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ABSTRACT 

Object Constraint Language (OCL) is the most prevalent modeling language 

to document requirement constraints that are annotated in the Unified Modeling 

Language. Various researchers have proved that OCL syntax is complex and difficult 

for some reasons such as its declarative nature. As the measure of ease-of-use factor 

of a language has a direct relationship with the language’s usability, the difficulties 

in the use of OCL result in the low usability of OCL. There are few research works 

for OCL generation using some different techniques such as pattern-based and 

Model-Driven Architecture (MDA)-based. The accuracy of the existing pattern-

based work generating OCL specification is low. MDA focuses on software 

development based on generating models and transforming these models between 

each other. There are some researches based on MDA to increase the usability of 

modeling languages. However, only one of the existing works supports OCL. The 

existing MDA-based work generating OCL specification does not support some OCL 

elements, such as collect and reject, and some UML elements such as 

enumeration. Therefore, this research proposes an MDA-based approach to transform 

requirement constraints formed in English sentences into OCL specifications using 

transformation rules. A software tool is developed to validate the proposed approach 

and compare with the existing works. The comparison shows that the proposed 

approach solves some limitations of the existing works such as support of some OCL 

and UML elements, which are not supported by the existing works. The comparison 

also shows that some accuracy improvement is achieved by the proposed approach in 

comparison with the existing works. 
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ABSTRAK 

Bahasa Kekangan Objek (OCL) merupakan bahasa pemodelan yang sering 

digunapakai bagi mendokumenkan kekangan keperluan yang dianotasi ke dalam 

Bahasa Pemodelan Bersatu (UML). Ramai penyelidik telah membuktikan yang 

sintaks OCL adalah kompleks dan sukar dan ia berpunca dari pelbagai faktor seperti 

sifat deklaratif nya. Oleh kerana pengukuran mudah guna bahasa mempunyai 

perkaitan terus dengan kebolehgunaan bahasa, kesukaran penggunaan OCL 

menyebabkan kadar kebolehgunaan yang rendah. Terdapat beberapa kajian 

berkenaan dengan penghasilan OCL menggunakan teknik-teknik berbeza seperti 

penggunaan berdasarkan corak dan senibina berdasarkan model. Ketepatan kerja 

sedia ada berdasarkan corak bagi menghasilkan OCL adalah rendah. MDA 

menumpukan kepada penmbangunan perisian berdasarkan penghasilan model dan 

transformasi di antara model-model. Terdapat kajian berdasarkan MDA bagi 

meningkatkan kebolehgunaan bahasa. Bagaimanapun hanya terdapat satu kerja sedia 

ada yang menyokong OCL. Kerja ini yang berdasarkan MDA bagi menghasilkan 

spesifikasi OCL bagaimanapun tidak menyokong sesetengah elemen OCL seperti 

collect dan reject dan sesetengah elemen UML seperti penghitungan. Oleh itu, 

kajian ini mencadangkan satu pendekatan berasaskan MDA bagi  menukar kekangan 

keperluan di dalam bahasa Inggeris kepada spesifikasi OCL menggunakan peraturan 

transformasi. Satu aplikasi dibangunkan untuk mengesahkan pendekatan yang 

dicadangkan dan perbandingan dibuat dengan kerja sedia ada. Hasil perbandingan 

menunjukkan pendekatan yang dicadangkan dapat menyelesaikan  kekurangan di 

dalam kerja sedia ada seperti sokongan terhadap sesetengah elemen OCL dan UML 

yang tidak disokong oleh kerja sedia ada. Perbandingan juga menunjukkan 

peningkatan ketepatan dapat dicapai menggunakan pendekatan yang dicadangkan 

berbanding kerja sedia ada. 
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CHAPTER 1  

INTRODUCTION 

1.1. Overview 

The main aim of the Object Management Group (OMG) is to set standards 

for object-oriented systems. These standards are model-based standards that are used 

for modeling of processes, systems, and programs. A model is a set of consistent 

elements with some features and restrictions that these elements represent objects of 

a real system and relationships between them (Warmer and Kleppe, 2003).  

Software designers use modeling languages to document system requirements 

and constraints. The characteristics of the modeling languages selected by the 

software designer impact on some factors of software modeling, such as time spent, 

effort required, number of errors, etc. Thus, we need to select appropriate modeling 

languages to increase the quality of models (Bobkowska, 2005). One of the 

significant characteristics of a modeling language is usability. The usability of a 

modeling language has a significant impact on confidence, effort saving, and speed 

in model construction using the modeling language (Figl et al., 2009). The quality of 

models can be increased by improving the usability of the modeling languages used.  

The Object Constraint Language (OCL) is the most prevalent modeling 

language to document requirement constraints, which a software designer is not able 

to show by Unified Modeling Language (UML). In order to improve the precision of 

UML models, OCL is needed to express requirement constraints. An OCL 

specification integrated into a UML model is a Boolean condition that must be true 

for each instance of the UML model. The low usability of OCL due to its difficult 
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syntax causes the gap between requirement constraints written in natural languages 

and OCL specifications become bigger and bigger. Thus, the low usability of OCL 

increases time and effort spent on the design phase of software development 

significantly and influences on overall development costs (Bajwa, 2012). 

The Model-Driven Architecture (MDA) approach defined by OMG changes 

the software development style from code-oriented to model-oriented (Kardoš and 

Drozdová, 2010). The philosophy of MDA is to describe each artifact as a model and 

to transform the models to each other (Jilani et al., 2010). MDA provides a more 

efficient approach for software development, if the model transformations are done 

according to their specifications. The model-based software development 

methodology is transferable due to its platform dependency. The result of its 

transferability is its reusability (Kardoš and Drozdová, 2010). According to the MDA 

approach, the current research hypothesizes that a requirement constraint can be 

formed in an English sentence as a model then the English model can be transformed 

to an OCL specification as a model. 

There is a usability definition made by ISO: "The extent to which a product 

can be used by specified users to achieve specified goals with effectiveness, 

efficiency, and satisfaction in a specified context of use.‖ (ISO 9241-11, 1998). When 

the extent is high, the usability is high. When the extent is low, the usability is low. 

Usability is composed of some factors such as learnability, efficiency, memorability, 

errors, and satisfaction. In order to increase the usability of OCL, the current research 

aims to propose an approach to transform requirement constraints formed in English 

sentences into OCL specifications. This transformation is based on the philosophy of 

MDA.  

As the foundation of English is not on a formal logic, translation of English to 

a formal logic such as the formal logic underpinning OCL is too difficult. Thus, a 

language, which its foundation is on a formal logic, must be used as an intermediate 

language (Bajwa, 2012). The Semantic of Business Vocabulary and Rules (SBVR) 

standard proposed by OMG is used to present natural language statements in formal 

declarative descriptions (OMG, 2013). SBVR representations are easy to process by 
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machines. As the foundation of SBVR is based on higher order logic, transformation 

of SBVR into other formal languages is simpler than transformation of natural 

language descriptions into formal languages such as OCL (Afreen et al., 2011).  

1.2. Problem Background  

A kind of knowledge can be presented in various ways. For example, the 

same knowledge can be written in natural languages and can be depicted using 

diagrams and specifications, such as UML diagrams and OCL specifications. There 

is a considerable gap between these presentation types. There are many existing 

works which use the MDA approach to fill the gap between requirements written in a 

natural language and object-oriented models by transforming these requirements into 

the equivalent object-oriented models.  

The Large-scale Object-based Linguistic Interactor (LOLITA), which is a 

computer-aided software engineering (CASE) tool based on natural language 

processing (NLP), was described by Mich (1996) to analyze natural language texts 

for extracting objects and associations and generating object models. Overmyer et al. 

(2001) provide the Linguistic Assistant for Domain Analysis (LIDA), which 

translates natural language descriptions to UML Class diagrams. 4WL (Who, What, 

Where, and When Language) is a semi natural language presented by Perez-

Gonzalez and Kalita (2002) to transform natural language descriptions into dynamic 

object models automatically. A technique called Partially Ordered sets of roles (Role 

Posets) has been proposed by the researchers to automatically translate simple 

sentences to the 4W language and to produce Class, Object, and Use Case diagrams. 

Class Model-Builder (CM-Builder) is a CASE tool presented by Harmain and 

Gaizauskas (2003) to analyze requirements formed in English descriptions using a 

robust NLP technique and to generate UML Class diagrams interactively or 

automatically. Grünbacher et al. (2004) introduced an approach called Component 

Bus System Property (CBSP) to ease capturing relationships between software 

requirements and architectural models using intermediate models. Li et al. (2005) 

proposed an algorithm to process natural language texts and to translate them to 
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UML models with user interaction. Ambriola and Gervasi (2006) presented an 

environment named Cooperative Interactive Requirement-Centric Environment 

(CIRCE) to analyze software requirements formed in natural language descriptions 

and to transform the requirements into static and dynamic diagrams, such as Entity 

Relationship (ER), UML Class models, and Finite State automata. Natural Language 

Based Requirements Analysis in German (NIBA) presented by Fliedla et al. (2007) is 

an approach to analyze requirement descriptions linguistically and to translate them 

to a Conceptual Schema (CS) such as Activity, Class, or State diagram. Kumar and 

Sanyal (2008) developed a tool called Static UML model Generator from Analysis of 

Requirements (SUGAR) to generate UML Class and Use Case diagrams from 

requirements formed in a natural language. Bajwa et al. (2009) presented an 

automated system based on NLP to translate natural language requirements to object-

oriented models and to create code in some languages. Amdouni et al. (2011) have 

presented a tool to translate requirements formed in text documents to UML Class 

diagrams using NLP rules. NL2OCLviaSBVR developed by Bajwa (2012) is an 

approach, which is the only existing MDA-based work that supports OCL. Wang 

(2013) proposed the Environment Based Design (EBD), which is a methodology to 

represent natural language in conceptual models such as UML Use Case, Domain, 

and Function-Behavior-State (FBS) models.  

These works mentioned above have focused on model-driven approaches for 

transforming natural languages into object-oriented diagrams. However, only one of 

them supports OCL. In modern software engineering, graphical models such as UML 

diagrams present a conceptual schema of a software application. As UML diagrams 

cannot present meaningful time constraints of systems, the diagrams are incomplete 

(Calegari et al., 2008). In order to improve the precision of these diagrams, textual 

constraints such as OCL specifications are used to document the constraints of 

systems. However, there are some problems in using OCL as follow: 

i. Low usability of OCL 

The utilization of a modeling language refers to the usage extent from the 

language. When a language has a low utilization with other standards, it means that 
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the language cannot be integrated into the other standards very well. On the other 

hand, a language, which has a high utilization with other standards, can be used by 

the other standards easily. In a computer language, symbols are combined according 

to a set of rules called syntax. The language syntax determines how to make a correct 

specification using the language. Syntactic complexity is a kind of complexity in 

languages that the syntactic complexity has effects on some factors of the language, 

such as speed of learning and extent of usage. Despite the fact that OCL can have a 

high utilization with other object-oriented standards because of the maturity of its 

syntax and semantics (Chimiak-Opoka, 2009), it has also been discovered that OCL 

has a complex syntax (Cabot and Teniente, 2006). OCL statements just describe 

what it wants to accomplish due to its declarative nature. The declarative nature of 

OCL is a major reason that makes it difficult to understand (Bajwa, 2012). Thus, 

OCL is a difficult language especially for users who are new in this language and 

have little knowledge of OCL (Cabot, 2006; Wahler, 2008; Chimiak-Opoka, 2009; 

Bajwa, 2012; Störrle, 2013). Thus, software designers struggle with learning and 

using OCL, in both industry and academia (Störrle, 2013).  

The only existing language for annotating UML models is OCL. On the other 

hand, OCL development is an extremely time-consuming process (Chimiak-Opoka, 

2009). In practice, writing requirement constraints in OCL specifications has two 

steps: first, the constraints are written in a natural language such as English, and then 

these constraints formed in natural language texts are transformed into OCL 

specifications by an OCL expert, manually (Bajwa, 2012). Some researches 

performed in the last few years analyzed the OCL usability. These analyses show 

that the OCL usability is low (Cabot and Teniente, 2006; Wahler, 2008; Bajwa, 

2012; Störrle, 2013) and high time and effort are needed to create and modify OCL 

specifications for designing large system models (Chimiak-Opoka, 2009). Thus, the 

low usability of OCL has major effects on economic issues in large systems 

development (Störrle, 2013). As usability is a key characteristic of a modeling 

language, the modeling language concepts, such as amount of errors made by users, 

are concerns with the usability. According to the problems explained in the previous 

sub-sections, OCL development is an error–prone task (Chimiak-Opoka, 2009). 

Writing OCL specifications manually may result in erroneous and inconsistent 

specifications because of the low usability of OCL (Cabot and Teniente, 2006; 
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Wahler, 2008; Bajwa, 2012; Störrle, 2013). Thus, creating OCL specifications 

especially by users with little or no prior knowledge of the OCL syntax and 

semantics is an extremely risky process (Bajwa, 2012).  

ii. Lack of creation of OCL specification in existing OCL tools 

Most of the existing OCL tools, such as Dresden OCL Toolkit, IBM OCL 

Parser, USE, ArgoUML, and Cybernetic OCL Compiler, just perform validation, 

syntax verification, type checking, and parsing of OCL expressions (Bajwa et al., 

2010). They cannot help to create OCL specification. 

iii. No support of OCL by most of the existing MDA-based approaches 

OCL generation automatically can increase the usability of OCL. There are 

some MDA-based approaches to improve the usability of modeling languages. 

However, only one of them supports OCL. On the other hand, There are some OCL 

generators, such as COPACABANA (Wahler, 2008), NL2OCLviaSBVR (Bajwa, 

2012), and OQAPI (Störrle 2013), though, only two of them generate OCL as 

constraint specifications.  

iv. Need of assistance for writing OCL specification 

In line with the problems elaborated in the previous sub-sections about the 

complexity of the OCL syntax and its side effects, writing OCL specifications is a 

complex task. Thus, there is need of an approach for giving assistance to developers 

in writing OCL specifications. There are only two approaches to assist developers in 

writing OCL specifications. The first one is the pattern-based approach proposed by 

Wahler (2008) for helping to create OCL specifications. Wahler implemented the 

proposed approach in a tool named COPACABANA. Bajwa (2012) also proposed an 

MDA-based approach to assist developers in writing OCL specification by a tool 

called NL2OCLviaSBVR that generates OCL specification automatically.  
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1.3. Problem Statement 

Nowadays, there are few works for generating OCL specifications, such as 

COPACABANA (Wahler, 2008), NL2OCLviaSBVR (Bajwa, 2012). The two 

existing works, which help to write OCL specification, have some limitations. For 

example, users of COPACABANA should extract information from natural language 

constraints manually. Patterns also should be selected by users manually. Substantial 

effort is required for adding new patterns into the pattern list. The low accuracy of 

the tool, which is about 69%, is another limitation of the tool (Bajwa, 2012). 

NL2OCLviaSBVR also has some limitations. For example, the tool processes 

only one input English sentence at a time. It does not support UML enumerations. It 

also does not support some OCL elements such as collect(), reject(), and 

oclIsTypeOf (T). The tool used SiTra, which has been developed by Akehurst 

et al. (2006) for implementing mapping rules. As SiTra has some limitations, the 

limitations of SiTra are the limitations of the NL2OCLviaSBVR tool. For example, 

one of the major limitations of SiTra regards a situation in which there is more than 

one rule that should map to the same target object. There is no way to determine, 

using SiTra, which of the rules should construct the target object. The tool‘s accuracy 

is about 84% (Bajwa, 2012)  which can be improved by solving the limitations. 

1.4. Research Questions 

The complexity of a language indicates to the resources needed to read and 

write specifications written using the language. The complexity and difficulty of the 

OCL syntax explained in the previous section causes some effects such as rising time 

and effort needed to create OCL specifications and increasing errors in writing OCL 

specifications. As mentioned in Section 1.1, the ISO definition of usability is: "The 

extent to which a product can be used by specified users to achieve specified goals 

with effectiveness, efficiency, and satisfaction in a specified context of use.‖. In 

modeling languages, the extent is depended on some factors such as learnability, 

efficiency, memorability, and satisfaction. Thus, the low measure of these factors 
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results in the low usability of the modeling languages. In the current study, the 

modeling language, which is considered, is OCL. The problems mentioned in the 

previous section causes the low usability of OCL. Thus, the current study aims to 

improve the OCL usability. This improvement can be achieved by using MDA. This 

research aims to use MDA to transform English sentences into OCL specifications. 

As natural languages such as English are informal descriptions, their translation to 

formal languages, such as OCL, is very hard. Thus, SBVR business rules are used as 

intermediate specifications because of their formal foundation. The questions 

presented below are the research questions corresponding to the objectives that the 

current research has. 

i. How to extract sematic business rules from English sentences? 

 

ii. How to transform business rules into OCL specifications?  

 

iii. How to improve the OCL usability by an MDA-based approach? 

1.5. Research Goal 

Modeling languages are used to document system requirements and 

constraints in the design phase of the software development life cycle (SDLC). The 

characteristics of the modeling languages that are selected by software designers 

have impacts on some factors of software modeling such as time and effect required. 

Thus, the simplicity of the design phase has a direct relation with capabilities of the 

modeling language chosen by software designers. The main goal of the current 

research is to simplify the design phase of software modeling by proposing an 

approach to generate OCL specifications automatically. The proposed approach 

accelerates generating and updating OCL specifications by automating OCL 

generation by which system designers can transform constraint requirements formed 

in English sentences into corresponding OCL specifications. Thus, the time required 

to create OCL specifications is reduced. 
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1.6. Objectives 

In order to achieve the goal mentioned above, the study must answer the 

research questions presented in Section 1.4. The answer of these research questions 

solve the problems elaborated in Sections 1.3. There are some objectives to answer 

the questions. All of these objectives are achieved in the current research. The 

objectives of this research are as follows: 

i. To propose mapping rules for extracting semantic business rules from English 

sentences. 

 

ii. To propose mapping rules for transforming sematic business rules into OCL 

specifications. 

 

iii. To propose an MDA-based approach to improve the usability of OCL. 

 

iv. To evaluate the proposed approach in evaluation metrics, such as accuracy, 

and OCL usability improvement. 

1.7.  Research Scopes 

The problems and resources, which have been used, determine the scope of 

the current study. Five main concepts form the focus in the current study. The 

concepts are explained below: 

i. UML models 

OCL is a standard sub-language of UML to present requirement constraints 

that cannot be generated by UML. As OCL does not represent temporal aspects 

directly, it is not appropriate for UML models that are based on temporal logic such 

as Activity models. Thus, the current research focuses on UML Class models. 
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ii. Model transformation technique 

OMG focuses on changing SDLC from code-oriented to model-oriented by 

the MDA approach. The model transformation technique that is the philosophy of 

MDA describes each artifact as a model and transforms the models to each other 

(Jilani et al., 2010). The current research uses the model transformation technique in 

the proposed approach by which English sentences that can be transformed into OCL 

specifications.  

iii. Validation 

In order to validate the proposed approach is implemented in a java tool. The 

tool must be compared with the existing tools. As only the execution file of the 

existing tools is available, these tools must be tested by the black box testing 

technique and compared with each other. Black-box testing peers into the 

functionality of an application not into the internal structure of the application. 

Accuracy, Precision and Recall are the most common metrics to evaluate an 

information retrieval system. F-measure is another evaluation metric that shows the 

harmonic mean of precision and recall. The proposed approach is evaluated and 

compared with the existing works using the evaluation metrics.  

iv. Statistical techniques for usability testing 

As OCL usability improvement is a major goal of the current research, it 

must be confirmed whether there is any usability improvement or not. ISO 9241-11 

suggests that measures of usability should cover three factors involving: efficiency, 

effectiveness, and satisfaction (Damljanovic and Bontcheva, 2009). Thus, a survey is 

designed to measure the OCL usability using these three factors. The efficiency 

factor is measured using effort-saving and time-saving variables. The effectiveness 

factor is measured using writability and confidence variables. The satisfaction factor 

is measured using ease-of-use and comfort variables. Two states are considered in 

the OCL usability measurement. In the first state, users write OCL specifications 

manually. In the second state, users generate OCL specifications using the tool 
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implementing the proposed approach. Users‘ responses are analyzed using the 

Exploratory Factor Analysis (EFA) to eliminate the variables, which do not have any 

significant impact on any factor. The analysis also eliminates variables, which have 

cross-loading. Variables that have cross-loading have significant impacts on more 

than one factor. Thereafter, the amount of improvement in these variables is 

measured by a comparison between the two states. 

1.8. Research Motivations 

Research justification refers to the rationale for the research. The justification 

of a research is the reason that why the research is being conducted. Thus, this 

section explains about the reasons that motivate the current research. In order to 

explain about the motivation of the current research, the importance of two issues 

must be explained as follow: 

i. Importance of OCL 

The UML graphical modeling language is not able to show requirement 

constraints. OCL is the most prevalent language to document requirement 

constraints. Thus, in order to improve the precision of UML models, OCL is needed 

to express requirement constraints. UML models are completed by OCL 

specifications that express additional information about the object-oriented artifacts. 

UML models without constraint specifications cannot express all information. Thus, 

these models must be integrated into OCL specifications that express the constraints 

of the system being modeled. Combining UML and OCL increases the maturity of 

the system modeling process. Despite the fact that OCL has been introduced more 

than ten years ago, the adaptability of OCL is still lower than other languages. In the 

software modeling community, researchers must try to increase the adaptability and 

acceptability of OCL.  
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ii. Importance of modeling language characteristics 

In the software development process, models have major roles in generation, 

integration, and maintenance of models. In complex systems, complex diagrams and 

constraint specifications are integrated to document processes and system 

requirements. Good modeling languages are required to achieve high quality models 

(Bobkowska, 2005). In software development tasks, modeling languages have effects 

on some characteristics such as difficulty level, time required for modeling and 

searching information, usability, number of errors, and level of automation (Figl et 

al., 2009). 

Usability is a key characteristic of a modeling language. The usability 

characteristic depends on some factors such as ease of learning, ease of use, 

efficiency, time needed to perform a task, productivity, amount of errors made by 

users, memorability, and user satisfaction. In constructing models using a specific 

modeling language, usability has a direct relationship with the effort and time 

required in generation of the models. Therefore, improvement of the OCL usability is 

a real need that must be considered by researchers, because the improvement can 

have significant effects on the design phase of software modelling. 

1.9. Research Outcomes 

There are some problems, which are motivations for embarking on the 

current research. Mainly, these problems are related to the complexity of the OCL 

syntax that causes some other problems such as high time and effort required for 

using OCL and high risk in writing OCL specifications. The main goal of the current 

research is to simplify the design phase of software modeling by proposing an MDA-

based approach to improve the usability of OCL. Two sets of mapping rules are 

proposed in the MDA-based approach. The first set of mapping rules is used for 

extracting semantic business rules from English sentences. The second set of rules is 

used for transforming the sematic business rules into OCL specifications. Finally, the 
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proposed approach is evaluated in metrics, such as accuracy, and OCL usability 

improvement. 

1.10. Research Outline 

The outline of a research is a general plan of the materials presented in the 

research. This section presents the order of main parts of the current study, their 

tasks, their importance, and the relationship between them. The current research is 

organized in seven chapters as follow: 

Chapter 1, introduction, gives an overview on structure and nature of the 

study. This chapter elaborates the study background, and the research problems are 

discussed. Thereafter, the research questions, the main goal and the objectives by 

which the research goal is achieved are explained. Finally, the chapter justifies the 

importance of the current study. 

Chapter 2, literature review, investigates the prior studies about the area of 

the current study. The only existing work on OCL generation from English texts is 

deeply analyzed and its limitations are identified. 

Chapter 3, research methodology, describes the approaches and concepts used 

in the current study. The chapter explains the procedure of the current research step-

by-step in detail. Furthermore, the chapter shows how the proposed approach called 

En2OCL achieves the objectives. 

Chapter 4, the proposed En2OCL approach for OCL generation, explains 

how the MDA approach is used to improve the OCL usability. Thereafter, the 

proposed approach by which English sentences are transformed into OCL 

specifications using transformation rules is elaborated.  
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Chapter 5, evaluation of the proposed approach, presents the validation of the 

proposed approach. Furthermore, some analyses are presented in this chapter to 

determine the impact of the proposed approach on the OCL usability. 

Chapter 6, discussion, compares the proposed approach with the existing 

works. Evaluation metrics are measured for the software tool implementing the 

proposed approach and the existing tool to compare them together. The impacts of 

the proposed approach and the existing tool on the OCL usability are measured and 

compared. 

Chapter 7, conclusion and future works, elaborates the research contributions, 

limitations, and future works. 
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