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ABSTRACT 

 

 

 

Various kinds of seismic structural systems could not completely satisfy engineers 

due to excessive rigidity and low ductility. Then engineers innovate advanced ductile 

structural systems like viscous elastic dampers to dissipate earthquake forces and insulate 

important structural elements in safe zone; however these systems have not been pervasive 

in construction industry due to high production cost. Indeed, optimization of stiffness, 

ductility, and construction cost are the major challenges facing the engineering profession 

in designing a perfect lateral system. This research introduces Space Shear Wall (SpaSW), 

as an innovative earthquake resistant system for structures and evaluates its feasibility and 

seismic performance through three-dimensional linear and nonlinear-static, linear-

dynamic, and finite element analysis carried out by ETABS and ANSYS program. Space 

shear wall is defined as a double-layer diagonal space frame structure with ball joints 

vertically used as infill wall. The comparative study between SpaSW and steel bracing 

used in typical low to high-rise structures expressed that structural drift of SpaSW is 

slightly higher than steel bracing. However the ductility, energy dissipation, members’ 

stress and distribution of earthquake force in SpaSW are significantly better than typical 

steel bracing. In addition, failure mechanism of SpaSW were favourable due to its gradual 

process through many ball joints. Moreover, lightness, industrialization, maintainability 

and reparability, compatibility with architectural considerations, low cost, simple and fast 

fabrication are other realized advantages. Developing this concept would be considered in 

the future studies through optimization of material, grid patterns, connection, and 

additional dampers. 
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ABSTRAK 

 

 

 

Pelbagai jenis sistem struktur seismik tidak dapat memenuhi keperluan para 

jurutera dengan sepenuhnya disebabkan oleh ketegaran struktur yang berlebihan dan 

kemuluran yang rendah. Dengan itu jurutera telah mencipta system struktur mulur yang 

lebih maju seperti penyerap likat anjal yang dapat mengurangkan daya gempa bumi dan 

seterusnya melindungi elemen struktur utama dalam zon selamat. Namun demikian sistem 

ini belum lagi meluas penggunaanya dalam industri pembinaan disebabkan oleh kos 

pengeluaran yang tinggi. Sebenarnya, pengoptimuman ketegangan, kemuluran, dan kos 

pembinaan adalah cabaran utama yang dihadapi oleh bidang kejuruteraan dalam mereka 

bentuk sistem sisian yang sempurna. Kajian ini memperkenalkan “Space Shear Wall” 

(SpaSW), sebuah sistem struktur inovatif yang mempunyai daya ketahanan seismik yang 

dapat menilai kebolehlaksanaan dan prestasi seismik melalui analisis linear, statik bukan 

linear, dinamik linear dan unsur terhingga tiga-dimensi yang dilaksanakan oleh ETABS 

dan program ANSYS. Dinding ricih ruang ditakrifkan sebagai struktur kerangka ruang 

pepenjuru dua lapisan dengan sendi bola, digunakan secora menegak sebagai dinding 

isian. Kajian perbandingan diantara SpaSW dan keluli perembatan yang dijalankan ke atas 

struktur yang bertingkat rendah ke struktur yang bertingkat tinggi, membuktikan bahawa 

kecondongan struktur adalah sedikit tinggi berbanding dengan keluli perembatan. Walau 

bagaimanapun, kemuluran, pelepasan tenaga, tekanan dan taburan tenaga gempa bumi 

bagi SpaSW adalah jauh lebih baik daripada keluli perambatan biasa. Di samping itu, 

kegagalan mekanisme SpaSW lebih memihak kepada proses berperingkat melalui sendi 

sambungan bebola yang banyak. Selain daripada itu, keringanan, perindustrian, 

penyelenggaraan, pembaik pulihan, keserasian dengan pertimbangan seni bina arkitek, kos 

rendah, fabrikasi mudah dan pantas adalah kelebihan lain yang realistik. Konsep yang 

selanjutnya akan dipertimbangkan dalam kajian pada masa hadapan melalui 

pengoptimuman bahan, corak grid, sambungan terperinci, dan penyerap tambahan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Study 

 

 

Over the past decades, earthquake and wind hazards have seriously influenced 

structural engineering principles. In this respect, major advances in earthquake engineering 

have occurred in both understanding and practice of seismic force-resisting systems. 

Therefore, various kinds of seismic systems were created to protect buildings from natural 

disasters but most of these systems could not completely satisfy engineers. Critics of 

current seismic systems believe that common rigid systems absorb the earthquake energy 

and transfer it to the structural elements. Hence engineers introduced ductile seismic 

systems to dissipate dynamic forces and insulate important structural elements in safe 

zone. 

 

A ductile seismic system under earthquake loading dissipate earthquake forces and 

insulate important structural elements in safe zone like a fuse box in an electrical board, 

which is an essential safety device that cut off the flow of electricity if a fault occurs and 

protect the individual circuits that convey electricity to the various applications. However, 

the use of ductile systems has resulted in invention of many advanced systems like viscous 

elastic dampers, but these high-tech systems have not commonly been used due to their 

high costs and complicated fabrication. Indeed, optimisation of stiffness, ductility, and 

construction cost are the major challenges facing the engineering profession in designing a 

perfect lateral system, which is a ductile structural system with adequate stiffness that 

efficiently functions to resist lateral loads from wind or earthquake. 
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Space structure is a three dimensional truss with high stiffness and ductility due to 

its numerous members and flexible joints. Space structure is used where there is a need to 

carry vertical loads across long spans due to its high stiffness. A huge number of large 

scale and complex civil structures such as high-rise buildings and large-span structures 

have been constructed in the form of space structures. . 

 

This study investigates the seismic performance of an innovative lateral system 

called Space Shear Wall (SpaSW). This name is inspired by spatial form of space structure 

and its application as infill wall surrounded by columns and beams to resist the shear force 

generated by earthquake activities. The preliminary literature researches by author show 

that SpaSW is an innovative application of space structure to enhance the lateral stability 

of structures. 

 

Integration of a typical two dimensional lateral system like steel cross bracing with 

structural frame makes a stable structure, as shown in Figure 1.1. Since most of the 

common seismic systems such as steel bracing and concrete shear wall mainly perform 

under in-plane loads, a new concept could be discovered through integration of spatial 

seismic systems with structural frames, as demonstrated in Figure 1.2. This concept has 

originally been inspired by a special tree with diagonally long extended roots towards the 

ground’s surface to protect the tree against wind loads as per Figure 1.3. This natural 

example points out that lateral stability of any structure might be enhanced by struts 

distributed spatially. Figure 1.4 illustrates the preliminary proposal for Space shear wall 

that is a double-layer two-way space structure surrounded in a R.C. frame.  

 

 

 

Figure 1.1 : Concept of cross bracing systems 
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Figure 1.2 : Early concept for Space Shear Wall (SpaSW) 

 

 

 

 

 

 

Figure 1.3 : Initial natural inspiration of SpaSW 
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Figure 1.4 : Early conceptual model for SpaSW 

 

 

1.2 Statement of the Problem 

 

The world has been inflicted with heavy damages due to the common occurrence of 

natural hazards. A recent study (Leoni et al., 2011) revealed that close to 2.4 billion people 

were affected and a million people lost their lives by disasters during the past decades. In 

this regard, different kinds of seismic protection systems were designed to optimize 

buildings performance and increase the reliability in the wake of natural disasters. 

However, most of these structural systems have not effectively mitigated damages due to 

the inefficient integration of ductility, stiffness, and structural performance. For example, 

steel cross bracing that is commonly used in building structures has poor ductility due to its 

brittle connections. Recent earthquakes e.g. 1994 Northridge, 1995 Kobe, and 1999 Chi-

Chi  have shown that brittle fractures in connections of brace-to-column and beam-to-

column affect the whole ductile response and energy dissipation capacity of structures 

under seismic loads (Di Sarno and Elnashai, 2009). 

 

In addition, concrete shear wall as another widely used system in most parts of the 

world, is inconvenient in terms of its industrialization’s difficulties. Moreover, the new 

ductile systems, like viscous elastic dampers, are very expensive due to limited availability 

of knowledge and technology for design and fabrication (Kelly, 2007 ) 
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Therefore, this study proposes space shear wall as an innovative individual seismic 

resistant structural system to enhance the lateral stability of structures and resist the forces 

of earthquake. This system uses a double layer spatial truss with interconnected members 

and flexible joints absorbing hazardous energy from earthquake. This system effectively 

transmits the imposed lateral and vertical loads into tensile and compressive force to be 

carried by SpaSW designed structural elements and reduce lateral movements.  

 

It is high time that engineering society take serious effort in creating effective 

seismic systems to improve the structural performance and minimize damages from 

earthquake. This research comparatively investigates seismic performance of SpaSW that 

is introduced as an innovative seismic resistant structural system. 

 

 

1.3 Objectives of the Study 

 

The main objective of this research is to explore an innovative seismic structural 

system using available technologies to improve the seismic performance of buildings. The 

specific research objectives are: 

i. To propose an innovative seismic structural system (double layer SpaSW) to 

enhance the lateral stability of structure under lateral force 

ii. To assess the seismic performance of SpaSW in terms of ductility level, and 

failure mechanism via elastic-static, inelastic-static, and elastic dynamic 

analysis 

iii. To verify the proposed system on multi-story frame with comparative study 

with a typical steel cross bracing 

 

 

1.4 Research Questions 

 

This research shall respond to the following questions:  

i. How SpaSW is determined as an effective seismic system to increase the lateral 

stiffness of structures? 

ii. How the current concerns of integration of stiffness, ductility, and 

industrialization are addressed in SpaSW system? 
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iii. How is the seismic performance of SpaSW under various types of seismic 

analysis? 

iv. What is the difference between the SpaSW and the steel bracing which is a 

common lateral system? 

 

 

1.5 Significance of the Study 

 

Although currently there are various kinds of seismic structural systems, most of 

them could not efficiently reduce earthquake damages, as shown in Chapter 2. The 

findings of this study are important to help the engineering society to find out effective 

seismic systems to improve the performance of complex structural systems and minimise 

hazardous effects of earthquake. 

 

 

1.6 Scope of the Study 

 

Considering the successful performance of space structures in sustaining the lateral 

loads, it is anticipated that the SpaSW would efficiently enhance the stability of structures 

under wind and earthquake forces. This study is mainly dedicated to implement, and 

evaluate the seismic performance of innovative SpaSW system. This assessment is 

delimited to static analysis to determine the seismic performance of SpaSW through lateral 

drift, reaction force, and member stress factors.  

 

 

1.7 Methodology and Research Framework 

 

This section briefly discusses the methodology of the research. The evaluation 

performance of the innovative seismic system includes four basic steps: modeling, 

analysis, design, and validation of the results. Firstly, the new concepts of the seismic 

system were simulated using three-dimensional software, 3D MAX and AutoCAD, to 

visualise and assess the viability of proposed concept. Then, the conceptual model was 

analysed under static and dynamic loads via ETABS program to monitor the seismic 
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performance of SpaSW. In this research, lateral drift, reaction force, and member stress 

ratio were the major criteria to realize seismic behaviour. In the third step, the constituent 

members of SpaSW were designed to verify the feasibility of SpaSW model. Finally, the 

analytical results were validated with an experimental study and verified through a 

comparative study between SpaSW and steel bracing.  

 

 

1.8 Definition of Terms 

  

Seismic Performance: 

 

Seismic performance is the structural response of a building to earthquake forces 

which is evaluated by strength, deformation demands, ductility level, and failure 

mechanism of structural systems.  

 

The seismic performance factors could be used in the context of linear analysis and 

response to equivalent static forces (SEAOC, 1995; ASCE, 2010 and IBC, 2011). This 

research focuses on deformation and strength of structures using SpaSW under equivalent 

static, response spectrum, pushover, time history, and finite element analysis to assess the 

seismic performance of SpaSW system.  

 

Innovative System: 

 

According to the Oslo Manual, the foremost international guideline on innovation 

activities, “a technological product innovation is the implementation or commercialization 

of a product with improved performance characteristics such as to deliver objectively new 

or improved services to the consumer.”(OECD, 2005). There is an important distinction 

between the innovation and invention. “Invention is the first occurrence of an idea for a 

new product or process while innovation is the first attempt to carry it out into practice.” 

Innovation vs. invention: Knowing the difference makes a difference (Gurel, 2007). This 

study investigates on an innovative seismic system integrating the others’ invention of 

space structures and Mero joints.  
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Space Shear Wall (SpaSW): 

 

Space shear wall is an innovative application of space structures performing as 

seismic system to resist the lateral earthquake force. This system involves the tubular 

members with ball joint system connected to the surrounding frames. 



 

 

 

 

REFERENCE 

 

 

 

Abbassi S. K. (2009). The Weight Efficiency of Steel Framed Buildings with Various Wind 

Bracing Systems. Eastern Mediterranean University: Master Thesis. 

Abell, M. and Habib, F. (2012). How is the Response-spectrum Scale Specified? American 

Society of Civil Engineers. Retrieved December 10, 2013, from 

https://wiki.csiamerica.com/display/etabs/Scale+factor+in+RSA. 

AISC (American Institute of Steel Construction). (2002). Seismic Provisions for Structural 

Steel Buildings. Chicago, Illinois: American Institute of Steel Construction.  

Ali, M. M. and Moon, K. S. (2007). Structural Developments in Tall Buildings: Current 

Trends and Future Prospects. Architectural Science Review. 50(3): 205-223. 

Alinia, M. M. and Dastfan, M. (2006). Behaviour of Thin Steel Plate Shear Walls 

Regarding Frame Members. Journal of Constructional Steel Research. 62(7): 730-

738. 

ASCE (American Society of Civil Engineers). (2007). Seismic Rehabilitation of Existing 

Buildings. Reston, Virginia: American Society of Civil Engineers. 

Anderson, J. C. and Naeim, F. Basic Structural Dynamics. Hoboken, N.J.: John Wiley & 

Sons, Inc. 2012. 

ASCE (American Society of Civil Engineers). (2010). Minimum Design Loads for 

Buildings and Other Structures. Reston, Virginia: American Society of Civil 

Engineers. 

Ashraf Habibullah, S. and Stephen Pyle, S. (1998). Practical Three Dimensional Nonlinear 

Static Pushover Analysis. Structure Magazine,Winter. 

Astaneh-Asl, A. (2001). Seismic Behavior and Design of Steel Shear Walls. 2001 

SEOANC Seminar, Structural Engineers Assoc. of Northern California Structural. 

7 November. San Francisco. 

Awkar, J. C. and Lui, E. M. (1999). Seismic Analysis and Response of Multistory 

Semirigid Frames. Engineering Structures. 21(5): 425-441. 

Bansal, R. (2011). Pushover Analysis of Reinforced Concrete Frame. Thapar University: 

Master Thesis. 



228 

 

Barbato, M. (2007). Finite Element Response Sensitivity, Probabilistic Response and 

Reliability Analyses of Structural Systems with Applications to Earthquake 

Engineering. University of California, San Diego: Doctor of Philosophy Thesis. 

Bathe, K. J. Finite Element Procedures. United States of America: Prentice Hall. 2006. 

Becker, R. (1996). Seismic Design of Special Concentrically Braced Steel Frames. 

Moraga, California: Structural Steel Educational Council. 

Behbahanifard, M. R., Grondin, G. Y. and Elwi, A. E. (2003). Experimental and 

Numerical Investigation of Steel Plate Shear Walls. Structural Engineering Report. 

University of Alberta. 

Bommer, J. J. and Acevedo, A. B. (2008). The Use of Real Earthquake Accelerograms As 

Input to Dynamic Analysis. Journal of Earthquake Engineering. 8: 43-92. 

Booth, E. D. and Key, D. Earthquake Design Practice for Buildings. 2
nd

 ed. London: 

Thomas Telford. 2006. 

Borrego, M., Douglas, E. P. and Amelink, C. T. (2009). Quantitative, Qualitative, and 

Mixed Research Methods in Engineering Education. Journal of Engineering 

Education. 98 (1): 53-66. 

Blandon U, C. A. 2004. Equivalent Viscous Damping Equations for Direct Displacement 

Based Design. Master, Università degli Studi di Pavia. 

Bozorgnia, Y. and Bertero, V. V. (2001). Improved Shaking and Damage Parameters for 

Post-earthquake Applications. Proceedings of the SMIP01 Seminar on Utilization 

of Strong-Motion Data. Los Angeles. 1-22. 

BSSC (Building Seismic Safety Council). (2004). NEHRP Recommended Provisions for 

Seismic Regulations for New Buildings and Other Structures. Washington, D.C.: 

Building Seismic Safety Council. 

USAF Test Pilot School Edwards AFB CA (1988). Flying Qualities Phase: Dynamics. 

California: United States Air Force Test Pilot School.   

Caccese, V., Elgaaly, M. and Chen, R. (1993). Experimental Study of Thin Steel-plate 

Shear Walls Under Cyclic Load. Journal of Structural Engineering. 119(2): 573-

587. 

Caltrans (2013). Caltrans Seismic Design Criteria, Version 1.7. California, USA: 

California Department of Transportation. 

Chandradhara, G. (2013). Strustural and Architectural Aspects of Earthquake Resistant 

Design. Mysore. 

Chen, S. J. and Jhang, C. (2006). Cyclic Behavior of Low Yield Point Steel Shear Walls. 

Thin-Walled Structures. 44(7): 730-738. 



229 

 

Chen, W. F. and Lui, E. M. (2010). Handbook of Structural Engineering. 2
nd

 ed. Boca 

Raton, FL: Taylor & Francis Group. 

Chen, W. F. and Lui, E. M. (2012). Handbook of Structural Engineering, 2
nd

 ed. Boca 

Raton, FL: Taylor & Francis Group. 

Chenaghlou, M. R. (1997). Semi-rigidity of Connections in Space Structures. University of 

Surrey, Guildford, United Kingdom: Doctor of Philosophy Thesis. 

Chilton, J. Space Grid Structures. UK: Architectural Press. 2000. 

Chopra, A. K. Dynamics of Structures. 4
th

 ed. Upper Saddle River, N.J.: Pearson 

Education, Inc. 2012. 

Cullen, G. W. and Korkolis, Y. P. (2013). Ductility of 304 Stainless Steel Under Pulsed 

Uniaxial Loading. International Journal of Solids and Structures. 50(10): 1621-

1633. 

Dahal, P. P. (2013). Nonlinear Pushover Analysis of Steel Frame Structure. Southern 

Illinois University, Carbondale, Illinois, USA. 

Dhakal, R.P. 2011. Structural Design for Earthquake Resistance – Past, Present and Future 

of Seismic Design. Canterbury Earthquakes Royal Commission.  

Darragh, B., Silva, W. and Gregor, N. (2004). Strong Motion Record Processing for the 

PEER Center. Proceedings of COSMOS Invited Workshop on Strong-Motion 

Record Processing. Richmond, CA, USA, 26-27. 

Di Sarno, L. and Elnashai, A. S. (2009). Bracing Systems for Seismic Retrofitting of Steel 

Frames. Journal of Constructional Steel Research. 65(2): 452-465. 

Eekhout, M. (1989). Architecture in Space Structure. Rotterdam: Uitgeverij 010 

Publishers. 

Eghtesadi, S., Nourzadeh, D. and Bargi, K. (2011). Comparative Study on Different Types 

of Bracing Systems in Steel Structures. World Academy of Science, Engineering 

and Technology. 25-27 January. United Arab Emirates. 

Engelhardt, M.D. 2007. Buckling Restrained Braced Frames. University of Texas, Austin. 

Environment Canada. (2013). History of the Biosphère. Environment Canada. Retrieved 

October 12, 2013, from 

https://www.ec.gc.ca/biosphere/default.asp?lang=En&n=7DD2D209-1 

Fadaee, M. J. and Bayat, B. (2007). Effects of Using Low Yield Point Steel Instead of 

Normal Steel in Steel Shear Walls. Proceedings of the Eleventh International 

Conference on Civil, Structural and Environmental Engineering Computing. 

Stirlingshire, Scotland, UK: Civil-Comp Press. 



230 

 

Filiatrault, A. (2013). Elements of Earthquake Engineering and Structural Dynamics. 2
nd

 

ed. Canada: Polytechnic international Press. 2002. 

Franco, G., Leiva, G. and Lai, T. (2010). Post-Disaster Survey Findings from the M8.8 

Chile Earthquake. AIR Worldwide. Retrieved December 12, 2013, from 

http://www.air-worldwide.com/Publications/AIR-Currents/2010/Post-Disaster-

Survey-Findings-from-the-M8-8-Chile-Earthquake/ 

Gerrits, J. M. (1996). The Architectural Impact of Space Frame Systems.  Proceedings of 

the Asia-Pacific Conference on Shell and Spatial Structures. Beijing, China. 

Ghali, A., Neville, A. M. and Brown, T. G. Structural Analysis: A Unified Classical and 

Matrix Approach. 5
th

 ed.  London: Spon Press. 2003. 

Ghosh, S. K. and Fanella, D. A. Seismic and Wind Design of Concrete Buildings: (2000 

IBC, ASCE 7-98, ACI 318-99. USA: International Code Council. 2003. 

Gioncu, V. and Mazzolani, F. M. Earthquake Engineering for Structural Design. UK: 

Taylor & Francis. 2010. 

Gioncu, V. and Mazzolani, F. M. Ductility of Seismic Resistant Steel Structures. USA: 

Spon Press. 2002. 

Girgin, K. and Darilmaz, K. (2002). Seismic Response of Infilled Framed Buildings Using 

Pushover Analysis. ARI Bulletin of the Istanbul Technical University. 54(5):1-17. 

Gould, N. C. (2007). Seismic Risk for Structures. ABS Consulting Earthquake Engineering 

Research Institute: ABS Consulting. 

Green, J. M. (1996). Peer Reviewed: A Practical Guide to Analytical Method Validation. 

Analytical Chemistry. 68(9): 305A-309A. 

Green, R. A., Gunberg, K., Parrish, K. and Munger, T. (2007). A Simple Uniform Hazard 

Design Spectral Shape for Rock Sites. Seismological Research Letters. 78(2): 323-

343. 

Guney, D. and Aydin, E. 2012. The Nonlinear Effect of Infill Walls Stiffness to Prevent 

Soft Story Collapse of RC Structures. The Open Construction and Building 

Technology Journal, 6, 74-80. 

Gurel, O. (2007). Innovation vs. Invention: Knowing the Difference Makes a Difference. 

WTN News. Retrieved November 2, 2012, from http://wtnnews.com/articles/4184/  

Haldar, A. and Salazar, A. R. (1996). Ductility Evaluation of Steel Frames with PR 

Connections. Eleventh World Conference on Earthquake Engineering (11WCEE). 

Elsevier Sciece Ltd. 

http://www.air-worldwide.com/Publications/AIR-Currents/2010/Post-Disaster-Survey-Findings-from-the-M8-8-Chile-Earthquake/
http://www.air-worldwide.com/Publications/AIR-Currents/2010/Post-Disaster-Survey-Findings-from-the-M8-8-Chile-Earthquake/
http://wtnnews.com/articles/4184/


231 

 

Halvorson, R. (2008). Structural Design Innovation: Russia Tower and Other Tall 

Collaborations. CTBUH 8th World Congress. Dubai, UAE: CTBUH 8th World 

Congress. 

Halvorson, R. and Warner, C. (2007). Structural Design Innovation: RussiaTower. The 

Structural Design of Tall and Special Buildings. 16(4): 377–399. 

Hiyama, Y. (2005). Recent Development of Seismic Retrofit Methods in Japan. Japan: 

Japan Building Disaster Prevention Association. 

Hyland, C. and Miller, S. (2009). Steel Performance in Padang Earthquake. Hyland 

Consultants Ltd. Retrieved October 9, 2013, from 

http://www.hylandconsultants.com/50/  

ICC (International Code Council). (2012). International Building Code. Illinois: 

International Code Council. 2011. 

JBDPA. (2001). Standard for Seismic Evaluation of Existing Reinforced Concrete 

Buildings. Japan: Japan Building Disaster Prevention Association.   

JKR. (2007). Seismic Design Guideline for Concrete Buildings in Malaysia. Malaysia: 

Jabatan Kerja Raya. 

Karni, E. 1996. Plastic cladding for bar, joint and cladding structures physical properties 

and performance. Materials and Structures, 29, 241-249. 

Kalny, O. (2013). ETABS. Computers and Structures, Inc. Rertieved December 15, 2013, 

from https://wiki.csiberkeley.com/display/etabs/Home  

Kalny, O. and Abell, M. (2012). Hinge. Atlassian Confluence. Rertieved October 5, 2013, 

from https://wiki.csiamerica.com/wiki-staging/display/kb/Hinge 

Kamar, K., Alshawi, M. and Hamid, Z. (2009). Barriers to Industrialized Building System 

(IBS): The Case of Malaysia. Proceedings of the 9th International Postgraduate 

Research Conference (IPGRC). 29-30 January. Salford, United Kingdom. 

Kasslmali, A. and Badiey, M. (1984). Nonlinear Behavior and Stability of Latticed Domes 

Under Combined Loading. Proceedings of the Southeastern Conference on 

Theoretical and Applied Mechanics (SECTAM XII). 114-119. 

Kelly, T. E. (2008) Improving Seismic Performance: Add Stiffeness or Damping? 2007 

NZSEE Annual Conference in Palmerston North. Bulletin of the New Zealand 

Society for Earthquake Engineering. 41(1): 24-30. 

Khalili-Tehrani, P. and Taciroglu, E. 2008. M7.8 Southern San Andreas Fault Earthquake 

Scenario: Non-ductile Reinforced Concrete Building Stock. University of 

California, Los Angeles. 

http://www.hylandconsultants.com/50/
http://www.atlassian.com/software/confluence


232 

 

Kinetics Noise Control. (2008). Seismic Design Manual. Dublin, Ohio, USA: Kinetics 

Noise Control, Inc. 

Kohoutek, R. (2000). Non-destructive and Ultimate Testing of Semi-rigid Connections. 

Fourth International Workshop on Connections in Steel Structures.University of 

Wollongong, Australia. 454-463. 

Krawinkler, H. and Seneviranta, G. (1998). Pros and Cons of a Pushover Analysis of 

Seismic Performance Evaluation. Engineering Structures. 20: 452-464. 

Lee, H. J., Kuchma, D. and Aschheim, M. A. (2007). Strength-based Design of Flexible 

Diaphragms in Low-rise Structures Subjected to Earthquake Loading. Engineering 

Structures. 29(7): 1277-1295. 

Lee, S. S. and Moon, T. S. (2002). Moment–rotation Model of Semi-rigid Connections 

with Angles. Engineering Structures. 24(2): 227-237. 

Leoni, B., Radford, T. and Schulman, M. (2011). Disaster Through a Different Lens: 

Behing Every Effect, there is a Cause. A Guide for Journalists Covering Disaster 

Risk Reduction. United Nations.  

Lew, M. and Naeim, F. (1996). Use Of Design Spectrum-compatible Time Histories in 

Analysis of Structures. Eleventh World Conference on Earthquake Engineering 

(11WCEE). Elsevier Sciece Ltd. 

Liel, A. B. (2008). Assessing the Collapse Risk of California’s Existing Reinforced 

Concrete Frame Structures: Metrics for Seismic Safety Decisions. Report No.166. 

Stanford University: The John A. Blume Earthquake Engineering Center. 

Longo, A., Montuori, R. and Piluso, V. (2012). Theory of Plastic Mechanism Control of 

Dissipative Truss Moment Frames. Engineering Structures. 37: 63-75. 

Lubell, A. S. (1997). Performance of Unstiffened Steel Plate Shear Walls Under Cyclic 

Quasi-static Loading. University of British Columbia: Master Thesis. 

Luco, N. (2007). Ground Motions for Design. Thailand Seismic Hazard Workshop. 18 

January. Thailand. 

McFarlane, A. 2009. The Ford Rotunda, Available: 

http://michpics.wordpress.com/2009/12/12/the-ford-rotunda/ 

Merritt, F. S. and Ricketts, J. T. (2001). Building Design and Construction Handbook. 6
th

 

ed.  USA: McGraw-Hill. 

Nakashima, M. (1995). Strain-hardening Behavior of Shear Panels Made of Low-yield 

Steel. I: Test. Journal of Structural Engineering. 121(12): 1742-1749. 

Napier, J. and Powell, G. H. (2013). Static Pushover Methods - Explanation, Comparison 

and Implementation. Computers and Structures, Inc. Rertieved October 15, 2013, 

http://michpics.wordpress.com/2009/12/12/the-ford-rotunda/


233 

 

from https://wiki.csiamerica.com/display/perform/Static+pushover+methods+-

+explanation,+comparison+and+implementation 

Nayfeh, A. H. and Pai, P. F. Linear and Nonlinear Structural Mechanics. Germany: Wiley-

VCH. 2008 

Newnan, D. G. and Banks, J. H. Civil Engineering: License Review. 15
th

 ed. Chicago: 

Kaplan AEC Education. 2004. 

Nikolaou, S. (2008). Site-Specific Seismic Studies for Optimal Structural Design. 

Structure Magazine. February. 15-19 

Nooshin, H. (2008). Introduction of Space Structure. Bahonar University of Kerman. 2008.  

Nooshin, H. (2002). What is Space Frame? Official website of Surrey University. 

Retrieved from 

http://portal.surrey.ac.uk/portal/page?_pageid=822,568927&_dad=portal&_schema

=PORTAL  

Nukala, P. K. V. and White, D. W. (2004). A Mixed Finite Element for Three-dimensional 

Nonlinear Analysis of Steel Frames. Computer Methods in Applied Mechanics and 

Engineering. 193(23): 2507-2545. 

OECD. (2005). Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data. 

3
rd

 ed. France: Organisation for Economic Co-operation and Development and 

Statistical Office of the European Communities. 

Oğuz, S. (2005). Evaluation of Pushover Analysis Procedures for Frame Structures. 

Middle East Technical University: Doctor of Philosophy Thesis. 

Okubo, S., Hiyama Y., Ishikawa, K., Wendel, W. and Fischer, L. (2001). Load Capacity 

and Plastic Deformable Ability of Aluminum Alloy Double Layer Latticed Wall 

Subjected to Plane Load. International Symposium on Theory, Design and 

Realization of Shell and Spatial Structures. Nagoya, Japan. 

Pars Civil Technology.  2010. Brace Rupture, Pars Civil Technology. Available: 

http://fanomran.com/education/brace_rupture.jpg 

Pinto, P. E. (2000). Design for Low/Moderate Seismic Risk. Proceedings of the Twelfth 

World Conference on Earthquake Engineering (12 WCEE). New Zealand. 

Quach, W. M. and Qiu, P. (2014). Strength and Ductility of Corner Materials in Cold-

formed Stainless Steel Sections. Thin-Walled Structures. 

Reitherman, R. Earthquakes and Engineers: An International History. Reston, Virginia: 

American Society of Civil Engineers. 2012. 



234 

 

Rezai, M., Ventura, C. E. and Prion, H. G. (2000). Numerical Investigation of Thin 

Unstiffened Steel Plate Shear Walls. Twelfth World Conference on Earthquake 

Engineering (12WCEE).  

Rigobello, R., Breves Coda, H. and Munaiar Neto, J. (2013). Inelastic Analysis of Steel 

Frames with a Solid-like Finite Element. Journal of Constructional Steel Research. 

86: 140-152. 

Sabelli, R. 2006. Seismic Braced Frames: Design Concepts and Connections. Chicago, 

Illinois. 

Sabouri-Ghomi, S. and Roberts, T. M. (1992). Nonlinear Dynamic Analysis of Steel Plate 

Shear Walls Including Shear and Bending Deformations. Engineering Structures. 

14(5): 309-317. 

SEAOC (1995). Steel Moment Frame Connections. Structural Engineers Association of 

California. 

Seiculescu, V. (2006). Advance Design – Bracing Members Design According to Eurocode 

3. Romania: GRAITEC. 

Sev, A. and Özgen, A. (2009). Space Efficiency in High-rise Office Buildings. METU JFA. 

26(2): 69-89. 

Shishkin, J. J., Driver, R. G. and Grondin, G. Y. (2009). Analysis of Steel Plate Shear 

Walls Using the Modified Strip Model. Journal of Structural Engineering. 135(11): 

1357-1366. 

Sutjiadi, H. Y. and Charleson, A. W. (2012). Structural‐architectural Integration of 

Double‐layer Space Structures in Tall Buildings. Journal of Architectural 

Engineering. 19(4): 219-228. 

Thai, H.T. and Kim, S. E. (2011). Nonlinear Inelastic Time-history Analysis of Truss 

Structures. Journal of Constructional Steel Research. 67(12): 1966-1972. 

The European Steel Design Education Programme. (1993). The Cyclic Behaviour of Steel 

Elements and Connections. ESDEP Lecture Note. 

Thorburn, L. J., Kulak, G. L. and Montgomery, C. J. (1983). Analysis of Steel Plate Shear 

Walls. Structural Engineering Report. University of Alberta. 

Timler, P. (1999). Economical Design of Steel Plate Shear Walls from a Consulting 

Engineer's Perspective. Proceedings of the 1999 North American Steel 

Construction Conference (NASCC). American Institute of Steel Construction. 

Topkaya, C. and Atasoy, M. (2009). Lateral Stiffness of Steel Plate Shear Wall Systems. 

Thin-Walled Structures. 47(8): 827-835. 



235 

 

Usami, T. and Itoh, Y. Stability and Ductility of Steel Structures. UK: Elsevier Science 

Ltd. 1998. 

Varghese, P. C. Advanced Reinforced Concrete Design. 2
nd

 ed. New Delhi, India: PHI 

Learning Pvt. Ltd. 2006. 

Wang, F., Wang, X., Yang, F. and Li, H. B. (2010). The Influence of Joint's Stiffness on 

Stability of Reticulated Shell. Eleventh International Symposium on Structural 

Engineering. Guangzhou, China.  

Williams, A. Seismic and Wind Forces: Structural Design Examples. Illinois, USA: 

International Code Council. 2003. 

Williams, A. Civil and Structural Engineering: Seismic Design of Buildings and Bridges. 

5
th

 ed. Illinois, USA: Kaplan AEC Education. 2005. 

Wilson, E. L. Three Dimensional Static and Dynamic Analysis of Structures: A Physical 

Approach with Emphasis on Earthquake Engineering. 2
nd

 ed. USA: Computers and 

Structures Inc. 1998. 

 Xuzhou Huahai Steel Structure Co., Ltd. 2012. Available: 

http://www.steelstructure.cn/pro.asp?id=12 

 

 

 

http://www.steelstructure.cn/pro.asp?id=12

	scan0001
	scan0002
	scan0003
	BehzadBayat-PA093074-Full Access
	scan0001
	BehzadBayat-PA093074-Full Access
	05-v-ABSTRACT-Nov (1)
	06-vi-ABSTRAK-Nov (1)
	BehzadBayatPA093074-Full Access
	Cover Page Thesis EDIT (1)
	borang
	Bahagian
	supervisor declaration-Rev. 2
	MUKADEPAN new-Rev. 2-Title
	02-ii-declaration- Rev. 2
	03-iii-DEDIKASI -Rev. 2
	04-iv-PENGHARGAAN-Rev. 2-AKN
	05-v-ABSTRACT-Nov (1)
	06-vi-ABSTRAK-Nov (1)
	07-10-KANDUNGAN-Rev. 2-TOC
	11-12-SENARAI JADUAL-Rev. 2-LOT
	13-22-SENARAI RAJAH-Rev. 2-LOF
	23-25-List of Abbreviations
	26-27-LIST OF SYMBOLS -Rev. 2
	28-List of APPENDIX-Rev. 2
	CHAPTER 1-Rev. 2
	CHAPTER 2-Rev. 2
	CHAPTER 3-Rev. 2
	CHAPTER 4-Rev. 3
	CHAPTER 5-Rev. 3
	CHAPTER 6-Rev. 2
	Reference-Rev. 2
	APPENDIX






