

ENHANCEMENT OF NATURAL LANGUAGE PROCESSING APPROACH FOR

AUTOMATED GENERATION OF OBJECT CONSTRAINT LANGUAGE

SAMIN SALEMI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

SEPTEMBER 2015

iii

Dedication

To my loving parents, Masoum and Mahmoud

And my supportive brother

iv

ACKNOWLEDGEMENT

I would like to express my special appreciation and thanks to my supervisor,

Foremost, I would like to express my sincere gratitude to my advisor Prof. Ali

Selamat for the continuous support of my Ph.D study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my Ph.D study.

My parents, I don’t think I can find proper words to express my gratitude

towards them. It is their encouragement and support from the very beginning of my

life that made it possible for me to reach this stage. Sina, my wonderful brother,

thank you for always supporting me. Dear Nicholas, I will never forget what you

have done for me.

v

ABSTRACT

Object Constraint Language (OCL) is the most prevalent modeling language

to document requirement constraints that are annotated in the Unified Modeling

Language. Various researchers have proved that OCL syntax is complex and difficult

for some reasons such as its declarative nature. As the measure of ease-of-use factor

of a language has a direct relationship with the language’s usability, the difficulties

in the use of OCL result in the low usability of OCL. There are few research works

for OCL generation using some different techniques such as pattern-based and

Model-Driven Architecture (MDA)-based. The accuracy of the existing pattern-

based work generating OCL specification is low. MDA focuses on software

development based on generating models and transforming these models between

each other. There are some researches based on MDA to increase the usability of

modeling languages. However, only one of the existing works supports OCL. The

existing MDA-based work generating OCL specification does not support some OCL

elements, such as collect and reject, and some UML elements such as

enumeration. Therefore, this research proposes an MDA-based approach to transform

requirement constraints formed in English sentences into OCL specifications using

transformation rules. A software tool is developed to validate the proposed approach

and compare with the existing works. The comparison shows that the proposed

approach solves some limitations of the existing works such as support of some OCL

and UML elements, which are not supported by the existing works. The comparison

also shows that some accuracy improvement is achieved by the proposed approach in

comparison with the existing works.

vi

ABSTRAK

Bahasa Kekangan Objek (OCL) merupakan bahasa pemodelan yang sering

digunapakai bagi mendokumenkan kekangan keperluan yang dianotasi ke dalam

Bahasa Pemodelan Bersatu (UML). Ramai penyelidik telah membuktikan yang

sintaks OCL adalah kompleks dan sukar dan ia berpunca dari pelbagai faktor seperti

sifat deklaratif nya. Oleh kerana pengukuran mudah guna bahasa mempunyai

perkaitan terus dengan kebolehgunaan bahasa, kesukaran penggunaan OCL

menyebabkan kadar kebolehgunaan yang rendah. Terdapat beberapa kajian

berkenaan dengan penghasilan OCL menggunakan teknik-teknik berbeza seperti

penggunaan berdasarkan corak dan senibina berdasarkan model. Ketepatan kerja

sedia ada berdasarkan corak bagi menghasilkan OCL adalah rendah. MDA

menumpukan kepada penmbangunan perisian berdasarkan penghasilan model dan

transformasi di antara model-model. Terdapat kajian berdasarkan MDA bagi

meningkatkan kebolehgunaan bahasa. Bagaimanapun hanya terdapat satu kerja sedia

ada yang menyokong OCL. Kerja ini yang berdasarkan MDA bagi menghasilkan

spesifikasi OCL bagaimanapun tidak menyokong sesetengah elemen OCL seperti

collect dan reject dan sesetengah elemen UML seperti penghitungan. Oleh itu,

kajian ini mencadangkan satu pendekatan berasaskan MDA bagi menukar kekangan

keperluan di dalam bahasa Inggeris kepada spesifikasi OCL menggunakan peraturan

transformasi. Satu aplikasi dibangunkan untuk mengesahkan pendekatan yang

dicadangkan dan perbandingan dibuat dengan kerja sedia ada. Hasil perbandingan

menunjukkan pendekatan yang dicadangkan dapat menyelesaikan kekurangan di

dalam kerja sedia ada seperti sokongan terhadap sesetengah elemen OCL dan UML

yang tidak disokong oleh kerja sedia ada. Perbandingan juga menunjukkan

peningkatan ketepatan dapat dicapai menggunakan pendekatan yang dicadangkan

berbanding kerja sedia ada.

vii

TABLE OF CONTENT

CHAPTER

1

TITLE

DECLARATION

DEDICATION

ACKNOWLEDGMENT

ABSTRACT

ABSTRAK

TABLE OF CONTENT

LIST OF TABLES

LIST OF FIGURES

LIST OF ALGORITHMS

LIST OF ABBREVATIONS

LIST OF APPENDICES

INTRODUCTION

1.1 Overview

1.2 Research Background

1.3 Problem Statement

1.4 Research Questions

1.5 Research Goal

1.6 Objectives

1.7 Research Scopes

1.8 Research Motivations

1.9 Research Outcomes

1.10 Research Outline

PAGE

ii

iii

iv

v

vi

vii

xi

xiv

xvi

xvii

xxi

1

1

3

7

7

8

9

9

11

12

13

viii

2

3

LITERATURE REVIEW

2.1 Introduction

2.2 Model-Driven Architecture

2.3 Semantic of Business Vocabulary and Rules

(SBVR)

2.4 Object constraint language (OCL)

2.5 Systematic review of related works

2.5.1 Research questions

2.5.2 Identify relevant research

2.5.3 Evaluation criteria for OCL generation

approaches

2.5.4 Evaluation criteria for MDA-based

approaches

2.5.5 Taxonomy of OCL generation

approaches

2.5.6 Taxonomy of model-to-model

transformation languages

2.5.7 Taxonomy of existing model-to-model

transformation approaches

2.5.8. Systematic literature review conclusion

2.6. Stanford natural language processor

2.7 Evaluation metrics

2.8 Factor analysis

2.9 Summary

RESEARCH METHODOLOGY

3.1 Introduction

3.2 Research framework

3.2.1 Identify problem background

3.2.2 Identify research problems by literature

review

3.2.3 Approach proposal

3.2.4 Approach evaluation

15

15

15

18

20

24

25

25

26

26

32

32

45

59

61

62

63

64

65

65

65

66

66

66

67

ix

4

5

3.3 Research Process

3.3.1 Analysis of related works and problem

discovery

3.3.2 Approach proposal

3.3.3 Generate meta-models

3.3.4 Lexical, syntactical, and semantic

analysis

3.3.5 Generate mapping rules

3.3.6 Implementing mapping rules into ATL

specifications

3.3.7 Approach validation

3.3.8 Case studies

3.3.9 Justification and classification of the case

studies

3.3.10 Comparison of EN2OCL and the existing

tools

3.3.11 Design a survey to measure result of

usability improvement

3.4 Summary

THE PROPOSED EN2OCL APPROACH FOR

OCL GENERATION

4.1 Introduction

4.2. Metamodels creation

4.3 Mapping rules

4.4 En2OCL approach

4.4.1 Lexical analysis

4.4.2 Syntactic analysis

4.4.3 Semantic analysis

4.5 Summary

EVALUATION OF THE PROPOSED APPROACH

5.1 Introduction

69

70

71

72

72

73

73

74

74

79

80

81

83

84

84

84

87

90

93

96

99

108

110

110

x

6

7

5.2 Approach validation

5.3 Implementation of the proposed approach in a

software tool

5.4 Tool testing

5.5 Usability measurement

5.6 Summary

DISCUSSION

6.1 Introduction

6.2 Approach comparison

6.3. Accuracy comparison

6.4 F-measure comparison

6.5 Result of usability improvement

6.6 Summary

CONCLUSION AND FUTURE WORK

7.1 Introduction

7.2 Research summary and achievements

7.2.1 Achievement of the research

objectives

7.2.2 Achievement of the research goal

7.2.3. The solution of the problem

statements and the research questions

7.3 Main contributions of the research

7.4 Limitation and future work

110

111

115

117

121

122

122

122

126

136

141

146

147

147

147

148

149

149

150

151

REFERENCES

Appendices A-H

153

162-209

xi

LIST OF TABLES

TABLE NO.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

TITLE

Orthogonal dimensions of model transformation

Criteria comparison

Evaluation summary of the existing works generating

OCL specifications

Evaluation summary of the existing model-to-model

transformation approaches

Evaluation summary of the existing model

transformations with natural language source model

Evaluation summary of the existing model

transformations with SBVR source model

Confusion matrix

The justifications of the case studies

Survey samples

Mapping rules

Examples of single-sentence splitting

Splicers between two main entities

Prioritizing rules (relationship without any related

restrictorRelationship)

Prioritizing rules (restrictorRelationship

without any related relationship)

Prioritizing rules (relationship with a related

restrictorRelationship)

Splicer mapping rules

OCL sub-expressions integration rules

OCL sub-expression revision rules

PAGE

31

33

36

42

52

60

63

80

82

88

95

98

101

101

102

104

106

108

xii

5.1

5.2

5.3

5.4

5.5

5.6

5.7

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

A.1

A.2

A.3

A.4

B.1

B.2

B.3

B.4

C.1

C.2

C.3

C.4

D.1

E.1

F.1

Tool and approach mapping

Test results (on En2OCL, Royal and Loyal case study)

Test results (on En2OCL, Hospital case study)

Test results (on En2OCL, ATM case study)

Exploratory factor analysis (manually)

Exploratory factor analysis (using En2OCL)

Usability variables (manually and using En2OCL)

Mapping rules comparison

Differences between En2OCL and the existing tools

Benchmark results (Royal and Loyal case study)

Test results (En2OCL vs. NL2OCLviaSBVR in Royal

and Loyal case study)

Test results (En2OCL vs. NL2OCLviaSBVR in

Hospital case study)

Test results (En2OCL vs. NL2OCLviaSBVR in ATM

case study)

Exploratory factor analysis (using NL2OCLviaSBVR)

Users responses

Very simple sentences (Royal and Loyal Case Study)

Simple sentences (Royal and Loyal Case Study)

Medium sentences (Royal and Loyal Case Study)

Complex sentences (Royal and Loyal Case Study)

Very simple sentences (ATM Case Study)

Simple sentences (ATM Case Study)

Medium sentences (ATM Case Study)

Complex sentences (ATM Case Study)

Very simple sentences (Hospital Case Study)

Simple sentences (Hospital Case Study)

Medium sentences (Hospital Case Study)

Complex sentences (Hospital Case Study)

OCL abstract syntax

Stanford POS tags

Stanford typed dependencies

115

116

116

116

118

118

119

125

126

135

137

138

140

142

143

162

165

168

172

177

180

182

185

188

190

193

196

199

202

204

xiii

G.1

H.1

Usability measurement survey

Mapping rule examples

205

207

xiv

LIST OF FIGURES

FIGURE NO.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

5.1

5.2

5.3

TITLE

MOF Metamodel

Basic concepts of model transformation

Model abstraction levels

SBVR metamodel

OCL specification template

OCL metamodel

Phases of the review protocol

Endogenous vs. Exogenous transformation

Successive transformations

Horizontal vs. Vertical transformation

Unidirectional vs. Bidirectional transformation

Systematic literature review conclusion

Research framework

Research process

Problem discovery process

Mapping rules

Royal and Loyal model

Automatic teller machine model

Hospital model

English metamodel

Execution process of ATL projects

EN2OCL approach

Approach validation procedure

En2OCL tool framework

First Input of En2OCL (UML Class model)

PAGE

16

17

18

20

21

23

24

27

28

29

30

60

68

70

71

73

75

77

78

86

90

92

111

112

112

xv

5.4

5.5

5.6

5.7

5.8

5.9

5.10

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Second Input of En2OCL (English sentence)

First Output of En2OCL (semantic vocabulary)

Second Input of En2OCL (semantic rules)

Final Output of En2OCL (OCL specification)

Usability comparison in medium users (manually vs.

using En2OCL)

Usability comparison in expert users (manually vs.

using En2OCL)

Usability comparison in total users (manually vs.

using En2OCL)

NL2OCLviaSBVR approach

Accuracy benchmark results

F-measure improvement (Royal and Loyal case study)

F-measure comparison (Hospital case study)

F-measure comparison (ATM case study)

Usability comparison in medium users

Usability comparison in expert users

Usability comparison in total users

Difference between NL2OCLviaSBVR and En2OCL

in usability improvement in comparison with writing

manually

113

113

114

114

119

120

120

123

136

137

139

140

144

144

145

145

xvi

LIST OF ALGORITHMS

ALGORITHM NO.

4.1

4.2

4.3

4.4

TITLE

Lexical analysis algorithm

Duplicate remover algorithm

Syntactical analysis algorithm

Semantic analysis algorithm

PAGE

94

95

97

100

xvii

LIST OF ABBREVATIONS

AI

ATL

BLAST

BOTL

BPM

CASE

CBR

CC

CIM

CIRCE

CM-Builder

COPACABANA

CS

CWM

DFD

DM

DMG

DSL

DSME

DSPIM

DUPA

EFA

EJB

EMF

ERM

FN

FP

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Artificial Intelligence

Atlas Transformation Language

Berkeley Lazy Abstraction Software Verification Tool

Bidirectional Object-oriented Transformation language

Business Process Model

Computer-aided software engineering

Case-Based Reasoning

Coordinating Conjunction

Computation Independent Model

Cooperative Interactive Requirements-Centered Environment

Class Model-Builder

COnstraint PAtterns and Consistency Analysis

Conceptual Schema

Common Warehouse Metamodel

Data flow diagram

Direct Manipulation

Data Mining Group

Domain Specific Language

Domain Specific Modeling Environment

Domain Specific Platform Independent Model

Declarative Reusable Pattern Approach

Exploratory Factor Analysis

Enterprise Java Bean

Eclipse Modeling Framework

Entity Relationship Model

False Negative

False Positive

xviii

GATE

GOOAL

GRAI

GReAT

GT

GUI

I/O

Jamda

JAPE

LHS

LIDA

LOLITA

LTL

MAMT

MDA

MDAMT

MDD

MOF

MOLA

Mopa

MT

NER

NIBA

NL

NL-OOPS

NLP

NOESIS

OBFS

OCL

ODM

OMG

OQAPI

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

General Architecture for Text Engineering

Graphical Object Oriented Analysis Lab

Graphs with Results and Activities Interrelated

Graph Rewriting and Transformation

Graph transformation

Graphical User Interface

Imperative/Operational

Java Model Driven Architecture

Java Annotation Patterns Engine

Left Hand Side

LInguistic assistant for Domain Analysis

Large-scale Object-based Linguistic Interactor

Linear Temporal Logic

Metamodeling Approach to Model Transformation

Model-Driven Architecture

Model Driven Approach to Model Transformation

Model-Driven Development

Meta Object Facility

MOdel transformation Language

MOdel PAttern

Model Transformation

Named Entity Recognition

Natural Language Requirements Analysis in German

Natural Language

Natural Language-Object Oriented Production System

Natural Language processing

Natural Language Oriented Engineering System for

Interactive Specifications

Object-Based Formal Specification

Object Constraint Language

Ontology Definition Metamodel

Object Management Group

OCL Query Application Program Interface

xix

PC

PCA

PIM

PMML

POS

PSL

PSM

PRR

QVT

R/D

RE

RFP

RHS

RUP

SBVR

SD

SDLC

SiTra

SUGAR

TB

TCTL

TGG

TLG

TN

TP

TRADE

UCDA

UML

UMLG

USE

VB

VDM

XMI

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Preposition Conjunction

Principal Component Analysis

Platform Independent Model

Predictive Mark-up Modeling Language

Part Of Speech

Property specification language

Platform Specific Model

Production Rule Representation

Query/View/Transformation

Relational/Declarative

Requirements Engineering

Requirement of Request for Proposal

Right Hand Side

Rational Unified Process

Semantics of Business Vocabulary and Business Rules

Structure-Driven

Software Development Life Cycle

Simple Transformer

Static UML model Generator from Analysis of Requirements

Template-Based

Temporallogik Timed Computation Tree Logic

Triple Graph Grammars

Two-Level Grammar

True Negative

True Positive

Techniques for Requirements and Architecture Design

Use Case Driven Analysis

Unified Modelling Language

UML Generator

UML-based Specification Environment

Visitor Based

Vienna Development Method

XML Metadata Interchange

xx

XML

XSLT

4W

-

-

-

Extensible Mark-up Language

Extensible Style Sheet Language Transformation

Who, What, Where, When

xxi

LIST OF APPENDICES

APPENDIX

A

B

C

D

E

F

G

H

TITLE

Test cases of Royal and Loyal case study

Test cases of ATM case study

Test cases of Hospital case study

OCL abstract syntax

Stanford POS tags

Stanford typed dependencies

Usability measurement survey

Mapping rule examples

PAGE

162

177

188

199

202

204

205

207

CHAPTER 1

INTRODUCTION

1.1. Overview

The main aim of the Object Management Group (OMG) is to set standards

for object-oriented systems. These standards are model-based standards that are used

for modeling of processes, systems, and programs. A model is a set of consistent

elements with some features and restrictions that these elements represent objects of

a real system and relationships between them (Warmer and Kleppe, 2003).

Software designers use modeling languages to document system requirements

and constraints. The characteristics of the modeling languages selected by the

software designer impact on some factors of software modeling, such as time spent,

effort required, number of errors, etc. Thus, we need to select appropriate modeling

languages to increase the quality of models (Bobkowska, 2005). One of the

significant characteristics of a modeling language is usability. The usability of a

modeling language has a significant impact on confidence, effort saving, and speed

in model construction using the modeling language (Figl et al., 2009). The quality of

models can be increased by improving the usability of the modeling languages used.

The Object Constraint Language (OCL) is the most prevalent modeling

language to document requirement constraints, which a software designer is not able

to show by Unified Modeling Language (UML). In order to improve the precision of

UML models, OCL is needed to express requirement constraints. An OCL

specification integrated into a UML model is a Boolean condition that must be true

for each instance of the UML model. The low usability of OCL due to its difficult

2

syntax causes the gap between requirement constraints written in natural languages

and OCL specifications become bigger and bigger. Thus, the low usability of OCL

increases time and effort spent on the design phase of software development

significantly and influences on overall development costs (Bajwa, 2012).

The Model-Driven Architecture (MDA) approach defined by OMG changes

the software development style from code-oriented to model-oriented (Kardoš and

Drozdová, 2010). The philosophy of MDA is to describe each artifact as a model and

to transform the models to each other (Jilani et al., 2010). MDA provides a more

efficient approach for software development, if the model transformations are done

according to their specifications. The model-based software development

methodology is transferable due to its platform dependency. The result of its

transferability is its reusability (Kardoš and Drozdová, 2010). According to the MDA

approach, the current research hypothesizes that a requirement constraint can be

formed in an English sentence as a model then the English model can be transformed

to an OCL specification as a model.

There is a usability definition made by ISO: "The extent to which a product

can be used by specified users to achieve specified goals with effectiveness,

efficiency, and satisfaction in a specified context of use.‖ (ISO 9241-11, 1998). When

the extent is high, the usability is high. When the extent is low, the usability is low.

Usability is composed of some factors such as learnability, efficiency, memorability,

errors, and satisfaction. In order to increase the usability of OCL, the current research

aims to propose an approach to transform requirement constraints formed in English

sentences into OCL specifications. This transformation is based on the philosophy of

MDA.

As the foundation of English is not on a formal logic, translation of English to

a formal logic such as the formal logic underpinning OCL is too difficult. Thus, a

language, which its foundation is on a formal logic, must be used as an intermediate

language (Bajwa, 2012). The Semantic of Business Vocabulary and Rules (SBVR)

standard proposed by OMG is used to present natural language statements in formal

declarative descriptions (OMG, 2013). SBVR representations are easy to process by

3

machines. As the foundation of SBVR is based on higher order logic, transformation

of SBVR into other formal languages is simpler than transformation of natural

language descriptions into formal languages such as OCL (Afreen et al., 2011).

1.2. Problem Background

A kind of knowledge can be presented in various ways. For example, the

same knowledge can be written in natural languages and can be depicted using

diagrams and specifications, such as UML diagrams and OCL specifications. There

is a considerable gap between these presentation types. There are many existing

works which use the MDA approach to fill the gap between requirements written in a

natural language and object-oriented models by transforming these requirements into

the equivalent object-oriented models.

The Large-scale Object-based Linguistic Interactor (LOLITA), which is a

computer-aided software engineering (CASE) tool based on natural language

processing (NLP), was described by Mich (1996) to analyze natural language texts

for extracting objects and associations and generating object models. Overmyer et al.

(2001) provide the Linguistic Assistant for Domain Analysis (LIDA), which

translates natural language descriptions to UML Class diagrams. 4WL (Who, What,

Where, and When Language) is a semi natural language presented by Perez-

Gonzalez and Kalita (2002) to transform natural language descriptions into dynamic

object models automatically. A technique called Partially Ordered sets of roles (Role

Posets) has been proposed by the researchers to automatically translate simple

sentences to the 4W language and to produce Class, Object, and Use Case diagrams.

Class Model-Builder (CM-Builder) is a CASE tool presented by Harmain and

Gaizauskas (2003) to analyze requirements formed in English descriptions using a

robust NLP technique and to generate UML Class diagrams interactively or

automatically. Grünbacher et al. (2004) introduced an approach called Component

Bus System Property (CBSP) to ease capturing relationships between software

requirements and architectural models using intermediate models. Li et al. (2005)

proposed an algorithm to process natural language texts and to translate them to

4

UML models with user interaction. Ambriola and Gervasi (2006) presented an

environment named Cooperative Interactive Requirement-Centric Environment

(CIRCE) to analyze software requirements formed in natural language descriptions

and to transform the requirements into static and dynamic diagrams, such as Entity

Relationship (ER), UML Class models, and Finite State automata. Natural Language

Based Requirements Analysis in German (NIBA) presented by Fliedla et al. (2007) is

an approach to analyze requirement descriptions linguistically and to translate them

to a Conceptual Schema (CS) such as Activity, Class, or State diagram. Kumar and

Sanyal (2008) developed a tool called Static UML model Generator from Analysis of

Requirements (SUGAR) to generate UML Class and Use Case diagrams from

requirements formed in a natural language. Bajwa et al. (2009) presented an

automated system based on NLP to translate natural language requirements to object-

oriented models and to create code in some languages. Amdouni et al. (2011) have

presented a tool to translate requirements formed in text documents to UML Class

diagrams using NLP rules. NL2OCLviaSBVR developed by Bajwa (2012) is an

approach, which is the only existing MDA-based work that supports OCL. Wang

(2013) proposed the Environment Based Design (EBD), which is a methodology to

represent natural language in conceptual models such as UML Use Case, Domain,

and Function-Behavior-State (FBS) models.

These works mentioned above have focused on model-driven approaches for

transforming natural languages into object-oriented diagrams. However, only one of

them supports OCL. In modern software engineering, graphical models such as UML

diagrams present a conceptual schema of a software application. As UML diagrams

cannot present meaningful time constraints of systems, the diagrams are incomplete

(Calegari et al., 2008). In order to improve the precision of these diagrams, textual

constraints such as OCL specifications are used to document the constraints of

systems. However, there are some problems in using OCL as follow:

i. Low usability of OCL

The utilization of a modeling language refers to the usage extent from the

language. When a language has a low utilization with other standards, it means that

5

the language cannot be integrated into the other standards very well. On the other

hand, a language, which has a high utilization with other standards, can be used by

the other standards easily. In a computer language, symbols are combined according

to a set of rules called syntax. The language syntax determines how to make a correct

specification using the language. Syntactic complexity is a kind of complexity in

languages that the syntactic complexity has effects on some factors of the language,

such as speed of learning and extent of usage. Despite the fact that OCL can have a

high utilization with other object-oriented standards because of the maturity of its

syntax and semantics (Chimiak-Opoka, 2009), it has also been discovered that OCL

has a complex syntax (Cabot and Teniente, 2006). OCL statements just describe

what it wants to accomplish due to its declarative nature. The declarative nature of

OCL is a major reason that makes it difficult to understand (Bajwa, 2012). Thus,

OCL is a difficult language especially for users who are new in this language and

have little knowledge of OCL (Cabot, 2006; Wahler, 2008; Chimiak-Opoka, 2009;

Bajwa, 2012; Störrle, 2013). Thus, software designers struggle with learning and

using OCL, in both industry and academia (Störrle, 2013).

The only existing language for annotating UML models is OCL. On the other

hand, OCL development is an extremely time-consuming process (Chimiak-Opoka,

2009). In practice, writing requirement constraints in OCL specifications has two

steps: first, the constraints are written in a natural language such as English, and then

these constraints formed in natural language texts are transformed into OCL

specifications by an OCL expert, manually (Bajwa, 2012). Some researches

performed in the last few years analyzed the OCL usability. These analyses show

that the OCL usability is low (Cabot and Teniente, 2006; Wahler, 2008; Bajwa,

2012; Störrle, 2013) and high time and effort are needed to create and modify OCL

specifications for designing large system models (Chimiak-Opoka, 2009). Thus, the

low usability of OCL has major effects on economic issues in large systems

development (Störrle, 2013). As usability is a key characteristic of a modeling

language, the modeling language concepts, such as amount of errors made by users,

are concerns with the usability. According to the problems explained in the previous

sub-sections, OCL development is an error–prone task (Chimiak-Opoka, 2009).

Writing OCL specifications manually may result in erroneous and inconsistent

specifications because of the low usability of OCL (Cabot and Teniente, 2006;

6

Wahler, 2008; Bajwa, 2012; Störrle, 2013). Thus, creating OCL specifications

especially by users with little or no prior knowledge of the OCL syntax and

semantics is an extremely risky process (Bajwa, 2012).

ii. Lack of creation of OCL specification in existing OCL tools

Most of the existing OCL tools, such as Dresden OCL Toolkit, IBM OCL

Parser, USE, ArgoUML, and Cybernetic OCL Compiler, just perform validation,

syntax verification, type checking, and parsing of OCL expressions (Bajwa et al.,

2010). They cannot help to create OCL specification.

iii. No support of OCL by most of the existing MDA-based approaches

OCL generation automatically can increase the usability of OCL. There are

some MDA-based approaches to improve the usability of modeling languages.

However, only one of them supports OCL. On the other hand, There are some OCL

generators, such as COPACABANA (Wahler, 2008), NL2OCLviaSBVR (Bajwa,

2012), and OQAPI (Störrle 2013), though, only two of them generate OCL as

constraint specifications.

iv. Need of assistance for writing OCL specification

In line with the problems elaborated in the previous sub-sections about the

complexity of the OCL syntax and its side effects, writing OCL specifications is a

complex task. Thus, there is need of an approach for giving assistance to developers

in writing OCL specifications. There are only two approaches to assist developers in

writing OCL specifications. The first one is the pattern-based approach proposed by

Wahler (2008) for helping to create OCL specifications. Wahler implemented the

proposed approach in a tool named COPACABANA. Bajwa (2012) also proposed an

MDA-based approach to assist developers in writing OCL specification by a tool

called NL2OCLviaSBVR that generates OCL specification automatically.

7

1.3. Problem Statement

Nowadays, there are few works for generating OCL specifications, such as

COPACABANA (Wahler, 2008), NL2OCLviaSBVR (Bajwa, 2012). The two

existing works, which help to write OCL specification, have some limitations. For

example, users of COPACABANA should extract information from natural language

constraints manually. Patterns also should be selected by users manually. Substantial

effort is required for adding new patterns into the pattern list. The low accuracy of

the tool, which is about 69%, is another limitation of the tool (Bajwa, 2012).

NL2OCLviaSBVR also has some limitations. For example, the tool processes

only one input English sentence at a time. It does not support UML enumerations. It

also does not support some OCL elements such as collect(), reject(), and

oclIsTypeOf (T). The tool used SiTra, which has been developed by Akehurst

et al. (2006) for implementing mapping rules. As SiTra has some limitations, the

limitations of SiTra are the limitations of the NL2OCLviaSBVR tool. For example,

one of the major limitations of SiTra regards a situation in which there is more than

one rule that should map to the same target object. There is no way to determine,

using SiTra, which of the rules should construct the target object. The tool‘s accuracy

is about 84% (Bajwa, 2012) which can be improved by solving the limitations.

1.4. Research Questions

The complexity of a language indicates to the resources needed to read and

write specifications written using the language. The complexity and difficulty of the

OCL syntax explained in the previous section causes some effects such as rising time

and effort needed to create OCL specifications and increasing errors in writing OCL

specifications. As mentioned in Section 1.1, the ISO definition of usability is: "The

extent to which a product can be used by specified users to achieve specified goals

with effectiveness, efficiency, and satisfaction in a specified context of use.‖. In

modeling languages, the extent is depended on some factors such as learnability,

efficiency, memorability, and satisfaction. Thus, the low measure of these factors

8

results in the low usability of the modeling languages. In the current study, the

modeling language, which is considered, is OCL. The problems mentioned in the

previous section causes the low usability of OCL. Thus, the current study aims to

improve the OCL usability. This improvement can be achieved by using MDA. This

research aims to use MDA to transform English sentences into OCL specifications.

As natural languages such as English are informal descriptions, their translation to

formal languages, such as OCL, is very hard. Thus, SBVR business rules are used as

intermediate specifications because of their formal foundation. The questions

presented below are the research questions corresponding to the objectives that the

current research has.

i. How to extract sematic business rules from English sentences?

ii. How to transform business rules into OCL specifications?

iii. How to improve the OCL usability by an MDA-based approach?

1.5. Research Goal

Modeling languages are used to document system requirements and

constraints in the design phase of the software development life cycle (SDLC). The

characteristics of the modeling languages that are selected by software designers

have impacts on some factors of software modeling such as time and effect required.

Thus, the simplicity of the design phase has a direct relation with capabilities of the

modeling language chosen by software designers. The main goal of the current

research is to simplify the design phase of software modeling by proposing an

approach to generate OCL specifications automatically. The proposed approach

accelerates generating and updating OCL specifications by automating OCL

generation by which system designers can transform constraint requirements formed

in English sentences into corresponding OCL specifications. Thus, the time required

to create OCL specifications is reduced.

9

1.6. Objectives

In order to achieve the goal mentioned above, the study must answer the

research questions presented in Section 1.4. The answer of these research questions

solve the problems elaborated in Sections 1.3. There are some objectives to answer

the questions. All of these objectives are achieved in the current research. The

objectives of this research are as follows:

i. To propose mapping rules for extracting semantic business rules from English

sentences.

ii. To propose mapping rules for transforming sematic business rules into OCL

specifications.

iii. To propose an MDA-based approach to improve the usability of OCL.

iv. To evaluate the proposed approach in evaluation metrics, such as accuracy,

and OCL usability improvement.

1.7. Research Scopes

The problems and resources, which have been used, determine the scope of

the current study. Five main concepts form the focus in the current study. The

concepts are explained below:

i. UML models

OCL is a standard sub-language of UML to present requirement constraints

that cannot be generated by UML. As OCL does not represent temporal aspects

directly, it is not appropriate for UML models that are based on temporal logic such

as Activity models. Thus, the current research focuses on UML Class models.

10

ii. Model transformation technique

OMG focuses on changing SDLC from code-oriented to model-oriented by

the MDA approach. The model transformation technique that is the philosophy of

MDA describes each artifact as a model and transforms the models to each other

(Jilani et al., 2010). The current research uses the model transformation technique in

the proposed approach by which English sentences that can be transformed into OCL

specifications.

iii. Validation

In order to validate the proposed approach is implemented in a java tool. The

tool must be compared with the existing tools. As only the execution file of the

existing tools is available, these tools must be tested by the black box testing

technique and compared with each other. Black-box testing peers into the

functionality of an application not into the internal structure of the application.

Accuracy, Precision and Recall are the most common metrics to evaluate an

information retrieval system. F-measure is another evaluation metric that shows the

harmonic mean of precision and recall. The proposed approach is evaluated and

compared with the existing works using the evaluation metrics.

iv. Statistical techniques for usability testing

As OCL usability improvement is a major goal of the current research, it

must be confirmed whether there is any usability improvement or not. ISO 9241-11

suggests that measures of usability should cover three factors involving: efficiency,

effectiveness, and satisfaction (Damljanovic and Bontcheva, 2009). Thus, a survey is

designed to measure the OCL usability using these three factors. The efficiency

factor is measured using effort-saving and time-saving variables. The effectiveness

factor is measured using writability and confidence variables. The satisfaction factor

is measured using ease-of-use and comfort variables. Two states are considered in

the OCL usability measurement. In the first state, users write OCL specifications

manually. In the second state, users generate OCL specifications using the tool

11

implementing the proposed approach. Users‘ responses are analyzed using the

Exploratory Factor Analysis (EFA) to eliminate the variables, which do not have any

significant impact on any factor. The analysis also eliminates variables, which have

cross-loading. Variables that have cross-loading have significant impacts on more

than one factor. Thereafter, the amount of improvement in these variables is

measured by a comparison between the two states.

1.8. Research Motivations

Research justification refers to the rationale for the research. The justification

of a research is the reason that why the research is being conducted. Thus, this

section explains about the reasons that motivate the current research. In order to

explain about the motivation of the current research, the importance of two issues

must be explained as follow:

i. Importance of OCL

The UML graphical modeling language is not able to show requirement

constraints. OCL is the most prevalent language to document requirement

constraints. Thus, in order to improve the precision of UML models, OCL is needed

to express requirement constraints. UML models are completed by OCL

specifications that express additional information about the object-oriented artifacts.

UML models without constraint specifications cannot express all information. Thus,

these models must be integrated into OCL specifications that express the constraints

of the system being modeled. Combining UML and OCL increases the maturity of

the system modeling process. Despite the fact that OCL has been introduced more

than ten years ago, the adaptability of OCL is still lower than other languages. In the

software modeling community, researchers must try to increase the adaptability and

acceptability of OCL.

12

ii. Importance of modeling language characteristics

In the software development process, models have major roles in generation,

integration, and maintenance of models. In complex systems, complex diagrams and

constraint specifications are integrated to document processes and system

requirements. Good modeling languages are required to achieve high quality models

(Bobkowska, 2005). In software development tasks, modeling languages have effects

on some characteristics such as difficulty level, time required for modeling and

searching information, usability, number of errors, and level of automation (Figl et

al., 2009).

Usability is a key characteristic of a modeling language. The usability

characteristic depends on some factors such as ease of learning, ease of use,

efficiency, time needed to perform a task, productivity, amount of errors made by

users, memorability, and user satisfaction. In constructing models using a specific

modeling language, usability has a direct relationship with the effort and time

required in generation of the models. Therefore, improvement of the OCL usability is

a real need that must be considered by researchers, because the improvement can

have significant effects on the design phase of software modelling.

1.9. Research Outcomes

There are some problems, which are motivations for embarking on the

current research. Mainly, these problems are related to the complexity of the OCL

syntax that causes some other problems such as high time and effort required for

using OCL and high risk in writing OCL specifications. The main goal of the current

research is to simplify the design phase of software modeling by proposing an MDA-

based approach to improve the usability of OCL. Two sets of mapping rules are

proposed in the MDA-based approach. The first set of mapping rules is used for

extracting semantic business rules from English sentences. The second set of rules is

used for transforming the sematic business rules into OCL specifications. Finally, the

13

proposed approach is evaluated in metrics, such as accuracy, and OCL usability

improvement.

1.10. Research Outline

The outline of a research is a general plan of the materials presented in the

research. This section presents the order of main parts of the current study, their

tasks, their importance, and the relationship between them. The current research is

organized in seven chapters as follow:

Chapter 1, introduction, gives an overview on structure and nature of the

study. This chapter elaborates the study background, and the research problems are

discussed. Thereafter, the research questions, the main goal and the objectives by

which the research goal is achieved are explained. Finally, the chapter justifies the

importance of the current study.

Chapter 2, literature review, investigates the prior studies about the area of

the current study. The only existing work on OCL generation from English texts is

deeply analyzed and its limitations are identified.

Chapter 3, research methodology, describes the approaches and concepts used

in the current study. The chapter explains the procedure of the current research step-

by-step in detail. Furthermore, the chapter shows how the proposed approach called

En2OCL achieves the objectives.

Chapter 4, the proposed En2OCL approach for OCL generation, explains

how the MDA approach is used to improve the OCL usability. Thereafter, the

proposed approach by which English sentences are transformed into OCL

specifications using transformation rules is elaborated.

14

Chapter 5, evaluation of the proposed approach, presents the validation of the

proposed approach. Furthermore, some analyses are presented in this chapter to

determine the impact of the proposed approach on the OCL usability.

Chapter 6, discussion, compares the proposed approach with the existing

works. Evaluation metrics are measured for the software tool implementing the

proposed approach and the existing tool to compare them together. The impacts of

the proposed approach and the existing tool on the OCL usability are measured and

compared.

Chapter 7, conclusion and future works, elaborates the research contributions,

limitations, and future works.

153

REFERENCES

Afreen, H., and Bajwa, I. S. (2011). Generating UML Class Models from SBVR

Software Requirements Specifications. In Proceedings of the 23rd Benelux

Conference on Artificial Intelligence (BNAIC 2011). Gent, Belgium: 23-32.

Afreen, H., Bajwa, I. S., and Bordbar, B. (2011). SBVR2UML: A Challenging

Transformation. In Proceedings of the Frontiers of Information Technology

(FIT). December 19-21. Islamabad, Pakistan: 33-38.

Agrawal, A., Karsai, G., and Shi, F. (2003). Graph transformations on domain-

specific models. Institute for Software Integrated Systems, Vanderbilt

University, 2015 Terrace Place, Nashville, TN 37203, Technical Report ISIS-

03-403.

Akehurst, D. H., Boardbar, B., Evans, M., Howells, W. G. J., & McDonald-Maier, K.

D. (2006). SiTra: Simple Transformations in Java. 9th International

Conference on Model Driven Engineering Languages and Systems (LNCS).

351-364.

Akehurst, D. H., and S.Kent. (2002). A Relational Approach to Defining

Transformations in a Metamodel. Proceedings of the 5th International

Conference on The Unified Modeling Language (UML '02). Dresden,

Germany: 243-258.

Ambriola, V., and Gervasi, V. (2006). On the Systematic Analysis of Natural

Language Requirements with CIRCE. Automated Software Engineering.

13(1), 107-167.

Amdouni, S., Karaa, W. B. A., and Bouabid, S. (2011). Semantic annotation of

requirements for automatic UML Class diagram generation. The Computing

Research Repository (CoRR). abs/1107.3297.

Appukuttan, B. K., Clark, T., Reddy, S., Tratt, L., and Venkatesh, R. (2003). A

model driven approach to model transformation. Workshop on Model Driven

Architecture: Foundations and Applications (MDAFA'2003). June 2003.

Holland.

154

Aruna, S., Nandakishore, L. V. (2014). Ensemble Neural Network Algorithm for

Detecting Cardiac Arrhythmia. Proceedings of Artificial Intelligence and

Evolutionary Algorithms in Engineering Systems (ICAEES 2014), 1, 27-35.

Bajwa, I. S. (2012). A natural language processing approach to generate SBVR and

OCL. University of Birmingham.

Bajwa, I. S., Bordbar, B., and Lee, M. G. (2010). OCL Constraints Generation from

Natural Language Specification. 14th IEEE International Enterprise

Distributed Object Computing Conference (EDOC). Vitoria, Brazil: 204-213.

Bajwa, I. S., Bordbar, B., and Lee, M. G. (2013). SBVR vs. OCL: A Comparative

Analysis of Standards. The Computing Research Repository (CoRR).

abs/1304.7346.

Bajwa, I. S., Bordbar, B., & Lee, M. (2012). NL2Alloy: A Tool to Generate Alloy

from NL Constraints. Digital Information Management 10(6), 365-372.

Bajwa, I. S., and Choudhary, M. A. (2011). From Natural Language Software

Specifications to UML Class Models. In 13th International Conference

Enterprise Information Systems (ICEIS 2011) (Vol. 102, pp. 224-237):

Springer.

Bajwa, I. S., and Lee, M. G. (2011). Transformation Rules for Translating Business

Rules to OCL Constraints. In Proceedings of the European Conference on

Model Driven Architecture - Foundations and Applications (ECMDA-FA).

Birmingham, UK: 132-143.

Bajwa, I. S., Lee, M. G., and Bordbar, B. (2011). SBVR Business Rules Generation

from Natural Language Specification. In AAAI Spring Symposium: AI for

Business Agility (pp. 2-8). Stanford, California, USA: AAAI.

Bajwa, I. S., Mumtaz, S., and Samad, A. (2009). Object Oriented Software Modeling

using NLP Based Knowledge Extraction. European Journal of Scientific

Research. 35(1), 22-33.

Biehl, M. (2010). Literature Study on Model Transformations. Royal Institute of

Technology, Tech. Rep. ISRN/KTH/MMK.

Bobkowska, A. (2005). Modeling Pragmatics for Visual Modeling Language

Evaluation. Proceedings of the Forth International Workshop on Task Models

and Diagrams for User Interface Design (TAMODIA 2005). September 26-

27, 2005. Gdansk, Poland: 75-78.

155

Braun, P., and Marschall, F. (2003). The Bi-directional Object- Oriented Trans-

formation Language: Technische Universität München (TUMI0307) o.

Document Number)

Bryant, B. R., Lee, B., Cao, F., Zhao, W., Burt, C., Raje, R. et al. (2003). From

natural language requirements to executable models of software components.

Proceedings of Monterey Workshop on Software Engineering for Embedded

Systems: From Requirements to Implementation. September 24-26, 2003.

Chicago, Illinois: 51-58.

Cabot, J. (2006). Ambiguity issues in OCL postconditions. Proceedings of OCL for

(Meta-) Models in Multiple Application Domain (MODELS’06), Technical

Report.

Cabot, J., Clarisó, R., Guerra, E., & Lara, J. d. (2008). An Invariant-Based Method

for the Analysis of Declarative Model-to-Model Transformations. 11th

International Conference of Model Driven Engineering Languages and

Systems (MoDELS 2008). September 28 - October 3. Toulouse, France: 37-

52.

Cabot, J., and Teniente, E. (2006). A metric for measuring the complexity of OCL

expressions. Workshop on Model Size Metrics (MODELS‘06). October 1–6,

2006. Genova, Italy.

Calegari, D., Cengarle, M. V., & Szasz, N. (2008). UML 2.0 Interactions with

OCL/RT Constraints. Forum on specification and Design Languages (FDL

2008). September 23-25. Stuttgart, Germany: 167-172

Cam, P. A., Nguyen, M. L., & Shimazu, A. (2011). Study on extracting conceptual

structures from legal texts. Japan Advanced Institute of Science and

Technology.

Castro, V. D., Marcos, E., and Vara, J. V. (2011). Applying CIM-to-PIM model

transformations for the service-oriented development of information systems.

Information and Software Technology. 53(1), 87–105.

Chimiak-Opoka, J. (2009). OCLLib, OCLUnit, OCLDoc: Pragmatic Extensions for

the Object Constraint Language. 12th International Conference on Model

Driven Engineering Languages and Systems (MoDELS'09). Oct 4-9. Denver,

Colorado, USA: 665–669.

Czarnecki, K., and Helsen, S. (2006). Feature-based Survey Of Model

Transformation Approaches. IBM Systems Journal. 45(3), 621-646

156

Czarnecki, K., and Helson, S. (2003). Classification of Model Transformation

Approaches. In proceedings of the Workshop on Generative Techniques in

the Context of Model-Driven Architecture (OOPSLA 2003). 1-17.

Damljanovic, D., and Bontcheva, K. (2009). Towards Enhanced Usability of Natural

Language Interfaces to Knowledge Bases. Web 2.0 and Semantic Web 2009.

105-133.

Dayan, D., Kaplinsky, R., Wiesen, A., & Bloch, S. (2007). AMDA: Matching the

Model-Driven-Architecture's Goals Using Extended Automata as a Common

Model for Design and Execution. IEEE International Conference on

Software-Science, Technology & Engineering (SwSTE 2007). Herzlia, Israel:

1-13.

Dennis, G., Seater, R., Rayside, D., & Jackson, D. (2004). Automating

Commutativity Analysis at the Design Level. Proceedings of the

ACM/SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA). July 11-14. Boston, Massachusetts, USA: 165-174.

Duddy, K., Gerber, A., Lawley, M., Raymond, K., and Steel, J. (2004). Model

transformation: a declarative, reusable patterns approach. in Proceedings of

Seventh IEEE International Enterprise Distributed Object Computing

Conference (EDOC 2003) 16-19 September 2003. Brisbane, Australien: 174-

185.

Duffy, D. (1995). From Chaos to Classes: Object-Oriented Software Development in

C++. London ; New York : McGraw-Hill.

Dzidek, W. (2003). Using aspect oriented programming to instrument OCL contracts

in Java. Carletoon University, Ottawa, Ontario, Canada.

Figl, K., Mendling, J., and Strembeck, M. (2009). Towards a Usability Assessment

of Process Modeling Languages. Proceedings of the 8th Workshop

Geschäfsprozessmanagement mit Ereignisgesteuerten Prozessketten (EPK

2009). 26-27 November 2009. Berlin, Germany: 118-136.

Fliedla, G., Kopa, C., Mayra, H. C., Salbrechtera, A., Vöhringera, J., Webera, G. et

al. (2007). Deriving static and dynamic concepts from software requirements

using sophisticated tagging. Data and Knowledge Engineering. 61(3), 433-

448.

157

Grünbacher, P., Egyed, A., and Medvidovic, N. (2004). Reconciling software

requirements and architectures with intermediate models. Software and

System Modeling. 3(3), 235-253.

Harmain, H. M., and Gaizauskas, R. J. (2003). CM-builder: A natural language-

based CASE tool for object-oriented analysis. Automated Software

Engineering. 10(2), 157-181.

Hatebur, D., & Heisel, M. (2010). Making Pattern- and Model-Based Software

Development more Rigorous. Proceedings of the 12th international

conference on Formal engineering methods and software engineering

(ICFEM 2010). November 17-19. Shanghai, China: 253-269.

Huber, P. (2008). The Model Transformation Language Jungle - An Evaluation and

Extension of Existing Approaches. Vienna University of Technology.

Ilieva, M. G., and Ormandjieva, O. (2006). Models Derived from Automatically

Analyzed Textual User Requirements. Proceedings of the Fourth

International Conference on Software Engineering Research, Management

and Applications (SERA 2006). 9-11 August 2006. Seattle, Washington,

USA: 13-21.

Jilani, A. A. A., and usman, M. (2010). Model Transformations in Model Driven

Architecture: A Survey". IEEE 2nd International Conference on Education

Technology and Computer (ICETC). Shanghai, China.

Jolliffe, I. T. (2002). Principal Component Analysis. New York: Springer.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008). ATL: A model

transformation tool. Science of Computer Programming. 72(1-2), 31–39.

Judson, S. R., Carver, D. L., and France, R. B. (2003). A Metamodeling Approach to

Model Transformation. Object Oriented Programming, Systems, Languages,

and Applications (OOPSLA’03). October '03. Anaheim, California, USA: 326

– 327.

Kalnins, A., Barzdins, J., and E. Celms. (2004). Basics of Model Transformation

Language MOLA. in Proceedings of Model-Driven Architecture:

Foundations and Applications (MDAFA 2004) Twente, The Netherlands /

Linköping, Sweden: 14—28.

Kardoš, M., and Drozdová, M. (2010). Analytical Method of CIM to PIM

Transformation in Model Driven Architecture (MDA). Information and

Organizational Sciences (JIOS). 34(1), 89-99.

158

Ketfi, & Belkhatir. (2005). Model-driven framework for dynamic deployment and

reconfiguration of component-based software systems. Metainformatics

International Symposium (MIS) Esbjerg, Denmark.

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained: The Model Driven

Architecture™: Practice and Promise. Addison-Wesley Professional.

Kumar, D. D., and Sanyal, R. (2008). Static UML Model Generator from Analysis of

Requirements (SUGAR). Advanced Software Engineering Applications

(ASEA). December 13-15. Hainan Island, China: 77-84.

Lano, K., Kolahdouz-Rahimi, S., and Poernomo, I. (2012). Comparative Evaluation

of Model Transformation Specification Approaches. Software and

Informatics. 6(2), 233-269.

Li, K., Dewar, R. G., and Pooley, R. J. (2005). Object-Oriented Analysis Using

Natural Language Processing. Linguistic Analysis.

Manterea, T., and Alander, J. T. (2005). Evolutionary software engineering. Journal

of Applied Soft Computing. 5(3), 315–331.

Mens, T., & Gorp, P. V. (2005). A Taxonomy of Model Transformation. Proc. Int‘l

Workshop on Graph and Model Transformation (GraMoT 2005). Tallinn,

Estonia.

Mich, L. (1996). NL-OOPs: From Natural Language to Object Oriented Using the

Natural Language Processing System LOLITA. Natural Language

Engineering. 2(2), 161-187.

Nikseresht, A., & Ziarati, K. (2011). MDA Based Framework for the Development

of Smart Card Based Application. International MultiConference of

Engineering and Computer Science (IMEC 2011). March 16-18. Hog Kong:

263-268.

Njonko, P. B. F., and El Abed, W. (2012). From natural language business

requirements to executable models via SBVR in Proceeding of the

International Conference on Systems and Informatics (ICSAI 2012). 19-20

May. Yantai 2453-2457

OMG. (2013). Meta Object Facility (MOF) Core Specification, v2.4.1

OMG. (2012). OMG Object Constraint Language (OCL). OMG Document Number:

formal/2012-01-01.

OMG. (2013). Semantics of Business Vocabulary and Business Rules (SBVR), v1.2.

159

Osis, J., Asnina, E., & A., G. (2008). Computation Independent Representation of the

Problem Domain in MDA. Software Eng. 2(1), 19-46.

Overmyer, S. P., Lavoie, B., and Rambow, O. (2001). Conceptual Modeling through

Linguistic Analysis Using LIDA. Proceedings of the 23rd International

Conference on Software Engineering (ICSE 2001). 2002-12-17. Toronto,

Ontario, Canada: 401-410.

Perez-Gonzalez, H. G., and Kalita, J. K. (2002). GOOAL: A Graphic Object

Oriented Analysis Laboratory. In Companion of the 17th Annual ACM

SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications (pp. 38-39). Seattle, Washington, USA: ACM.

Raj, A., Prabhakar, T. V., and Hendryx, S. (2008). Transformation of SBVR

Business Design to UML Models. Proceedings of the 1st India software

engineering conference (ISEC 2008). ACM New York, NY, USA: 29–38.

Rodríguez, A., Fernández-Medina, E., and Piattini, M. (2007). CIM to PIM

Transformation: A Reality. International Conference on Research and

Practical Issues of Enterprise Information Systems (CONFENIS 2007).

Beijing, China: 1239-1249.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1992). Object-

oriented modeling and design. USA: Pearson Education.

Scheidgen, M. (2006). Model Patterns for Model Transformations in Model Driven

Development. Proceedings of the Joint Meeting of The Fourth Workshop on

Model-Based Development of Computrer-Based Systems and The Third

International Workshop on Model-based Methodologies for Pervasive and

Embedded Software, MBD/MOMPES 2006. March 30. Potsdam, Germany:

149-158.

Schürr, A. (1994). A visual language and environment for programming with graph

rewrite systems. RWTH Aachen, Fachgruppe Informatik, , Technical Report

AIB 94-11.

Seco, N., Gomes, P., and Pereira, F. C. (2004). Using CBR for Semantic Analysis of

Software Specifications. Advances in Case-Based Reasoning, 7th European

Conference (ECCBR 2004). Madrid, Spain: 778-792.

Selway, M., Grossmann, G., Mayer, W., & Stumptner, M. (2013). Formalising

Natural Language Specifications using a Cognitive Linguistics/Configuration

160

Based Approach. 17th IEEE International Enterprise Distributed Object

Computing Conference (EDOC 2013). Vancouver, BC, Canada: 59-68.

Sharaff, A. (2013). A Methodology for Validation of OCL Constraints Using

Coloured Petri Nets. International Journal of Scientific & Engineering

Research (IJSER). 4(1).

Sharma, M., & Vishwakarma, R. G. Formalization & data abstraction during use

case modeling in object oriented analysis & design. 3th International

Conference on Computer Science, Engineering & Applications (ICCSEA

2013). May 24-26. Delhi, India: 67–75.

Standardization, I. O. f. (1998). Ergonomic requirements for office work with visual

display terminals (VDTs). Guidance on usability.

Störrle, H. (2013). Improving the Usability of OCL as an Ad-hoc Model Querying

Language. In 13th International Workshop on OCL, Model Constraint and

Query Languages (OCL@MoDELS) (Vol. 1092, pp. 83-92). United States,

Miami, Florida: CEUR-WS.org.

Taentzer, G., Arendt, T., Ermel, C., & Heckel, R. (2012). Towards refactoring of

rule-based, in-place model transformation systems. Proceedings of the First

Workshop on the Analysis of Model Transformations. 41-46.

Tratt, L. (2006). The MT model transformation language. in Proceedings of the ACM

Symposium on Applied Computing (SAC 2006). April 23-27, 2006. Dijon,

France: 1296-1303.

Vela, B., Fernández-Medina, E., Marcos, E., & Piattini, M. (2006). Model driven

development of secure XML databases. Special Interest Group on

Management of Data (SIGMOD). 35(3), 22-27.

Vlist, E. V. D. (2003). Relax Ng (Simplification and Restrictions). Oreilly &

Associates Inc.

Wahler, M. (2008). Using Patterns to Develop Consistent Design Constraints. ETH

Zurich, Switzerland.

Wang, M. (2013). Requirements Modeling: from Natural Language to Conceptual

Models Using Recursive Object Model (ROM) Analysis. Concordia

University, Montreal, Quebec, Canada.

Warmer, J., & Kleppe, A. (1999). Object Constraint Language: Precise Modeling

with UML. Addison Wesley.

161

Warmer, J., and Kleppe, A. (2003). The Object Constraint Language: Getting Your

Models Ready for MDA. Boston, MA, USA: Addison-Wesley Longman.

Wilke, C., Thiele, M., & Wende, C. (2010). Extending Variability for OCL

Interpretation. 13th International Conference on Model Driven Engineering

Languages and Systems (MODELS 2010). October 3-8. Oslo, Norway.

Yue, T., Briand, L. C., and Labiche, Y. (2011). A Systematic Review of

Transformation Approaches between User Requirements and Analysis

Models. Springer Requirements Engineering. 16(2), 75-99.

