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ABSTRACT 

 

 

 

 

The tube parameters are of importance to the dynamical properties of plasma 

as it undergoes the axial and the final pinch phase in a plasma focus. Neutron yield of 

the plasma focus is dependent on plasma dynamics. The study was aimed to investigate 

the plasma dynamical behaviour of deuterium gas in Mather type plasma focus with 

step anode configuration in order to enhance the neutron yield. The model is based on 

the Lee code version RADPFV5.15FIB under Visual Basic program. The equation of 

motion of the current sheath was derived for the step anode configuration based on 

snowplow model and slug model. In this numerical study, the modified Lee model was 

used to describe the dynamics of current sheath between the outer electrodes and inner 

electrode with step configuration based on momentum conservation of swept gas. The 

plasma inductance development from numerical analysis was found to be consistent 

with the plasma sheath motion across the coaxial tube which gives the total static 

inductance equal to 104.5 nH and the stray resistance equal to 8.5 mΩ. Numerical 

experiments has been carried out between the step anode configuration plasma focus 

system and the cylindrical anode configuration plasma focus system which showed 

that the step anode configuration system is able to enhance the plasma sheath speed by 

42.4 % from the cylindrical anode configuration. The neutron yield from the cylindrical 

anode configuration system with the effective anode length of 173 mm showed an 

optimum values of neutron yield of 1.212×108 neutrons from various anode diameters 

at 3.3 mbar. It was found that due to the speed enhancement, the neutron produced 

from the step anode configuration system was also increased by 8.2 % at its optimum 

pressure. In conclusion, the neutron yield is significantly enhanced in step anode 

configuration of the Mather type plasma focus. 
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ABSTRAK 

 

 

 

 

Parameter tiub adalah sangat penting dalam sifat dinamik plasma semasa 

melalui fasa paksi dan fasa sempitan terakhir dalam plasma fokus. Hasil neutron 

plasma fokus ini adalah bergantung kepada dinamik plasma. Kajian ini bertujuan 

untuk menyiasat perilaku dinamik plasma gas deuterium dalam plasma fokus jenis 

Mather dengan tatarajah anod berinjak untuk meningkatkan hasil neutron. Model ini 

adalah berdasarkan kepada kod model Lee versi RADPFV5.15FIB di bawah program 

Visual Basic. Persamaan pergerakan bagi arus plasma telah diperoleh untuk tatarajah 

anod berinjak berdasarkan model pembajak salji dan model lintah bulan. Dalam kajian 

berangka ini, model Lee yang diubahsuai itu telah digunakan untuk menggambarkan 

dinamik sarung plasma di antara elektrod-elektrod luar dan elektrod dalam dengan 

tatarajah anod berinjak berdasarkan keabadian momentum gas tersapu. Perkembangan 

aruhan plasma daripada analisis berangka didapati konsisten dengan gerakan sarung 

plasma merentasi tiub sepaksi yang memberikan jumlah aruhan statik sama dengan 

104.5 nH dan rintangan kesasar sama dengan 8.5 mΩ. Ujikaji berangka telah 

dijalankan antara sistem plasma fokus bertatarajah anod berinjak dan sistem plasma 

fokus bertatarajah anod silinder yang menunjukkan bahawa sistem tatarajah anod 

berinjak mampu meningkatkan kelajuan sarung plasma sebanyak 42.4 % berbanding 

sistem tatarajah anod silinder. Hasil neutron dari sistem tatarajah anod silinder dengan 

panjang anod berkesan 173 mm telah menunjukkan nilai hasil neutron yang optimum 

sebanyak 1.212 × 108 neutron dari pelbagai diameter anod pada 3.3 mbar. Didapati 

bahawa disebabkan peningkatan kelajuan, neutron yang dihasilkan dari sistem 

tatarajah anod berinjak juga telah meningkat sebanyak 8.2 % pada tekanan optimum. 

Kesimpulannya, hasil neutron meningkat secara ketara dalam tatarajah anod berinjak 

plasma fokus jenis Mather.
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CHAPTER 1  
 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Background of Study 

 

 

Plasma focus (PF) devices is a electrical pulsed discharge between filled gas 

coaxial electrodes which is one of the dynamic Z-pinches category that are self-

constricted plasma configurations [1, 2] In the early 1960s, the Mather type and the 

Filippov type PF device were originally developed independently by USA [3]and the 

former Soviet Union [4] respectively. The discharge tube of Filippov type PF device 

is configured with 2R/L >1, while the Mather type PF device is configured with 2R/L 

<1, where R and L represent the anode radius and length, correspondingly. Currently, 

some development of PF device have been investigated [3, 4] using small PF devices 

operating at low capacitor bank energy which give to a range of tens to hundreds of 

joules alternatively to the high energy device range in kilojoule to megajoule. As 

pulsed plasma generators, the PF devices operating relatively in simple principle by 

utilize a self-generated magnetic field, for compressing the plasma to a very high 

temperatures (1–2 keV) and high densities (≈1025–1026 m−3) which is dependent to the 

energy bank that provided to the system. There are also has been historically known 

as fusion devices, which is due to its capabiltity to produced intense neutrons bursts 

with deuterium gas filled. However, the PF devices are not only limited to its 

capability as fusion neutrons source [7] but also able to generates fast ion beam [8], 

relativistic electrons [9] and copious amount of hard X-ray (HXR) and soft X-ray 

(SXR) [8–11].
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Previously, Zakaullah et al. [14] have studied the anode configuration effect 

on the energy of argon X-ray as well as Bhuyan et al. [13] on nitrogen and hydrogen 

SXR energy for Mather-type PF. Serban [15] had investigated anode configuration 

geometry and focus characteristic experimentally using the National Institute of 

Education - School of Science - Plasma -Focus Facility (NIE-SSC-PFF). In this study, 

the effect of anode configuration on the plasma focus neutron yield is investigated 

based on numerical modelling. Numerical modelling plays an important role where it 

can be used to compare the developed physical theories with experimental data. The 

process and physical properties related to PF which includes the energy transfer 

processes, the electrical properties, the shock wave interactions and the 

thermodynamic properties are know to be complex. Nevertheless, with a suitable 

equation applied describing the processes and physical properties involved, numerous 

physical models have been developed which able to simulate the plasma temperature, 

plasma dynamics and along with the emission of electromagnetic radiation and high 

energy particle from a PF device from a contructive reasoning. The dynamical model 

can be from a simple 1D snowplough model to a slightly complex 2D 

magnetohydrodynamic (MHD) model [16]. The thesis is focus on the numericals study 

of Mather type PF device with step anode geometry and cylindrical anode geometry. 

The plasma dynamic dependency on the anode geometrical shapes is investigated 

using modified Lee Model Code. 

 

 

 

 

1.2   Problem Statement 

 

 

A dynamical model with two main phase; axial phase based on snowplough 

model and radial phase based on a slug model has been numerical design by Lee [12–

16] for the PF device. In the radial phase, the model considered that pinch plasma 

concurrently elongated further from the tip of anode while the plasma confined 

between the shock front and the J×B force. Thus, the model have shown it’s 

competent in providing a realistic pinch minimum radius. The Lee model is developed 

based on the law of conservationof energy. The model parameter introduced in the Lee 

model accounted from the energy losses of the total input plasma energy. The model 

parameter have been significantly important to this area of research which give the 
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simulated result to be realistic to the experimental observation. The current versions 

of the Lee model are already capable of simulating various PF devices around the 

globe although it is still limited to the standard cylindrical electrode configuration. 

There are only few numerical studies were conducted for the past decades regarding 

to the step anode which only give us little information regarding how this actual could 

bring a significant effect to the dynamics of plasma sheath during axial phase and 

neutron yield.  

 

 

 

 

1.3   Research Objectives  

 

 

The general objective of this research is to investigate the dynamic phase and the 

circuit model of Mather type plasma focus with step anode configuration (SAC) using 

the Lee Model. The specific objective are as follows 

 

 To determine the total static inductance, stray resistance profile and 

plasma inductance development from numerical analysis of discharge 

current traced and tube voltage signal. 

 To improve the precision of current profile fitting by considering the 

impedance development in the modified Lee code 

 To examine the dynamics of the PF for both axial and radial phases for 

cylindrical anode and step anode geometry. 

 To evaluate numerically on the neutron yield from the cylindrical and 

step electrode configuration. 

 

 

 

 

1.4   Research Scope 

 

 

This project is focuses on developing the current Lee Model Code for 

simulating a PF device with various step anode configurations. Numerical experiments 

will be conducted using modified Lee model version RADPFv5.15FIB to compute 

step configured electrode plasma focus. The static inductance and stray resistance 
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profile of the NIE-SSC-PFF device [15] will be firstly determined from discharge 

current trace and voltage signal which then will be used to acquire the inductance 

development. The model current trace will be fitted with the experimental result as a 

baseline to calibrate the numerical simulation in order to make it realistic. Neutron 

generation from fusion reaction when using deuterium filling gas is computed for step 

anode and compared with the standard cylindrical electrode in this numerical 

investigation.  

 

 

 

 

1.5   Significance of Research 

 

 

The significance of this study is to expand the potential of the Lee Model Code 

which enable it to compute more than just a standard tube parameter of cylindrical 

electrode configuration. The improvement of the Lee model will give us a significant 

control variable and this will open a new area in optimizing the DPF device for SXR 

yield and neutron yield. The new optimize value achieve from computing with various 

configuration electrode will give us a new understanding on how we could design the 

electrode that satisfactory for a specific used of the DPF devices. The determination 

of static inductance and stray resistance profile from numerical analysis can be 

contributed to new understanding of plasma discharge in the plasma focus device. 

Temporal inductance evolution of the PF device determined from both current trace 

and voltage signals can be used as a tool for understanding the dynamic of the plasma 

sheath in PF discharges. 

 

 

 

 

1.6   Thesis outline 

 

 

This thesis report on the numerical investigations of plasma dynamics and 

neutron yield from step configured electrode plasma focus devices using the modified 

Lee model code. The contents have been presented in six separated chapters according 

to the research flow. In chapter 1, the introductory description is covered with the 

background, brief history of the plasma focus research, followed by the problem 
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statement, objectives of research, scope of research and its significance to the current 

research. The following chapter 2, will reviewing on the historical background of a 

plasma study, the dense Z-pinch, different phases in plasma focus operation, dynamics 

of current sheath in plasma focus, various configuration of electrodes and 

experimental and numerical studies of neutron yield. In chapter 3, the theory of the 

different phases of plasma focus device, dynamics and electrical properties of step 

configured electrode and working principle of plasma focus device is elaborated. In 

this report, chapter 4 will illustrates the research methodology of experimental data 

extraction, static and dynamic of inductivity and resistivity of the PF device, current 

profile fitting, and computation procedure for numerical simulation. Chapter 5 

presents the results of the determination of inductance and resistance, current profiles 

fitting between the computation and experiment current signals and the comparison 

between step and cylindrical configured electrode on neutron yield radiations from the 

plasma focus devices numerically and is thoroughly discussed. The whole research 

work research is concluded in chapter 6 from the observations and findings. 
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