TRAFFIC MATRIX ESTIMATION WITH ENHANCED ORIGIN DESTINATION GENERATOR ALGORITHM USING SIMULATION OF REAL NETWORK

SAMI ABBAS NAGAR ADAM

A thesis submitted in fulfilment of the Requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > SEPTEMBER 2015

To my My parents, great mother and father (late), to my beloved wife for all the patience and sacrifices she made and always with me, her advices and support all these years to ensure that I obtained the best education possible, and our children Mohamed, Aya, Basmala, Ryan and Alaa for their prayers. To my supportive brother Sadig. The love and encouraging words from all of you have really inspired me to achieve my goals and dream. Also, to the spirits of my son and brother.

ACKNOWLEDGMENT

First and foremost I would like to give thanks to the Almighty Allah for He made my dream comes true, by giving me strength and good health to successfully complete this study. Special thanks and greeting to my respectable supervisor Assoc. Prof. Dr. Sulaiman Mohd Nor, for allowing me to carry out this research under his supervision and for his inspiration, encouragement, knowledge, support, wisdom and constructive comments throughout this research. Thank you very much for the help and priceless advice. Also, special thank to my previous supervisor Dr Izzeldin Ibrahim for his valuable advice. I would like to thank my family: my wife, children, mother and siblings for their prayers, love and encouragement to pursue my interest. Special thanks to my brother Dr. Haitham Jameel who encouraged me to pursue my PhD in UTM Malaysia when I was invited to UTM by him in January 2011. Special thanks go to my brother Dr. Hamza Awad for his personality, kindness, caring, managing all my belongings during my study in UTM. My special thanks goes to Dr. Mohammed Saad (LIBYA), Dr. Intisar Ibrahim for continued support when I was in either in lovely or hard moments during my study. My special thanks to Dr. Isa A. Hamid-Mosaku (NIGERIA) for his advice. I would like to take this opportunity to express my appreciation and gratitude to my research colleagues: Dr. Aliyu (NIGERIA), Dr. Ibrahim Sanhoury, Dr. Mohammed Ali, Dr. Bushra, Dr. Abuelnuor, Dr. Ahmed, Dr. Ban (IRAQ) and to all of those who supported me in any aspect during the completion of the project.

Sami Abbas Nagar, Johor Bahru, Malaysia

ABSTRACT

The rapid growth of the Internet has made the issue of ensuring reliability and redundancy a big challenge. Studies of these issues using Traffic Engineering and simulation have been extensively done. In Traffic Matrix Estimation (TME), the Origin–Destination Generator algorithm (ODGen) is limited to the number of hops, where the Expectation Maximization (EM) accuracy is 92%. Most studies have not taken into account real traffic parameters and integration of TME models with routing protocols in their simulation models. Also, there is no a comprehensive model consisting of TME, Border Gateway Protocol (BGP) and Hot Potato (HP) routing in the NS-2 network simulator based on real networks. In this research, Integrated Simulated Model (ISM) is introduced consisting of ODGen-HP algorithm and BGP integrated into the NS-2 network simulator. ISM is then used to simulate the infrastructure of a real production network using actual captured traffic data parameters. Validation is then done against the changes in network topology based on packet loss, delay and throughput. Results gave the average error for packet sent by simulated and production networks of 0% and the average error for packet received by simulation and production networks of 3.61%. The network is modelled with a baseline topology where 5 main nodes were connected together, with redundant links for some nodes. The simulations were repeated for link failures, node addition, and node removal. TME used in ISM is based on ODGen, that is optimized with unlimited number of hops, the accuracy of EM increases to 97% and Central Processing Unit complexity is reduced. HP helps in improving the node which experiences a link failure to select shorter distance route to egress router. In the case of a link failure, HP switching time between the links is 0.05 seconds. ISM performance was evaluated by comparing trace file before and after link failure or by adding nodes (up to 32) or removing nodes. The parameters used for comparison are the packets loss, delay and throughput. The ISM error percentage obtained for packets loss is 0.025%, delay 0.013% and throughput 0.003%.

ABSTRAK

Pertumbuhan pesat Internet telah menjadikan isu kebolehpercayaan dan lewahan satu cabaran besar. Kajian isu-isu di atas menggunakan Kejuruteraan Trafik dan penyelakuan telah dibuat dengan meluas. Algoritma Penjana Asal-Destinasi (ODGen) pada Anggaran Matriks Trafik (TME) mempunyai had pada bilangan lompatan, di mana ketepatan Pemaksimuman Jangkaan (EM) hanya 92%. Kebanyakan kajian tidak mengambil kira parameter trafik sebenar serta integrasi Matriks Trafik TME dengan protokol penghantaran dalam model penyelakuan mereka. Selain itu, tidak wujud model menyeluruh mengandungi TME, Protokol Gerbang Sempadan (BGP) serta Penghalaan Kentang Panas (HP) pada penyelaku rangkaian NS-2 berasaskan rangkaian sebenar. Di dalam penyelidikan ini, Model Penyelakuan Bersepadu (ISM) diperkenalkan merangkumi ODGen, algoritma HP dan BGP diintegrasi dengan penyelaku NS-2. ISM kemudian digunakan untuk menyelakukan infrastruktur Pembekal Perkhidmatan Rangkaian menggunakan parameter hakiki mewakili data trafik sebenar yang diambil. Pengesahan kemudian dibuat terhadap perubahan pada topologi rangkaian berasas kehilangan paket, lengah dan kadar celus. Dapatan menunjukkan purata ralat untuk paket dihantar rangkaian diselaku dibandingkan rangkaian pengeluaran adalah 0% dan purata ralat untuk paket diterima rangkaian diselaku dibandingkan rangkaian pengeluaran adalah 3.61%. Rangkaian dimodel dengan topologi asas dengan 5 nod utama dirangkai dengan sambungan lewah untuk beberapa nod. Penyelakuan diulang bagi kegagalan sambungan, tambahan nod dan penyingkiran nod. TME yang diguna pada ISM adalah berdasarkan kepada algoritma ODGen, dioptimumkan dengan bilangan lompatan tanpa had, ketepatan EM bertambah menjadi 97% dan kerumitan unit pemprosesan utama (CPU) berkurangan. HP membantu memperbaiki nod yang mempunyai kegagalan sambungan sambil memilih jarak lebih kecil kepada penghala egres. Bagi kes kegagalan sambungan, masa pensuisan HP antara pautan adalah 0.05 saat. Prestasi ISM dinilai dengan membandingkan fail jejak sebelum dan selepas kegagalan sambungan atau apabila menambah nod (sehingga 32 nod) atau menghapus nod. Parameter yang digunakan untuk perbandingan adalah kehilangan paket, lengah dan kadar celus. Peratusan ralat ISM yang diperolehi untuk kehilangan paket ialah 0.025%, lengah 0.013% dan kadar celus 0.003%.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DECLARAT	ION	ii
	DEDICATIO	N	iii
	ACKNOWL	EDGMENT	iv
	ABSTRACT		V
	ABSTRAK		vi
	TABLE OF	CONTENT	vii
	LIST OF TA	BLES	XV
	LIST OF FIC	XX	
	LIST OF AB	xxiv	
	LIST OF MA	xxvii	
	LIST OF AP	PENDICES	xxviii
1	INTRODUC	ΓΙΟΝ	1
	1.1 Introd	uction	1
	1.2 Backg	round	3
	1.3 Motiva	ation	5
	1.4 Resear	rch Questions	6
	1.5 Proble	m Statements	7
	1.6 Resear	rch Objectives	8
	1.7 Scope	of Work and Assumptions	8
	1.8 Contri	butions of research	10
	1.9 Organ	ization of Thesis	10
2	LITERATU	RE REVIEW	12
	2.1 Introd	uction	12
	2.2 Use th	e real data captured in simulation	13

	•		
Hn	VIr	nn	ient
L/11		JIIII	iciti

2.3

	Overview	13
2.2.1	Type of Simulators	13
2.2.2	State of Art in Using the Real Data in	
	Network in Simulators	14
2.2.3	Validation and Verification	16
	2.2.3.1 Comparison between the	
	Simulation Result with Real network	16
	2.2.3.2 Reducing the Processing	
	Overhead	16
2.2.4	Issues not addressed in simulation	
	network for real production network	17
Traffic	e Matrix Estimation	18
2.3.1	An Overview of Traffic Matrix	
	Estimation	18
2.3.2	What is Traffic Matrix?	19
2.3.3	Construction of Traffic Matrix	20
2.3.4	Determining the Traffic Matrix	20
	2.3.4.1 Direct Measurement	20
	2.3.4.2 Traffic Matrix Estimations	20
	2.3.4.3 Why Traffic Matrix Estimation	22
2.3.5	The State of the Art in TME	22
	2.3.5.1 Comparison between TM	25
	Estimators	
2.3.6	Traffic Matrix Estimation Routing	
	Weights	27
2.3.7	Heuristic Use in the OD Matrix	28
2.3.8	Expectation Maximization (EM) Method	28
	2.3.8.1 EM Algorithm used in	
	Generating the O-D TM	28
	2.3.8.2 EM algorithm Gaussian Mixture	
	used in OD TM	29
2.3.9	TM uses by ISP's	29
	 2.2.1 2.2.2 2.2.3 2.2.4 Traffic 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 	Overview 2.2.1 Type of Simulators 2.2.2 State of Art in Using the Real Data in Network in Simulators 2.2.3 Validation and Verification 2.2.3 Validation and Verification 2.2.3.1 Comparison between the Simulation Result with Real network 2.2.3.2 Reducing the Processing Overhead 2.2.4 Issues not addressed in simulation network for real production network Traffic Matrix Estimation 2.3.1 An Overview of Traffic Matrix Estimation 2.3.2 2.3.2 What is Traffic Matrix? 2.3.3 Construction of Traffic Matrix 2.3.4 Determining the Traffic Matrix 2.3.5 Construction of Traffic Matrix 2.3.4 Determining the Traffic Matrix 2.3.4 Determining the Traffic Matrix 2.3.4.3 Why Traffic Matrix Estimation 2.3.5 The State of the Art in TME 2.3.6 Traffic Matrix Estimation Routing Weights 2.3.7 Heuristic Use in the OD Matrix 2.3.8 Expectation Maximization (EM) Method 2.3.8.1 2.3.8.1 EM Algorithm used in Generating the O-D TM 2.3.8.2 EM algorithm Gaussian

	2.3.10	Valida	tion and V	erification TME	
		metho	ods		30
		2.3.10	.1 Compa	arison of Methodology	30
		2.3.10	.2 Numer	rical Validation	30
	2.3.11	Discus	ssion and E	Extended Work in TM	31
		Genera	ation		
2.4	Dynar	nic Rou	ting Proto	col (BGP and HP)	31
	2.4.1	Static	Routing		32
	2.4.2	Dynan	nic Routing	g	32
		2.4.2.1	Interior (Gateway Protocol (IGP)	32
			2.4.2.1.1	Distance Vector	
				Algorithm	33
			2.4.2.1.2	Link State	35
			2.4.2.1.3	Selecting IGP Routing	
				Protocols	38
			2.4.2.1.4	Determining the traffic	
				routes	42
	2	2.4.2.2	Exterior	Gateway Protocol (EGP)	43
			2.4.2.2.1	Border Gateway	
				Protocol (BGP)	43
			2.4.2.2.2	Why select the HP to	
				Use with BGP?	46
			2.4.2.2.3	The State of Art in	
				BGP and Hot Potato	49
			2.4.2.2.4	The State of Art in	
				ISP's with BGP	50
	2.4.3	Discus	ssion and E	Extended Work on BGP	
		and H	Р		52
2.5	The St	tate of A	Art in Integ	rated Simulation Model	53
	2.5.1	TME a	and NS-2		53
	2.5.2	Traffic	e Matrix E	stimation and Hot Potato	53
	2.5.3	The St	ate of Art	in Conceptual	
		Integra	ation betwo	een BGP,HP and TME	54

	2.5.4	Further	Discuss	sion on Inte	egration		
		Simulat	ion Mo	del			54
2.6	Tools						54
	2.6.1	Data Co	llectior	IS			54
	2.6.2	Networl	k monit	oring Softv	ware		
		(Layer 2	and La	ayer 3)			55
	2.6.3	Compari	son bet	ween the N	Jetwork		
		Simulato	ors				56
	2.6.4	NS-2 Sir	nulator	Version 2.	.34		58
		2.6.4.1	NS-2 (Communic	ation Er	ntity	58
		2.6.4.2	Classit	fier			59
		2.6.4.3	Link				59
		2.6.4.4	Agent				60
		2.6.4.5	TCL L	anguage			60
		2.6.4.6	Ns-2 7	Trace File			60
		2.6.4.7	Explar	nation of Si	imple.tc	l File	61
			Compo	onent of N	S-2		
	2.6.5	BGP Ap	plied I	n Open So	urce Net	twork	
		Simulato	ors				65
	2.6.6	ns-BGP	Conce	ptual Valio	dation T	ools	68
		2.6.6.1	Cisco	Packet Tra	cer		68
		2.6.6.2	GNS3				69
	2.6.7	Validatio	on and `	Verification	n Tools		
		(AWK, T	ſ-Test a	and Java So	cript)		69
	2.6.8	Addition	new c	omponents	s to ns-E	BGP in	70
		NS-2					
	2.6.9	The R la	inguage	;			71
		2.6.9.1	EM A	lgorithm Pa	ackage i	n R	
			Versio	n 3.1.1 (10)-7-2014	4)	71
2.7	Summ	nary					72
DECL							
DESI	GN AN	D MOD	ELING	UF AN I	NTEGI	RATED	
SIMU	LATIC	ON MC	DEL	BASED	ON	REAL	

NETWORK

3

73

3.1	Introduction	73				
3.2	Overall Research Methodology Framework					
3.3	Methodology Based on Research Objectives	s 77				
3.4	Modeling of the Production Network in NS	-2 79				
	3.4.1 Network Production	81				
	3.4.2 Data Reprocessing	82				
	3.4.3 NS-2 Modeling	82				
	3.4.4 Validation and Verification	83				
3.5	Traffic Matrix Estimation Model	83				
	3.5.1 Why TME approach and its applicat	ion 84				
	3.5.2 Traffic Matrix Algorithm	85				
	3.5.3 Validation	87				
	3.5.4 Simulation of TME Traffic Text File	e in				
	NS-2	87				
	3.5.4.1 TME NS-2 Simulation Feat	ure 87				
	3.5.4.2 Validation	88				
	3.5.5 Integration of TME With HP	89				
	3.5.5.1 TME NS-2 Simulation Feature	ure 89				
	3.5.5.2 Validation	90				
3.6	Integrated Simulation Model (ISM)	90				
	3.6.1 Corporation Dual-Homed Network					
	Topology	90				
	3.6.2 Hot Potato (HP)	91				
	3.6.2.1 Hot Potato Validation	93				
	3.6.3 Modification to existing Border					
	Gateway Protocol (BGP)	94				
	3.6.3.1 ns-BGP Validation Tests	95				
3.7	Integrated Simulation Model (ISM) Evaluat	ion 96				
	3.7.1 ISM Evaluation without Link or Nor	le				
	Failure Scenarios	97				
	3.7.2 Global Control	97				
	3.7.2.1 HP Scenarios	98				
	3.7.2.2 TME Scenarios	99				

3.8	Tools			101
3.9	Summ	nary		102
TRA	FFIC M	IATRIX	ESTIMATIONMODEL	
BAS	ED ON	PRODU	CTION NETWORK	103
4.1	Introd	uction		103
4.2	Gener	ative NS-	-2 Traffic Model Based on Real	
	Netwo	ork Paran	neter	103
	4.2.1	Model I	Description	104
	4.2.2	Networ	k Data	105
	4.2.3	Networ	k Production	105
	4.2.4	Data Co	ollection	107
	4.2.5	Assump	ptions made in the simulation	
		model		108
	4.2.6	Simulat	tion Parameters	109
	4.2.7	Model 1	Description	109
	4.2.8	The Mo	odel Code	110
	4.2.9	Numeri	cal example	112
		4.2.9.1	Results	113
		4.2.9.2	Model Validation and	
			Verification	115
4.3	0-D 7	Traffic Ma	atrix Estimation Model	117
	4.3.1	ODGen	Method	117
		4.3.1.1	Algorithm Assumption	118
		4.3.1.2	O-D Matrix Generation	
			Numerical Example for	
			validation	119
	4.3.2	Generat	ting O-D TME	127
		4.3.2.1	Data and Assumption	129
		4.3.2.2	Maximum number of hops	129
		4.3.2.3	Computing the shortest path	129
		4.3.2.4	End-to- End node probabilities	131
		4.3.2.5	Originating traffic matrix for	
			each node	131

xii

	4.3.3	Generat	ion of Traffic text file for NS-2	139	
		4.3.3.1	Validation O-D TME text file in		
			NS-2	141	
	4.3.4	Genera	tion of the routing tables for each		
		node to	be used by Hot-Potato routing		
		protocol		141	
4.4	Summ	nary		144	
INTE	EGRAT	ED SIM	ULATION MODEL	145	
5.1	Introd	uction		145	
5.2	Buildi	ng the In	tegrated Simulation Model (ISM)	145	
	5.2.1	Hot Pot	ato Algorithm	146	
		5.2.1.1	HP Conceptual Validation	146	
		5.2.1.2	HP Algorithm	147	
		5.2.1.3	Implementation of HP		
			Algorithm	149	
	5.2.2	5.2.2 BGP Integrated with NS-2 Simulators			
		(ns-BGF	2.0)	155	
		5.2.2.1	Unicast Routing Structure in		
			NS-2	155	
		5.2.2.2	BGP Conceptual Validation	156	
		5.2.2.3	ns-BGP Validation	159	
			5.2.2.3.1 Result in Different	160	
			Scenarios Applied to		
			reflection2.tcl		
			5.2.2.3.2 Step 2 Validation		
			Procedure	166	
	5.2.3	Validat	ion	169	
		5.2.3.1	Comparing the Results of ns-		
			BGP with and without HP	170	
5.3	Apply	ing the co	omplete ISM to the Proposed		
	Corpo	ration Ne	etwork Topology	172	
	5.3.1	Dual-ho	omed Network Design Consisting		
		of 5 Site	es	172	

5

			5.3.1.1	TME for	New Dynamic Routing	
				Design		172
				5.3.1.1.1	Production Network	172
				5.3.1.1.2	Data Collection	173
				5.3.1.1.3	Maximum Number of	
					hops	175
				5.3.1.1.4	Computing the	
					Shortest Path	175
				5.3.1.1.5	End-to- End Site	
					Probabilities	178
		5.3.2	Genera	tion of Tra	ffic text file for NS-2	187
		5.3.3	Discuss	sion I		189
	5.4	ISM 1	Evaluatio	n		190
		5.4.1	Evaluat	tion for HP	Enabled Scenarios	191
			5.4.1.1	Dual-Ho1	ned Network Topology	191
			5.4.1.2	Link Fail	ure Scenario	192
			5.4.1.3	Site Failu	ire Scenario	194
			5.4.1.4	Validatio	n ISM with HP	
				Scenario	S	195
		5.4.2	TME S	cenarios		197
			5.4.2.1	Addition	of New Link	197
			5.4.2.2	Adding N	Jew Site	203
			5.4.2.3	ISM Test	ed with 32 Sites	206
			5.4.2.4	Discussio	on II	207
	5.5	Summ	nary			208
6	CON	ICLUSI	ONS			209
	6.1	Introd	uction			209
	6.2	Concl	usion			209
	6.3	Future	Works			211
REFERENCE						214

6

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Sudan internet usage and population growth	3
1.2	The scope of involvement: current versus future states	5
2.1	Types of network simulators	14
2.2	Comparison result between LP, Bayesian and EM	26
2.3	The error percentage between LP, Bayesian and EM	26
2.4	EIGRP metrics	34
2.5	EIGRP K-value defaults	34
2.6	Comparison of protocols, ports, reliability, and default	
	timers	37
2.7	The reference bandwidth default value of OSPF, IGRP and	
	EIGRP	38
2.8	The transmission cost for IGRP, EIGRP, OSPF, and RIP	39
2.9	Different traffic routing	43
2.10	Adaptive routing algorithm	47
2.11	Non-adaptive routing algorithm	48
2.12	Some of Network Monitoring Products (RMON2)	56
2.13	Comparison between network simulators based on	
	modeling capability	57
2.14	Pre-connection core memory demands	58
2.15	Design and implementation of ns-BGP	66
2.16	Validation methodology	67
3.1	Steps according to the numbers in the colored arrows	79
3.2	List of tools used in the research	101
4.1	Links probabilities	106
4.2	Comparison between network captured file and simulator	113

trace file

4.3	Error percentage between real and simulation network	
	parameters	115
4.4	t-test: of real and simulation transmission time calculation	115
4.5	t-test: of real and simulation received time calculation	115
4.6	AWK verification (One input)	116
4.7	Java script verification (Two inputs)	116
4.8	Load and end-to-end probabilities based on Fischer	
	network for node 1	122
4.9	Load and end-to-end probabilities based on Fischer	
	network for all nodes	122
4.10	Hits along O-D paths and nodal originating traffic (shown	
	for Iteration 1) in Fischer network	123
4.11(a)	Node 1 O-D Traffic Matrix	124
4.11(b)	Node 2 O-D Traffic Matrix	124
4.11(c)	Node 3 O-D Traffic Matrix	124
4.11(d)	Node 4 O-D Traffic Matrix	124
4.11(e)	Node 5 O-D Traffic Matrix	124
4.11(f)	Node 6 O-D Traffic Matrix	124
4.11(g)	Node 7 O-D Traffic Matrix	124
4.11(h)	Node 8 O-D Traffic Matrix	124
4.12	Estimated link loads (Iteration 1) in Fischer network	125
4.13	Estimated link loads (Iteration 2) in Fischer network	126
4.14	Routing matrix of Fischer network	127
4.15	O-D pair packet traffic in links in production network	130
4.16(a)	Node 0 O-D Traffic Shortest Path	130
4.16(b)	Node 1 O-D Traffic Shortest Path	130
4.16(c)	Node 2 O-D Traffic Shortest Path	130
4.16(d)	Node 3 O-D Traffic Shortest Path	130
4.17	Loads and end-to-end Probabilities for example network	
	for all nodes	131
4.18	Comparison the calculation accuracy for R and Excel in	
	production network	132

4.19	The EM iteration outcomes estimated parameters in the	
	production network	133
4.20	The execution estimated parameters output in the	
	production network	134
4.21	The epsilon test for execution estimated parameters output	
	in the production network	135
4.22	Nodes from and to multipliers good values in the	
	production network	137
4.23	Hits along O-D paths in production network	137
4.24	Nodal originating traffic in production network	137
4.25(a)	Node 0 O-D Traffic Matrix	138
4.25(b)	Node 1 O-D Traffic Matrix	138
4.25(c)	Node 2 O-D Traffic Matrix	138
4.25(d)	Node 3 O-D Traffic Matrix	138
4.26	Estimated link loads in production network	139
4.27	Routing matrix in production network	139
4.28	The nodes bidirectional SD error percentage in real	
	network	141
4.29(a)	Node 0 O-D Traffic Shortest Path	143
4.29(b)	Node 1 O-D Traffic Shortest Path	143
4.29(c)	Node 2 O-D Traffic Shortest Path	143
4.29(d)	Node 3 O-D Traffic Shortest Path	143
5.1	The program input parameters assigned by the user	150
5.2	The program input parameters assigned by the user	153
5.3	Result comparison	154
5.4	EBGP comparison between ns-BGP and CPT based on	
	show routes result	157
5.5	IBGP comparison between ns-BGP and GNS3 based on	
	show routes result	158
5.6	Default values of parameters used in routereflection2.tcl	159
5.7	The Throughput, Packet loss and average Delay values for	
	reflection2.tcl trace file	160
5.8	The Throughput, Packet loss and average Delay values for	161

	reflection2.tcl after link failure trace file	
5.9	The Throughput, Packet loss and average Delay values for	
	reflection2.tcl trace file running HP	170
5.10	The Links information's for the proposed network	176
5.11	O-D pair packet traffic in links in the production network	177
5.12(a)	Site 0 O-D Traffic Shortest Path	177
5.12(b)	Site 1 O-D Traffic Shortest Path	177
5.12(c)	Site 2 O-D Traffic Shortest Path	178
5.12(d)	Site 3 O-D Traffic Shortest Path	178
5.12(e)	Site 4 O-D Traffic Shortest Path	178
5.13	Load and end-to-end probabilities based for site 0	179
5.14	Load and end-to-end probabilities based on production	
	network for all sites	179
5.15	EM iteration outcome for the estimated parameters in the	
	production network	180
5.16	The execution estimated parameters output in the	
	production network for traffic out site 0	180
5.17	The execution estimated parameters output in the	
	production network for traffic in site 0	181
5.18	The epsilon test for execution estimated parameters output	
	in the production network	182
5.19	Sites from and to multipliers good values in the production	
	network	183
5.20	Hits along O-D paths in production network	184
5.21	Nodal originating traffic in production network	184
5.22(a)	Site 0 O-D Traffic Matrix	185
5.22(b)	Site 1 O-D Traffic Matrix	185
5.22(c)	Site 2 O-D Traffic Matrix	185
5.22(d)	Site 3 O-D Traffic Matrix	185
5.22(e)	Site 4 O-D Traffic Matrix	185
5.23	Estimated link loads in production network	186
5.24	Routing matrix in production network	187
5.25	The sites bidirectional SD error percentage in Real Network	188

5.26	The TME text file SD and Mean error percentage and real	
	production network text file	188
5.27	Site 0 the information of next hop to next AS	189
5.28	The Throughput, Packet loss and average Delay values	
	based on reflection2.tcl trace file	192
5.29	The Throughput, Packet loss and average Delay values for	
	reflection2.tcl trace file running HP	193
5.30	The Throughput, Packet loss and average Delay values	
	based on reflection2.tcl trace file running HP	195
5.31	The links information's	198
5.32	The weights of links endpoints and the total packets	198
5.33(a)	Site 0 O-D Traffic Shortest Path	199
5.33(b)	Site 1 O-D Traffic Shortest Path	199
5.33(c)	Site 2 O-D Traffic Shortest Path	199
5.33(d)	Site 3 O-D Traffic Shortest Path	199
5.33(e)	Site 4 O-D Traffic Shortest Path	199
5.34	Estimated link loads in production network	200
5.35	The routing matrix for the scenario network topology	201
5.36	Site 0 the information of next hop to next AS	202
5.37	Link information's	204
5.38(a)	Site 0 O-D Traffic Matrix	204
5.38(b)	Site 1 O-D Traffic Matrix	204
5.38(c)	Site 2 O-D Traffic Matrix	205
5.38(d)	Site 3 O-D Traffic Matrix	205
5.38(e)	Site 4 O-D Traffic Matrix	205
5.38(f)	Site 5 O-D Traffic Matrix	205
5.39	Information of next hop to next AS for Site 0	205

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Internet users in the world distribution by world regions	
	– 2013- fourth quarter	1
1.2(a)	Company uses the Cloud Computing for their activities	2
1.2(b)	Company uses the Dual-homed network for redundancy	2
1.3	IPv4 allocation by prefix in Sudan (SD)	4
1.4	The steps to develop the ISM	9
2.1	Components terminology of network	19
2.2	Four-node-topology with links loads	25
2.3	AVG and MAX error percentage	27
2.4	The cost of link	38
2.5(a)	Router updates comparison of various protocols	39
2.5(b)	Route addition comparison of various protocols	40
2.5(c)	Number of next hop updates of various protocols	40
2.5(d)	Link utilization of various protocols	41
2.5(e)	Throughput of various protocols	41
2.5(f)	Delay encountered by various protocols	42
2.6	eBGP and iBGP	44
2.7	BGP Route Reflection setup	45
2.8	BGP Confederation setup	45
2.9	The node details and links between nodes	59
2.10	Process of node creation	62
2.11	Details of the link creation	63
2.12	Process of attaching the traffic agent to node	64
2.13	The simulation is ready for running	65
2.14	ns-BGP progress and timeline	68

3.1	Methodology in relation to the research objectives	78
3.2	Comparison of production network to the simulation	
	model	80
3.3	Network production topology and links information	82
3.4	Traffic Matrix Estimation (TME) model block diagram	84
3.5	The original ODGen algorithm setup (Left side) and	
	enhance ODGen algorithm (right side)	86
3.6	Steps to generate TME traffic text file	89
3.7	Enhance the corporation WAN topology	91
3.8	Steps for HP routing table updates based on output of	
	TME	92
3.9	The HP validation procedure	93
3.10	The HP new function added to ns-BGP	94
3.11	The ns-BGP functionality validation test	95
3.12	The network topology in reflection2.tcl validation test	
	file	96
3.13	The ISM internal sequence process	97
3.14	The Global Controller (GC) used to switching between	
	HP or and TME scenarios	98
3.15	The HP scenarios	99
3.16	The TME scenarios	100
4.1	Framework for developing NS-2 near real model based	
	on actual network parameters	105
4.2	Production network topology	106
4.3	Router to router data collection	107
4.4	Example of captured text file	108
4.5(a)	NS-2 Model emulating real world network-data	111
	captured online	
4.5(b)	NS-2 Model emulating real world network-network	111
	information	
4.5(c)	Model Emulating real world network-simulation running	112
4.6	Time comparison between real world packets sent and	
	simulation packet sent	114

4.7	Time comparison between real world packet received	
	and simulation packet received	114
4.8	Traffic Matrix algorithm pseudo-code phases	118
4.9	Fischer network, with directional link	
	loads (packets per second)	119
4.10	The ISM- TME phase implementation flow chart	128
4.11	Real topology in production network	129
4.12	The good value of mean estimated in production	
	network	135
4.13	The good value of standard deviation estimated in	
	production network	136
4.14	O-D TME implementation steps to generate the traffic	
	text file	140
4.15	The implementation for shortest path and O-D TME for	
	all possible link failure in the example network	142
4.16	New network topology based in Link failure	143
5.1	Router running BGP and IGP	146
5.2	HP validation steps	147
5.3	The dual-homed network topology	148
5.4	BGP without HP function	151
5.5	HP learned from EIGRP	152
5.6	HP learning from TME	154
5.7	Unicast structure in NS-2	155
5.8	BGP unicast structure in NS-2	156
5.9	EBGP scenario topology (In the left side ns-BGP, right	
	side Cisco Packet Tracer)	157
5.10	iBGP scenario topology (In the left side ns-BGP, right	
	side GNS3)	158
5.11	The reflection2.tcl topology	159
5.12	Comparisons between the trace file without link failure	
	and with link failure	161
5.13	The topology and trace file when site 0 failures	162
5.14	Hot Potato routing function to BGP in NS-2 with IBGP	163

5.15	HP function added to rtProtoBGP	164
5.16	How HP function deals with site classifier	164
5.17(a)	Normal execution of reflection2.tcl	165
5.17(b)	Execution with link failure of reflection2.tcl	165
5.18	The modification of trace by using HP function	167
5.19	The alternative link 4 between site 4 to site 2 via site 1	
	starts to be used	168
5.20	HP selects the alternative path	169
5.21	Comparisons between the trace files for both without	
	link failure and with link failure	171
5.22	Production network topology	173
5.23	Aggregation router data collection	174
5.24	Example of reprocessing captured text file	174
5.25	The new network design	175
5.26	The captured text file and TME text file	189
5.27	The dual-homed network for corporation	192
5.28	The link down and up scenario between site 0 and site 3	193
5.29	Site down/ up between site 0 and all other sites scenario	194
5.30	Comparison between ISM and link failure scenarios	
	based on Throughput, Delay and Packets loss	195
5.31	Comparison between the ISM and node failure scenarios	
	Based on Throughput, Delay and Packets loss	196
5.32	New links are added between site3 and site4 in the	
	existing network	197
5.33	TME traffic text file	202
5.34	Adds two new sites (multi-homed network topology)	203
5.35	The ISM model runs 32 sites topology	207
6.1	Flow for HP selection of egress point based on distances	
	and end-to-end link endpoint probabilities	212

LIST OF ABBREVIATIONS

ISP	-	Internet Service Provider
ICT	-	Information and Communication Technology
IPv4	-	Internet Protocol version 4
IPv6	-	Internet Protocol version 6
DC	-	Data Center
DRC	-	Data Recovery Center
ERP	-	Enterprise Resource Planning
STP	-	Spanning Tree Protocol
TE	-	Traffic Engineering
TME	-	Traffic Matrix Estimation
O-D	-	Origin –Destination
BGP	-	Border Gateway Protocol
IBGP	-	Interior Border Gateway Protocol
RR	-	Route Reflection
HP	-	Hot Potato
ISM	-	Integrated Simulation Model
EM	-	Expectation Maximization

EIGRP	-	Enhanced Interior Gateway Routing Protocol
NS-2	-	Network Simulator v2
NS3	-	Network Simulator v3
OPNET	-	Optimized Network Engineering Tools
OMnetT++	-	Operation and Maintenance New Equipment Training
SSFNet	-	Scalable Simulation Framework Network Models
РОР	-	Point of Presence
DV	-	Distance Vector
MIS	-	Management Information System
LAN	-	Local Area Network
WAN	-	Wide Area Network
NSP	-	Network Service Provider
VoIP	-	Voice over Internet Protocol
SLA	-	Service Level Agreement
AS	-	Autonomous System
RRC	-	Route Reflector Client
CPU	-	Central Processing Unit
ER	-	Edge Router
MED	-	Multiexit-Discriminator
ТМ	-	Traffic Matrix
SD	-	Standard Deviation
ICMP	-	Internet Control Message Protocol

ТСР	-	Transmission Control Protocol
UDP	-	User Datagram Protocol
С	-	C language
C++	-	C ++ Language
NAM	-	Tcl/Tk Based Animation Tool
FIFO	-	First in First out
ACK	-	Acknowledgement
Pkt	-	Packet
ELLFD	-	Estimated Link Load from Direction
ELLTD	-	Estimated Link Load to Direction
Mu	-	Mean
Sigma	-	Standard Deviation

LIST OF MATHEMATICAL SYMBOLS

R_a	- Packet Received time in the Production Network
R_b	- Packet Received time in the Simulation Network
ES	- Cell Transmission Time
ρ	- Link Utilization
P_init _{ij}	- The End-to-End Probabilities for All Nodes
pps_in _j	- Total Packets Coming in to Node j
p _{ij}	- The End-to-End Probability from Node i to Node j
λ_{orig_i}	- Traffic Originating at Node i
pps_out_i	- Total Packets out from Node i
TM_{ij}	- Traffic matrix Between Node i and Node j
$ELLFD_{ij}$	- Estimated Link Load from Direction between node i and node j
$ELLTD_{IJ}$	- Estimated Link Load to Direction between node i and node j
е	- Epsilon
SD	- Standard Deviation

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Network Topology Design (Partial)	226
В	Code for reflection2,tcl	227

CHAPTER 1

INTRODUCTION

1.1 Introduction

Internet has become an enabler of information in our society and is today a fundamental element of the worldwide communication infrastructure playing a major role in enhancing education, entertainment, business, and social life. This proliferation of content has been followed by a sustained growth of starving Internet consumers. Nowadays Internet traffic is rapidly increasing, not only in volume but also in heterogeneity and complexity of composition. Internet users now demand a faster, a higher-quality, a more reliable, and more secure Internet. Figure 1.1 shows the number of Internet users in fourth quarter of 2013 (2,802,478,934). With this volume of users, many challenging issues and more pressure is faced by the Internet Service Providers (ISPs) to provide quality services with limited resources. At the same time, better traffic monitoring and analysis is needed to ensure the delivery of services to the end users.

Figure 1.1 Internet users in the world distribution by world regions – 2013 – fourth quarter

Source: Internet World Stats – <u>www.internetworldstats.com/stats.htm (last accessed</u> June 2015)

Currently, many big companies are providing redundant and cheap cloud computing services. These cloud computing services provide a highly flexible environment enabling on-demand network access over the Internet (ISP's), thus allowing small companies to run their business without spending too much money in creating their own infrastructure to run their business applications, as in Management Information System (MIS). One of such infrastructure is shown in Figure 1.2a. In MIS, a Dashboard, as shown in this figure, is an easy to read, often single page, real-time user interface showing a graphical presentation of the current status and historical trends of any cooperation. To overcome the issue of availability of access, companies invest on redundant connections to the Internet ISPs using a dual-homed network (Karol *et al.*, 2007) setup. Figure 1.2b shows a setup of dual-homed network using BGP routing to connect to two ISPs. Dual or multi homed network is applicable in the real enterprise and medium companies world with their own private network (Abdullah *et al.*, 2014).

Figure 1.2(b) Company uses the Dual-homed network for redundancy

In the ever challenging world, ISPs will constantly need to study and analyse the existing traffic over existing infrastructures and predict their future demands. This has to be done smoothly and skilfully without any impacts on end users interactions. To achieve these tasks, simulation is normally carried out in order to have minimal or no impact on users (Mahdi and Hussain, 2013). The simulation has to represent the real environment and uses as much as possible real parameters to increase the estimated accuracy. A number of network simulators are available nowadays, either free or commercial.

1.2 Background

Sudan is a developing country with a population of 35.5 million; her advancement in ICT is also evolving. Consequently, the number of Internet users is also growing very fast. Table 1.1 shows the increment of Internet users, from 30,000 to 9.3 million over the periods of 2000 to 2014. This is a sharp increase compared to the decreasing population. This demand adds more pressure to the ISPs and introduces challenges which need to be addressed.

Table1.1 : Sudan internet usage and population growth

Year	Users	Population
2000	30,000	36,841,500
2003	300,000	35,035,677
2009	4,200,000	34,206,710
2014	9,307,189	35,482,233

Source: Internet World Stats

http://www.internetworldstats.com/af/sd.htm (last accessed) June 2015)

The need for global IPs for Internet users and companies is becoming a challenge with limited availability of IPv4 addresses. Figure 1.3 shows the increase in demand for year 2014. Migration to IPv6 is a challenge because most people are experts in IPv4. Thus, ISPs must increase the user knowledge through workshops.

Figure 1.3 IPv4 allocations by prefix in Sudan (SD)

Source: Internet Numbers Registry for Africa http://www.afrinic.net/en/services/statistics/country-stats (last accessed June 2015)

In this research, the ICT services provided by Sudan's Internet Service Provider for the population is used for the case study; in addition, these services are also aimed to be enhanced and developed for optimum provision of services. This Sudan ISP (also referred to as 'Corporation'), has more than sixty four (64 egress points) sites, represented by different industrial cities, complexes and companies, that are located around the country.

The management of the Corporation decided to centralize the ICT departments into one body, in order to reduce investment, budget and to finally ensure that the technical and supervisory control that are currently outsourced to other commercial companies are now directly taken care of by the Corporation. Thus the Corporation can apply and implement the future ICT infrastructure based on their strategic plan.

1.3 Motivation

The Corporation dream is not impossible. However, at the same time, it is not an easy task and risks have to be managed properly in the migration effort. Some challenges are more related to management issues and culture. Technical issues, which are the main focus of this research, involve migrating from the current static routed configuration environment to the enhanced dynamic routed environment.

Table 1.2	:	The scope of i	involvement:	current	versus	future	states
-----------	---	----------------	--------------	---------	--------	--------	--------

Current State	Future State	Scope of	
		involvement	
A few sites has own	Centralize the ICT	Management	
independent ICT department			
Running cost is very high	Initial cost is high (DC,	Management	
	DRC)		
A variety of network	Apply new topology to	Technical	
topologies	achieve all corporation		
	needs in next 15 years		
A variety of ERP applications	Apply centralized ERP for	Management	
	the corporation		
ICT does not support the	Fully support the decision	Management	
decision makers such as	makers on click		
Dashboard			
Manually maintaining the	Apply suitable dynamic	Technical	
routing protocol (Static)	routing		
Network High availability,	Network Connectivity	Technical	
Available through Passive	must be fully utilized for		
Link controlled by Spanning	maximization performance		
Tree Protocol (STP).			

1.4 Research Questions

Based on the literature reviewed and existing setup requirements as applicable to this case study, the following questions are generated:

- 1. How can Traffic Matrix Estimation (TME) method that is based on combination of end-to-end recovery (probability) and method of generating traffic matrix be classified?
- 2. How can the selected method be enhanced and implemented; and the results validated?
- 3. Based on the survey, which tools can be used to make the computation complexity easy?
- 4. How can an existing method that is easy to modify, enhanced and aligned with the research needs be selected?
- 5. How can the traffic generated between each O-D pair in a flow structure, including offset time, source, destination, protocol, type and length, in text file be save?
- 6. How can the network simulators be classified; and suitable ones that is cheap (possibly free) and has inherent libraries in modeling dynamic routes such as Border Gateway Protocol (BGP), Interior Gateway Protocol (IBGP) and Route Reflection (RR) be selected for the purpose of this research?
- 7. How to inject the real data captured from case study network or outcomes from TME text file into selected simulator and disable their traffic generator functionality?
- 8. How can the result from selected network simulator be validated, and which tools should be used?
- 9. How can the Hot-Potato routing algorithm be implemented; and their outcomes validated?

- 10. How can the TME outcomes as input parameters to support Hot-Potato in generating Hot-Potato routing changes plan be used and validated?
- 11. How can the BGP which run in selected simulator to use Hot-Potato routing protocol instead of the default routing in Interior Border Gateway Protocol (IBGP) within the cluster that uses Route Reflection (RR) setup be enforced?
- 12. How can the outcome when disabling the default routing in IBGP and use Hot-Potato Routing validated?
- 13. Since there is no work that integrates TME, HP and BGP, to the best of our knowledge in a simulator environment, how do we synchronize between them and validate the outcome based on the three metrics packet: loss, delay and throughput?
- 14. How can the impact of link failure in the network when using such integrated model be reduced?
- 15. How can the scalability when adding new nodes and increase the performance when adding new links when using the integrated model be extended?

1.5 Problem Statements

The problem of the Corporation is to move from the current network configuration which uses static routing protocol to future state network that is based on Traffic Engineering (TE). In TE, the ODGen algorithm TME is limited to the number of hops, the Expectation Maximization (EM) accuracy is 92% and the complexity of calculations that consumes the CPU time (ODGen problem runs in about 19 seconds for each iteration). Thus, there is a need to minimize the real experimental risks as much as possible by using a suitable network simulator NS-2 is normally used to simulate the real network based on the topology and link probabilities. However, networks parameters representing the real network traffic are not used in NS-2. The error percentage observables with BGP simulated in NS-2

with three matrices are 22% for packet losses, 12% average delay and 22% throughput. There is lack of such comprehensive model consisting of TME, BGP and HP in NS-2 based on real network from previous studies and analysis. Previous work such those found in (Teixeira *et al.* 2008), only HP functionality were tested in BGP and which were used to generate the traffic matrix in order to study the network impacts.

1.6 Research Objectives

The ultimate aim of this research is to assist in providing the best solution to migrate from the current ISP network setup based on static routes to network based on enhanced auto dynamic updates. To enhance this auto dynamic update, the research views the issues based on traffic engineering problems utilized by TM (TME). The proposed Border Gateway Protocol (BGP) which provides scalable internetworking and redundant for ISP's to be implemented will use Hot-Potato (HP) routing protocol to get the dynamic updates, wherein in turn, HP will get their parameters from TME which are based on the real network setup and traffic data. Specifically, the following are the objectives of the research:

- Enhanced the Origin Destination Generator algorithm (ODGen) by increasing the accuracy, simplify the calculation and visualization of the traffic in the NS-2 network simulator instead of using their interior traffic generators based on the real network.
- Develop an Integrated Simulation Model (ISM) which consists of TME, BGP and HP by using NS-2 simulation based on the real network to study the impacts and visualize- the changes in real network topologies based on Packet loss, Delay and Throughput.

1.7 Scope of Work and Assumptions

This research involves four phases. The first is development of simulation environment (using NS-2) phase. In this phase parameters representing the actual

data packets are injected into the real production network in the NS-2 model. Next, is the TME phase, which is to develop and enhance the existing TME model. The enhanced TME model will include the combination of the end-to-end probability path and traffic matrix algorithms based on Expectation Maximization (EM) whose parameters are based on the real production network traffic. In Phase Three, the Hot Potato (HP) integrated with TME will provide the dynamic updates for IBGP when using Route Reflection (RR) method. The last, is the ISM phase, where here TME, HP with BGP functions are all integrated within an open source network simulator. The four phases are illustrated in Figure 1.4.

Figure 1.4 The steps to develop the ISM

The scope of this research is as follows:

- 1. Dataset are captured from the Corporation in Sudan which is collected at router-to-router level through a modified sniffer program.
- 2. The simulation uses NS-2 Network simulator.
- 3. In generating the TME model, the following are used:
 - i. The R tools are to be implemented with EM algorithm for the Gaussian mixture model.
 - ii. Dijkstra's Minimum Weight Path Algorithm to compute the shortest paths.
 - iii. The weights used by Dijkstra's Algorithm and Hot-Potato Algorithm are the Enhanced Interior Gateway Routing Protocol (EIGRP) metric.
- 4. The work does not include Traffic Matrix optimization.

1.8 Contributions of Research

- ODGen is enhanced by unlimited number of hops, the accuracy of EM increases from 92% to 97% and computations (in which the average of 10 execution elapsed time equal to 0.07 seconds) is simplified.
- 2. Injecting the real network traffic in NS-2 instead of using readily available NS-2 internal traffic generators. The results shows that the characteristics of injected traffic and the real traffic are very similar with an average error packet time send 0% and error packet time received 3.61% with 0% packet loss when comparing between them. Thus we are using parameters representing real traffic instead of NS-2 packet traffic generators based on certain distribution function.
- 3. Development of an Integrated Simulation Models based on NS-2 using real traffic parameters. With the ISM, various scenarios, such as link or node removal and addition can be studied and its impact evaluated. The model, wherein Hot Potato learns the weight from TME optimizes further the switching time for BGP from primary link to the alternative to 0.05 seconds.

1.9 Organization of the Thesis

This thesis includes six chapters and the appendices.

Chapter 2 discusses four main topics. Firstly, NS-2 model based on the real network parameter methods are discussed. This is followed by traffic matrix estimation methods. Thirdly, Hot Potato routing functions in simulators network is described. This is finally followed by a discussion on Border Gateway Protocol functionality on network simulators. At the end of the chapter, the research questions that are generated from these reviewed literatures are discussed.

Chapter 3 shows the steps involved in the research methodology as applicable to this study. Likewise, the models and the proposed data collection strategies are explained.

Chapter 4 explains further on generating NS-2 traffic model based on real network parameter. Development and enhancement of the traffic matrix estimation model based on a production network is elaborated. This chapter also discusses the data collection, experimental setup and implementation of the production network to test the accuracy of the NS-2 model and the TME.

Chapter 5 deals with the TME outcome for Hot-Potato routing algorithm and how IBGP could get dynamic update from Hot-Potato protocol. This chapter also discusses the experimental setup and implementation of the production network to test the effectiveness of the ISM in dealing with link or node failure, as well as the addition of new node or link.

Chapter 6 concludes the thesis by discussing the achievements. The future work also described.

REFERENCES

- Abdullah, B., Holness, M., Bottorff, P. & St-Denis, B. (2014). Dual homed E-spring protection for network domain interworking. " U.S. Patent No. 8,625,41, issued 7 Jan. 2014.
- Ahmad, I. S., Kalakech, A. & Kadry, S. (2014). Modified Binary Exponential Backoff Algorithm to Minimize Mobiles Communication Time. *International Journal of Information Technology and Computer Science (IJITCS)*, 6, 20.
- Alkandari, A., Alshaikhli, I. F. T. & Yousef, M. A (2012). An Anatomy of IGP and BGP Routing Protocols. Advanced Computer Science Applications and Technologies (ACSAT), *International Conference on*, 26-28 Nov. 2012. 279-283.
- Aqlan, F., Lam, S. S. & Ramakrishnan, S. (2014). An integrated simulationoptimization study for consolidating production lines in a configure-to-order production environment. *International Journal of Production Economics*, 148, 51-61.
- B. Premore (2004). SSFNet BGP User's Guide: <u>http://www.ssfnet.org/bgp/user-guideps.</u>
- Bavier, A., Feamster, N., Huang, M., Peterson, L. & Rexford, J. (2006). In VINI veritas: realistic and controlled network experimentation. ACM SIGCOMM Computer Communication Review, ACM, 3-14.
- Begg, L., Liu, W., Pawlikowski, K., Perera, S. & Sirisena, H. (2006). Survey of simulators of next generation networks for studying service availability and resilience. Department of Computer Science and Software Engineering, University of Canterbury.
- Bellamy, P. Y. & Blackstone, T. F. (2014). Validation of Loss and Continuation Rate Models to Support Navy Community Management. DTIC Document.

- Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. S. (2009). mixtools: An R package for analyzing finite mixture models. *Journal of Statistical Software*, 32, 1-29.
- Caesar, M. & Rexford, J. (2005). BGP routing policies in ISP networks. *Network, IEEE*, 19, 5-11.
- Cao, J., Davis, D., Vander Wiel, S. & Yu, B. (2000). Time-varying network tomography: router link data. *Journal of the American Statistical Association*, 95, 1063-1075.
- Casas, P., Vaton, S., Fillatre, L. & Chonavel, T.(2009). Efficient methods for traffic matrix modeling and on-line estimation in large-scale IP networks. *Teletraffic Congress2009. ITC 21 2009. 21st International,. IEEE*, 1-8.
- Celik, F., Zengin, A. & Çobanoğlu, B. (2013). Discrete event simulation-based performance evaluation of Internet routing protocols. *Turkish Journal of Electrical Engineering & Computer Sciences*, 21, 1720-1736.
- Chandrashekaran, M. V. N. V. A. K. (2010). Border Gateway Routing Protocol Convergence Time Analysis with Minimum Route Advertisement Information. *Information Processing and Management*. Springer.
- Chauveau, D. Y. T. B. D., Tom, R. E., Fengjuan, H. D. H. H. T. & Young, X. M. D. (2013). *Package* 'mixtools'.
- Cheng, G.(2012) Estimating the number of active flows from sampled packets. Network Operations and Management Symposium (NOMS), 2012. IEEE, 675-678.
- Cicconetti, C., Mingozzi, E. & Stea, G. (2006). An integrated framework for enabling effective data collection and statistical analysis with NS-2. *Proceeding from the 2006 workshop on NS-2: the IP network simulator. Pisa, Italy: ACM.*
- Conti, P. L., De Giovanni, L. & Naldi, M. (2010). Blind maximum likelihood estimation of traffic matrices under long-range dependent traffic. *Computer networks*, 54, 2626-2639.
- Erramill, V., Crovella, M. & Taft, N.(2006). An independent-connection model for traffic matrices. *Proceedings of the 6th ACM SIGCOMM conference on Internet measurement, ACM*, 251-256.
- Eum, S., Harris, R. J., Lloyd-Smith, B. & Suryasaputra, R. (2006). DynamicWeight Changes for Traffic Matrix Estimation. *networks* 2006.

Feng, T. D. (2004). Implementation of BGP in a network simulator. Citeseer.

- Fischer, M. J. & Masi, D. M. B. (2003). Origin-destination traffic matrix generation. *The Telecommunications Review*, 14.
- Fortz, B., Rexford, J. & Thorup, M. (2002). Traffic engineering with traditional IP routing protocols. *Communications Magazine*, *IEEE*, 40, 118-124.
- Freeman, J. W. (2012). Using EM Algorithm to identify defective parts per million on shifting production process.
- García-Ródenas, R. & Verastegui-Rayo, D. (2008). A column generation algorithm for the estimation of origin–destination matrices in congested traffic networks. *European Journal of Operational Research*, 184, 860-878.
- Gill, R., Paul, R. & Trajkovic, L.(2012). Effect of MRAI timers and routing policies on BGP convergence times. *Performance Computing and Communications Conference (IPCCC), IEEE 31st International, 2012. IEEE*, 314-323.
- Griffin, T., Resende, M., Rexford, J. & Teixeira, R. (2011). Traffic engineering method with tunable inter-domain egress selection. " U.S. Patent No. 7,904,586, issued March 8, 2011..
- Garrett, A., Drenan, G. & Morris, C. (2002). Juniper networks field guide and reference, *Addison-Wesley Professional*.
- Gosai, A. M. & Goswami, B. H. (2012). Network Simulator for Efficient Performance Parameter Testing & Evaluation. National Journal of System and Information Technology, 5, 89-105.
- Grossglauser, M. & Rexford, J. (2005). Passive Traffic Measurement for Internet Protocol Operations. *The Internet as a Large-Scale Complex System*, 91.
- Gutierrez, P. A. A., Pöyhönen, P., Gamir, L. E. I. & Ferrer, F. H. (2011). Using BGP-4 to Migrate to a Future Internet. *Mobile Networks and Management*. Springer.
- Gursun, G. & Crovella, M.(2012) On traffic matrix completion in the internet. Proceedings of the 2012 ACM conference on Internet measurement conference, 2012. ACM, 399-412.
- Guruprasad, S., RiccI, R. & Lepreau, J.(2005). Integrated network experimentation using simulation and emulation. Testbeds and Research Infrastructures for the Development of Networks and Communities, 2005. Tridentcom 2005. First International Conference on, 2005. IEEE, 204-212.

- He, L., Yan, L. & Zhao, J.(2011). Research of Traffic Matrix Estimation in IP Networks. Internet Technology and Applications (iTAP), 2011 International Conference on, 2011. IEEE, 1-4.
- Hrudey, W. 2008. ns-BGP integration with NS-2.33.
- Hua, C., Xiaohong, H., Jing, Q. & Viho, C.(2013) A Passive Conformance Testing Method for 6LoWPAN Network. Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing, 20-23 Aug. 2013. 585-590.
- Islam, M. N. & Ashique, M. A. U. (2010). Simulation Based EIGRP over OSPF *Performance Analysis*. Blekinge Institute of Technology Thesis.
- Issariyakul, T. & Hossain, E. (2011). Introduction to network simulator NS2, Springer.
- Janitor, J., Jakab, F. & Kniewald, K.(2010). Visual Learning Tools for Teaching/Learning Computer Networks: Cisco Networking Academy and Packet Tracer. *Networking and Services (ICNS), 2010 Sixth International Conference* on, 7-13 March 2010 2010. 351-355.
- Jeon, M., Rijmen, F. & Rabe-Hesketh, S. (2014). Flexible Item Response Theory Modeling With FLIRT. Applied Psychological Measurement, 0146621614524982.
- Jesin, A. (2014). Packet Tracer network simulator, Packt Publ.
- Jiang, D. & Hu, G. (2009). GARCH model-based large-scale IP traffic matrix estimation. Communications Letters, IEEE, 13, 52-54.
- Jiang, D., Wang, X. & Guo, L. (2010). An optimization method of large-scale IP traffic matrix estimation. AEU-International Journal of Electronics and Communications, 64, 685-689.
- Jiang, D., Xu, Z., Xu, H., Han, Y., Chen, Z. & Yuan, Z. (2011). An approximation method of origin–destination flow traffic from link load counts. *Computers & Electrical Engineering*, 37, 1106-1121.
- Jong Han, P., Oliveira, R., Amante, S., Mcpherson, D. & Lixia, Z. (2012). BGP route reflection revisited. *Communications Magazine, IEEE*, 50, 70-75.
- Ju-Young, S. & Jong-Wook, J.(2009). Verification and Method Act Comparison of the Simulator and Emulator Result Based on NS-2. *Digital*

Telecommunications, 2009. ICDT '09. Fourth International Conference on, 20-25 July 2009 2009. 34-38.

- Juva, I., Vaton, S. & Virtamo, J.(2006). Quick traffic matrix estimation based on link count covariances. Communications, 2006. ICC'06. IEEE International Conference on, 2006. IEEE, 603-608.
- Kabir, M. H., Islam, S., Hossain, M. J. & Hossain, S. (2014). Detail Comparison of Network Simulators.
- Karol, M. J., Krishnan, P. & Li, J. J. (2007). System and method to improve the resiliency and performance of enterprise networks by utilizing in-built network redundancy. "U.S. Patent No. 7,188,189. Issued 6 Mar. 2007..
- Khokhar, V., Khan, S., Muppuri, P. & Ahlawat, P. (2014). Sniflyzer: A Network Sniffer.
- Li, K., Wang, S., Xu, S., Wang, X., Ren, J., Huang, H. & Zhai, B. (2015). Multi-topology routing based egress selection approach to achieve hybrid intra-AS and inter-AS traffic engineering. *International Journal of Communication Systems*, 28, 1551-1571.
- Lin, F., Chegus, A. & Cernelev, D.(2014). Verification and Validation of Pipeline Terminal Simulation Models. 2014 10th International Pipeline Conference, 2014. American Society of Mechanical Engineers, V004T08A011.
- Liu, J., Li, Y., Vorst, N. V., Mann, S. & Hellman, K. (2009). A real-time network simulation infrastructure based on OpenVPN. Journal of Systems and Software, 82, 473-485.
- Liu, K., Qiu, X., Chen, X., Gao, Z. & Chang, S.(2010). Combining partial direct measurements with an information-theoretic approach to estimate traffic matrix. 2010 3rd IEEE International Conference on Broadband Network and Multimedia Technology, IC-BNMT2010, October 26, 2010 - October 28, 2010, 2010 Beijing, China. IEEE Computer Society, 170-174.
- Liu, Z. & Chen, C.(2006). Routing inference based on pseudo traffic matrix estimation. *Advanced Information Networking and Applications, 2006. AINA 2006. 20th International Conference on, 2006. IEEE*, 6 pp.
- Lucio, G. F., Paredes-Farrera, M., Jammeh, E., Fleury, M. & Reed, M. J. (2003). Opnet modeler and NS-2: Comparing the accuracy of network simulators for packet-level analysis using a network testbed. WSEAS Transactions on Computers, 2, 700-707.

- Lundgren, J. T. & Peterson, A. (2008). A heuristic for the bilevel origin–destinationmatrix estimation problem. *Transportation Research Part B: Methodological*, 42, 339-354.
- Ma ,Z., Ferreira L. & Mesbah, M.(2014) .Measuring Service Reliability Using Automatic Vehicle Location Data. *Mathematical Problems in Engineering*, vol. 2014, Article ID 468563, 12 pages. doi:10.1155/2014/468563
- Macal, C. M.(2005). Model verification and validation. Workshop on" Threat Anticipation: *Social Science Methods and Models*, 2005.
- Mahdi, A. J. & Hussain, A. A. (2013). Simulation of High Availability Internet Service Provider's Network. *IJCCCE Vol.13, No.1*,14, 18-31.
- Maher, M. J., Zhang, X. & Vliet, D. V. (2001). A bi-level programming approach for trip matrix estimation and traffic control problems with stochastic user equilibrium link flows. Transportation Research Part B: Methodological, 35, 23-40.
- Mahrenholz, D. & Ivanov, S.(2004). Real-Time Network Emulation with NS-2. Distributed Simulation and Real-Time Applications, 2004. DS-RT 2004. Eighth IEEE International Symposium on, 21-23 Oct. 2004. 29-36.
- Mahrenholz, D. & Ivanov, S. (2005). Adjusting the NS-2 Emulation Mode to a Live Network. In: MULLER, P., GOTZHEIN, R. & SCHMITT, J. (eds.) Kommunikation in Verteilten Systemen (KiVS). Springer Berlin Heidelberg.
- Mayer, D. & Butler, D. (1993). Statistical validation. *Ecological modelling*, 68, 21-32.
- Medina, A., Fraleigh, C., Taft, N., Bhattacharyya, S. & Diot, C.(2002a). Taxonomy of IP traffic matrices. ITCom 2002: The Convergence of Information Technologies and Communications,. International Society for Optics and Photonics, 200-213.
- Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S. & Diot, C.(2002b). Traffic matrix estimation: Existing techniques and new directions. ACM SIGCOMM Computer Communication Review, ACM, 161-174.
- Mohamad A. Yehia , M. S. A., Hussein A. Elsayed. (2011). Analysis of IGP Routing Protocols for Real Time Applications: A Comparative Study. *International Journal of Computer Applications*, 07/2011.
- Neumann, J. C. (2014). The Book of GNS3. 1st editon ,No Starch Press San Francisco, CA, USA ,ISBN:1593275544 9781593275549.

- Nicol, D. (2002). Comparison of network simulators revisited. *Dartmouth College*, 1-8. N66001-96-C-8530, NSF Grant ANI-98 08964, ,NSF Grant EIA-98-02068.
- Nihan, N. L. & Davis, G. A. (1989). Application of prediction-error minimization and maximum likelihood to estimate intersection OD matrices from traffic counts. *Transportation Science*, 23, 77-90.
- Ning, Z., Guo, L., Peng, Y. & Wang, X. (2012). Joint scheduling and routing algorithm with load balancing in wireless mesh network. *Computers & Electrical Engineering*, 38, 533-550.
- Nucci, A., Cruz, R., Taft, N. & Diot, C.(2004). Design of IGP link theyight changes for estimation of traffic matrices. *INFOCOM 2004. Ttheynty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, 2004. IEEE*, 2341-2351.
- Ohsita, Y., Miyamura, T., Arakawa, S. I., Ata, S., Oki, E., Shiomoto, K. & Murata, M. (2010). Gradually reconfiguring virtual network topologies based on estimated traffic matrices. *IEEE/ACM Transactions on Networking*, 18, 177-189.
- P. R. Gundalwar1, D. V. N. C. (2013). Border Gateway Protocol (BGP): A Simulation Based Overview. International Journal of Application or Innovation in Engineering & Management (IJAIEM), Volume 2, 7.
- Pan, J. & Jain, R. (2008). A survey of network simulation tools: Current status and future developments. Email: jp10@ cse. wustl. edu.
- pankaj Rakheja, P. K., Anjali Gupta, Aditi Sharma. (2012). Performance Analysis of RIP, OSPF, IGRP and EIGRP Routing Protocols in a Network. *International Journal of Computer Applications* (0975 - 888), 48 - No.18, 6.
- Papagiannaki, K., Taft, N. & Lakhina, A.(2004). A distributed approach to measure IP traffic matrices. Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, 2004. ACM, 161-174.
- Parkhurst, W. R. (2002). Cisco OSPF command and configuration handbook, Cisco Press.
- Parry, K. & Hazelton, M. L. (2012). Estimation of origin-destination matrices from link counts and sporadic routing data. *Transportation Research Part B: Methodological*, 46, 175-188.

- Pethe, R. & Burnase, S. (2011). Technical Era Language of the Networking-EIGRP. International *Journal of Engineering Science and Technology, NCICT Special Issue*, 1-5.
- Pherson, B. H. A. D. M. (2000). Internet Routing Architectures,. Cisco Press, 2nd ed.
- Quoitin, B. & Uhlig, S. (2005). Modeling the routing of an autonomous system with C-BGP. *Network, IEEE*, 19, 12-19.
- Rahman, M. M., Saha, S., Chengan, U. & Alfa, A. S.(2006). IP Traffic Matrix Estimation Methods: Comparisons and Improvements. *Communications*, 2006. ICC '06. IEEE International Conference on, June 2006. 90-96.
- Rana, R. & Singh, K. P. (2014). A Review Paper on Performance of Routing Protocols in NS-2. *International Journal*.
- Rebba, R., Huang, S., Liu, Y. & Mahadevan, S. (2006). Statistical validation of simulation models. International Journal of Materials and *Product Technology*, 25, 164-181.
- Robbins, A. & Beebe, N. H. (2011). A Bibliography of Classic Shell Scripting.
- OPRESCU, M. I. 2012. Virtualization and distribution of the BGP control plane.
- Ousterhout, J. K. (1993). TCL and the TK Toolkit. Computer Science Division, Department of Electrical Engineering and Computer Science, University of California, Berkeley.
- Romanycia, M. H. J. & Pelletier, F. J. (1985). What is a heuristic? *Computational Intelligence*, 1, 47-58.
- Roughan, M., Zhang, Y., Willinger, W. & Qiu, L. (2012). Spatio-temporal compressive sensing and internet traffic matrices (Extended Version). *IEEE/ACM Transactions on Networking*, 20, 662-676.
- Sahraei, M. R. (2009). Integration of ns-BGP with NS-2.34.
- Shang, F. (2008). An estimating method for IP traffic matrix based on generalized inverse matrix. *International Journal of Intelligent Computing and Cybernetics*, 1, 521-536.
- Salleh, A. U., Ishak, Z., Din, N. M. & Jamaludin, M. Z.(2006). Trace analyzer for NS-2. Research and Development, 2006. SCOReD 2006. 4th Student Conference on, 2006. IEEE, 29-32.
- Sargent, R. G.(2000). Verification, validation and accreditation of simulation models. *Simulation Conference, 2000. Proceedings. Winter, 2000.* 50-59 vol.1.

- Sargent, R. G.(2005). Verification and validation of simulation models. *Proceedings* of the 37th conference on Winter simulation, 2005. Winter Simulation Conference, 130-143.
- Sargent, R. G. (2013). Verification and validation of simulation models. *Journal of simulation*, 7, 12-24.
- Sato, M.-A. & Ishii, S. (2000). On-line EM Algorithm for the Normalized Gaussian Network. *Neural Computation*, 12, 407-432.
- Shang, F. (2008). An estimating method for IP traffic matrix based on generalized inverse matrix. *International Journal of Intelligent Computing and Cybernetics*, 1, 521-536.
- Soule, A., Nucci, A., Cruz, R., Leonardi, E. & Taft, N.(2004). How to identify and estimate the largest traffic matrix elements in a dynamic environment. *ACM SIGMETRICS Performance Evaluation Review, ACM*, 73-84.
- Soule, A., Nucci, A., Cruz, R. L., Leonardi, E. & Taft, N. (2007). Estimating dynamic traffic matrices by using viable routing changes. *IEEE/ACM Transactions on Networking*, 15, 485-498.
- Ssfnet. (2003). SSFNet." http://www.ssfnet.org/.
- Strohmeier, F., Dorfinger, P., Hyytiä, E., Gojmerac, I., Trammell, B., Pietro, A. D., Lioudakis, G., Gogoulos, F., Antonakopoulou, A. & Kaklamani, D. (2007).D3. 2.1: State of the art on monitoring applications.
- Tan, L. & Wang, X.(2007). On IP traffic matrix estimation. Computer Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th International Conference on, 2007. IEEE, 617-624.
- Tan, L., Yang, P., Zhang, W. & Ge, F. (2012). On utility optimised router level bandwidth allocation. *Transactions on Emerging Telecommunications Technologies*.
- Tan, L. & Zhou, H. (2014). Tomofanout: a novel approach for large-scale IP traffic matrix estimation with excellent accuracy. annals of telecommunicationsannales des télécommunications, 1-10.
- Tandel, S. & Quoitin, B.(2010). A BGP Solver for Hot-Potato Routing Sensitivity Analysis. *IFIP International Federation for Information Processing*, 2010.
- Team, R. C. (2014). R: a language and environment for statistical computing (version 3.1. 0). Vienna: R Foundation for Statistical Computing. Available at <u>http://www. R-project. org</u>.

- Tebaldi, C. & Theyst, M. (1998). Bayesian inference on network traffic using link count data. *Journal of the American Statistical Association*, 93, 557-573.
- Teixeira, R., Agarwal, S. & Rexford, J. (2005a). BGP routing changes: merging views from two ISPs. *SIGCOMM Comput. Commun.* Rev., 35, 79-82.
- Teixeira, R., Duffield, N., Rexford, J. & ROUGHAN, M. (2005b). Traffic matrix reloaded: impact of routing changes. Proceedings of the 6th international conference on Passive and Active Network Measurement. Boston, MA: Springer-Verlag.
- Teixeira, R. (2005c). Network sensitivity to intradomain routing changes.
- Teixeira, R., Shaikh, A., Griffin, T. & Voelker, G. M. (2004a). Network sensitivity to hot-potato disruptions. *SIGCOMM Comput. Commun.* Rev., 34, 231-244.
- Teixeira, R., Shaikh, A., Griffin, T. & Rexford, J. (2004b). Dynamics of hot-potato routing in IP networks. ACM SIGMETRICS Performance Evaluation Review, 32, 307-319.
- Teixeira, R., Shaikh, A., Griffin, T. G. & Rexford, J. (2008). Impact of hot-potato routing changes in IP networks. *IEEE/ACM Trans.* Netw., 16, 1295-1307.
- Tembo, S., Yukimatsu, K.-I., Takahashi, R., Kamamura, S., Miyamura, T. & Shiomoto, K. (2012). A New Backup Topology Design Method for Congestion Avoidance in IP Fast Reroute. *International Journal of Networks* and Communications, 2, 123-131.
- Uhlig, S., Quoitin, B., Lepropre, J. & Balon, S. (2006). Providing public intradomain traffic matrices to the research community. ACM SIGCOMM Computer Communication Review, 36, 83-86.
- Van Vorst, N., Erazo, M. & Liu, J.(2011). PrimoGENI: Integrating Real-Time Network Simulation and Emulation in GENI. *Principles of Advanced and Distributed Simulation (PADS), 2011 IEEE Workshop on*, 14-17 June 2011 2011. 1-9.
- Van Vorst, N., Erazo, M. & Liu, J. (2012). PrimoGENI for hybrid network simulation and emulation experiments in GENI. J of Sim, 6, 179-192.
- Vardi, Y. (1996). Network tomography: Estimating source-destination traffic intensities from link data. *Journal of the American Statistical Association*, 91, 365-377.

- Vasseur, J.-P., Osborne, E., Singer, J., Novello, S. & Simonis, H. M. (2012). Traffic flow determination in communications networks. " U.S. Patent No. 8,194,546. Issued 5 Jun. 2012..
- Vissicchio, S., Cittadini, L. & Di Battista, G. (2015). On iBGP Routing Policies. Networking, IEEE/ACM Transactions on, 23, 227-240.
- Walker, R. A. R. A. H. F. (1984). Mixture Densities, Maximum Likelihood and the EM Algorithm. SIAM Review, 26, 195-239.
- Walpen, J., Mancinelli, E. M. & Lotito, P. A. (2014). A heuristic for the OD matrix adjustment problem in a congested transport network. *European Journal of Operational Research*.
- Wang, X. & Zhang, D.(2007). A novel method to estimate IP traffic matrix. *IEEE COMMUNICATIONS LETTERS*, VOL. 11, NO. 11, NOVEMBER 2007, 2007. IEEE, 1-4.
- Theyingartner, E., Vom Lehn, H. & Theyhrle, K.(2009). A Performance Comparison of Recent Network Simulators. *Communications, 2009. ICC '09. IEEE International Conference on*, 14-18 June 2009. 1-5.
- Yang, H. (1995). Heuristic algorithms for the bilevel origin-destination matrix estimation problem. *Transportation Research Part B: Methodological*, 29, 231-242.
- Yang, H., Wang, H., Cheng, S., Chen, S. & Lin, Y. (2011). Finding Critical MultiplePaths for Demands to Avoid Network Congestion. *Theoretical and Mathematical Foundations of Computer Science*. Springer.
- Yang, L. & Michailidis, G. (2006). Estimation of flow lengths from sampled traffic. Ann Arbor, 1001, 48109.
- Yoonseon, H., Sin-Seok, S., Chankyou, H., Jae-Hyoung, Y. & Hong, J. W. K.(2014). Flow-level traffic matrix generation for various data center networks. *Network Operations and Management Symposium (NOMS), 2014 IEEE*, 5-9 May 2014 2014. 1-6.
- Yuan, Y., Van Lint, J., Wilson, R., Van Wageningen-Kessels, F. & Hoogendoorn, S.
 P. (2012). Real-time Lagrangian traffic state estimator for freeways. Intelligent Transportation Systems, *IEEE Transactions* on, 13, 59-70.
- Zargar, S. T. & Yaghmaee, M. H.(2007). A Conqueror Traffic Based Ranking Metrics Heuristic for Assigning Synthetically Generated Traffic Matrices to a

Topology. Communication Systems Software and Middleware, 2007. COMSWARE 2007. 2nd International Conference on, 7-12 Jan. 2007. 1-8.

- Zhang, Y., Roughan, M., Duffield, N. & Greenberg, A.(2003a). Fast accurate computation of large-scale IP traffic matrices from link loads. ACM SIGMETRICS Performance Evaluation Review, 2003a. ACM, 206-217.
- Zhang, Y., Roughan, M., Duffield, N. & Greenberg, A.(2003b). Fast accurate computation of large-scale IP traffic matrices from link loads. ACM SIGMETRICS Performance Evaluation Review, 2003b. ACM, 206-217.
- Zhang, Y., Roughan, M., Lund, C. & Donoho, D.(2003c). An Information-Theoretic Approach to Traffic Matrix Estimation. Proceedings of ACM SIGCOMM 2003: Conference on Computer Communications, August 25, 2003 August 29, 2003, Karlsruhe, Germany. Association for Computing Machinery, 301-312.
- Zhang, Y., Roughan, M., Lund, C. & Donoho, D. L. (2005). Estimating point-topoint and point-to-multipoint traffic matrices: an information-theoretic approach. *IEEE/ACM Transactions on Networking (TON)*, 13, 947-960.
- Zhao, Q., Ge, Z., Wang, J. & Xu, J.(2006). Robust traffic matrix estimation with imperfect information: making use of multiple data sources. ACM SIGMETRICS Performance Evaluation Review, 2006. ACM, 133-144.
- Zhou, H., Tan, L., Ge, F. & Chan, S. (2014). Traffic matrix estimation: Advanced Tomogravity method based on a precise gravity model. *International Journal* of Communication Systems.simulator NS2, Springer.