk mengkaji pembentukan kristal ais.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

 Increasing a solution concentration is necessary in terms of transportation, 

conservation and manufacturing in food industry, desalination and wastewater 

treatment. There are several methods in concentration and water removal process such 

as evaporation, reverse osmosis (RO) and freeze concentration (FC). Many efforts 

have been committed to develop improved methods for concentration and water 

removal process. In evaporation, higher level of concentration can be obtained 

compared to FC and RO. However, there are impairment of sensory (colour, taste and 

aroma) and nutritional value of the finished product such as vitamin because of the 

heat induced (Gulfo et al., 2014b). Thus, the quality of the product is poor. Moreover, 

high energy is demanded in vacuum evaporation which can contribute to higher cost 

(Randall et al., 2011).  

 

 

 In RO, water is removed as permeate through the membrane without the phase 

change and heat is not supplied for separation of water. Thus, energy requirement is 

low, thermal damage to the product is low thus resulting in better flavour and colour 

retention compared to evaporation. The performance of RO depends on the types of 
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membrane (Prerana Dayasagar, 2004) and the cost of membrane is quite high (Sánchez 

et al., 2011b). A single stage of RO system cannot achieve a concentration higher than 

25 – 30° Brix, which is much lower than 45 – 65° Brix for products obtained from 

evaporation (Jiao et al., 2004). In addition, one major problem of RO is fouling which 

can affect the quality of the water produced.  

 

 

 Water may also be removed by freezing out water as ice crystal. FC is the 

process of concentrating a solution by freezing out the water content into ice crystals 

(Sánchez et al., 2011b). The aim of FC is to form very pure ice crystal where there is 

only water without any solids retained in the ice crystal (Hernández et al., 2010). The 

resulting solid and liquid phase are then subsequently separated as ice and concentrated 

solution (Berk, 2009). During ice crystal formation, solutes are rejected by the nature 

of ice crystal lattice formation which is formed by pure water (Jusoh, 2010). Water 

solidification process forming the small dimension ice crystal lattice makes the 

inclusion of any impurities impossible except for fluorohydric acid and ammonia, thus 

there is no solute contaminants in ice (Lorain et al., 2001).  

 

 

As compared to evaporation and reverse osmosis, FC has some benefits in 

producing high quality concentrated solution because the use of cold temperatures can 

reduce the losses caused by volatility and chemical reactivity (Kobayashi and Lee, 

1964). There is no loss of volatiles in FC because no high temperatures are used and 

no vapour-liquid interface exists (Petzold and Aguilera, 2013). Therefore, higher 

flavour and quality of freeze concentrated products are produced. FC has been applied 

for various industrial requirements involving fruit juices, milk products, sugar 

solutions, brackish water and wastewater. However, practical application of FC is 

limited due to the complexity of its equipment and the high capital investment (Zhang 

and Hartel, 1996; Rodríguez et al., 2000; Roos et al., 2003; Miyawaki et al., 2005; 

Habib and Farid, 2006). 

 

 

FC can be divided into suspension freeze concentration (SFC) and progressive 

freeze concentration (PFC) (Muller and Sekoulov, 1992; Wakisaka et al., 2001; 
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Miyawaki et al., 2005; Kawasaki and Matsuda, 2008; Aider and de Halleux, 2009). 

The more conventional SFC consists of steps including nucleation, crystal growth and 

separation of ice crystals, involving a scraped-surface heat exchanger (SSHE) and a 

recrystallizer (Lemmer et al., 2001; van Nistelrooij, 2005; Otero et al., 2012). Small 

ice crystals are produced in the SSHE after being pumped from a feed tank. SSHE is 

the most expensive processing unit in an FC plant where 30% of the total investment 

costs comes from SSHE (Habib and Farid, 2006). SSHE outflow containing small ice 

crystals is fed to the recrystallizer where they are mixed with larger crystals. The 

crystal growth takes place in the recrystallizer as a result of the Gibbs-Thomson effect 

(Ostwald ripening) (Miyawaki et al., 2016). From the recrystallizer, a slurry flow is 

transported to a separation device where the ice crystals are separated from the 

concentrated liquid (Lorain et al., 2001). The separation and washing of the ice crystals 

is important in SFC because the solutes present in the solution will contaminate the ice 

crystals by adhering to the ice crystals. The efficiency of SFC is found to be high but 

it is difficult to separate the ice crystals from the concentrated liquid because of the 

large surface area. As a result, this method needs very complicated system which 

makes the SFC process the most expensive method among other concentration 

methods (Moreno et al., 2013). 

 

 

 Nowadays, many developments of FC are associated with PFC because of the 

simpler separation step (Moreno et al., 2014a). PFC is a type of FC that progressively 

produces ice crystal layer by layer on a cooled surface until it forms a large and single 

ice crystal block (Miyawaki et al., 1998). Large ice crystal has fewer impurities or 

amount of solutes than small ice crystal (Shirai et al., 1987; Kobayashi et al., 1996; 

Widehem and Cochet, 2003). So, the purity of ice crystals produced from PFC is much 

higher than purity of ice crystals produced from SFC. Since there is only a single block 

of ice crystal, it would be much easier to separate the ice crystal from the mother 

solution which in turn resulting in low operation and maintenance cost (Jusoh et al., 

2008a). 

 

 

 Although PFC has been proven to yield quality of the product of better than 

SFC, its productivity is still lower than SFC. Productivity is a measure of the efficiency 
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of the FC system to produce ice crystal and it is calculated from the amount of the ice 

crystal produced by the system. Various studies have been done so that the quantity of 

the product can be increased. Different kinds of design have been investigated in order 

to obtain high quality and higher efficiency. In 1997, Liu et al. had developed a vertical 

PFC system which is composed of a cylindrical sample vessel of stainless steel, a 

cooling bath and a driving system to move the sample vessel into the cooling bath at a 

constant speed. This PFC system was applied to a solution containing glucose and/or 

blue dextran as a model liquid food. As a result, only a single ice crystal grows and the 

ice crystal separation from the concentrated solution is relatively easy. 

 

 

 In order to increase productivity and to get high yield of product, tubular ice 

system was developed by Miyawaki et al. (2005). The apparatus of the tubular ice 

system was composed of two straight pipes, bent pipes at the top and bottom and pump 

for circulation. The tubular ice system has concentrated coffee extract, tomato juice 

and sucrose solution to high concentrations with excellent yields. Nakagawa et al. 

(2010) employed a batch crystallizer in order to use solute elution from a frozen matrix 

as a concentrating operation. A batch crystallizer was made up to freeze solution with 

a jacket cooler and a rod heater was set at the centre of the crystallizer in order to make 

the solution contact with the frozen zone. Almost all the solute could be recovered 

from the original solution. In 2012, Rich et al. developed a dynamic layer crystallizer 

for freezing desalination of sea water. The crystallizer consists of a stainless steel tube 

immersed in a cylindrical double jacketed tank. As a result, an ice layer was formed 

on the external surface of the tube during the freezing step. 

 

 

 

 

1.2 Problem Statement 

 

 

 Since a long time ago, many efforts have been made to improve the PFC system 

where it is proven that it can be applied to concentrate fruit juices, wastewater, 

pharmaceutical and sea water.  However, some of the previous PFC system produces 
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low productivity of the product because of small surface area of the cooling surface 

(Liu et al., 1997), consists of many equipments where the system have seven different 

types of tank, ice maker, compressor unit, pumps and pipes (Wakisaka et al., 2001), 

have too long of process time which is more than 10 hours and cause the process 

becomes costly (Ramos et al., 2005), has irregular flowrate because of the bent pipes 

(Miyawaki et al., 2005) and have the formation of foam in the process that obstructed 

the movement and distribution of the solution which reduced the heat transfer (Sánchez 

et al., 2010). All of this has motivated researchers in this field to build up method for 

obtaining higher quality of ice crystal with higher productivity. At the same time, the 

system must be simple and easy to operate. The PFC system is recognized as the good 

alternative if it can produce high quality of product with high productivity. 

 

 

High quality of product can be defined by high purity of ice crystal and high 

concentration of concentrated solution. The solutes must be expelled from the ice 

crystal interface to increase concentration of the solution (Rodrigues et al., 2011). The 

major difficulty of PFC operation is how to control the freezing front velocity because 

the solutes can be easily trapped in the ice crystal when the freezing front velocity is 

too fast. Thus, in order to exclude solutes from the ice crystal, ice crystal growth rate 

must be lower than a limit value during the whole PFC process. The limit is recognized 

as a critical growth rate that determines the quality of ice crystal produced. The ice 

crystal growth rate must be controlled with the suitable operating conditions where its 

value must not be too low or too high.  

 

 

 As an alternative to overcome all the weaknesses presented by the previous 

designs, a new design of PFC system has been developed in this study. The design of 

the new PFC system, which is a new crystallizer with spiral fins as the main part, 

provides highest contact surface area and optimum flow characteristic. The increase 

of the contact surface area enhances the heat transfer between solution and coolant. 

The ice crystal is grown on the inside surface that is being cooled by the coolant. The 

productivity can be increased with the increase of contact surface area between the 

coolant and the solution through the cooling surface. The improvement in 

concentration efficiency of the PFC process assisted by the additional spiral fins has 
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been experimentally examined. By providing increased contact surface area by the 

additional spiral fins, this crystallizer attempted to improve the concentration 

performance by increasing the heat transfer between solution and coolant. Although 

the theory and practice of fin has been widely studied by many researchers for different 

applications of heat exchangers, the efficiency of fin in a crystallizer has not been 

studied. In addition, the improvement in concentration efficiency of the PFC process 

also has been assisted by shaking of the solution.  A shaker has been added as an 

assisted technique for this PFC system. 

 

 

 Nowadays, crystallization process has been abundantly used in the industry. In 

chemical industry, crystallizers are often used to achieve liquid-solid separation and 

generate high purity products, for example in production of sugar. The developments 

of the technology in industrial crystallization is becoming more exciting and 

challenging in the world of chemical engineering.  

 

 

 

 

1.3 Objectives 

 

 

 The main objective of this research is to design and develop a new crystallizer 

for the use in a PFC system. Specific objectives are to: 

 

 

i. Design, fabricate and characterize a new crystallizer with spiral fin as the main 

component in the PFC system. 

ii. Study the effect of several operating conditions for the newly designed PFC 

system using glucose as a model solution.  

iii. Study ice crystal mass formation using heat transfer model.   

iv. Conduct a case study in fruit juice concentration by using the new PFC system 

to find the optimum operating conditions. 
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1.4 Scope of Research 

 

 

There are four major scopes of this study. 

 

 

i. A new crystallizer with a spiral fin was made of stainless steel. Fin efficiency 

calculation was made in order to ensure the suitability of the fin to the 

crystallizer. The cooling jacket has been equipped on the crystallizer and 

insulated by polyurethane foam. The geometrical characteristics in terms of ice 

production, fluid mechanic and heat transfer of the PFC system was 

determined.  

ii. The performance of PFC system for concentration process of glucose solution 

was studied according to the effect of circulation flowrate, circulation time, 

coolant temperature and shaking speed. The effect of these operating 

parameters was evaluated through the value of effective partition constant (K) 

and solute recovery (Y). These operating parameters have been investigated 

through the following ranges: 

 Circulation flowrate from 2600 mL/min to 3400 mL/min 

 Circulation time from 40 minutes to 80 minutes 

 Coolant temperature from -8 °C to -16 °C 

 Shaking speed from 20 ohm to 60 ohm 

iii. The case study of PFC system has been conducted on apple juice where the 

application of PFC system on the real solution can be known. Optimization 

process has been applied to determine optimum conditions for the apple juice 

concentration and to optimize the operating conditions of the process using 

Response Surface Methodology (RSM).  

iv. The model was developed based from the fundamental equation of heat 

transfer. Experimental values of ice crystal mass were obtained at different 

coolant temperature and were compared with the values estimated by the 

model. 
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1.5 Significance of Research 

 

 

 The spiral finned crystallizer for the PFC system has never been engaged in 

any application. This is a novel idea and this study would be beneficial to measure the 

opportunity of a new attractive method for any suitable application. This alternative is 

simpler and can reduce the operation time.  

 

 

 In addition, this study can provide an understanding on how to design the PFC 

system with high quality of product and high productivity. This study also can be a 

reference for any other applications in the industry. 
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