THE EFFECT OF ISOLATED DAMPING LAYER SYSTEM ON EARTH DAM UNDER EARTHQUAKE LOADING

BEHROUZ GORDAN

A thesis submitted in partial fulfilment of the requirements for the award of degree of Doctor Philosophy (Civil Engineering)

Faculty of Civil Engineering

Universiti Teknologi Malaysia

AUGUST 2014

DEDICATION

To my respectful parents and beloved wife Tayebeh Alipour as well as my son Arian Gordan

ACKNOWLEDGMENTS

In the name of God, the Most Merciful, the Most Gracious. I praise to God, to create me able to undertake this research. Preparing this thesis, I was in contact with many people, researchers, Academicians and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my supervisor, Professor Dr. Azlan Bin Adnan for encouragement, guidance, critics and friendship so without their continued support and interest, this thesis would not have been the same as presented here.

In fact, my sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members. Special thanks to my wife for her loves, sacrifices, patience and continues the struggle towards the accomplishment of this study.

ABSTRACT

The structural behavior during an earthquake is one of the major concerns for earth dam of a medium size about 30 meter height and 90 meter width. The body crack is created by relative vertical displacement at both edges of the crest. The failure is recorded with the crack development in dam body by interaction between dam and reservoir. To reinforce dams, some methods were used with respect to literature such as perpendicular drain, prefabricated vertical drain, geotextile layers, pile group, micro pile injection and cutoff wall system. This research included three objectives; (i) Identifying damage location in earth dam with respect to case study (Bakun dam), (ii) Studying the effect of Isolated Damping Layer (IDL) system in blanket layer using physical modeling on top of the vibrator table, and (iii) Evaluating slope stability based on seismic motion. In terms of methodology, Finite-Element method using ANSYS13program and equilibrium method using Geostudio 2007 (Slope/W) were used. Series of soil mechanic test to design IDL and small-scale model (1/100) using IDL were carried out. Displacements, shear stresses and shear strains of dam were evaluated using nonlinear analysis under strong earthquake intensity of 0.6g. The major effect on the displacement of dam was due to different foundation properties (soft, medium and stiff soil) in comparison to different core configuration in terms of geometry. The best elastic modulus ratio between unsaturated part of dam and foundation, β was 0.66 for saturated part and foundation, λ was 0.13 in order to reduce response of the earth dam. Time-history and response spectra analysis of Bakun dam showed the minimum relative vertical displacement between both edges of crest by peak ground acceleration less than 0.24g. For all site classes, the displacement ratio (Δ =2) for return earthquake period from 2500 to 500 years was recorded. Based on modal analysis, the rigid behavior of foundation was achieved by modulus ratio more than three. Effect of modulus ratio on dominant frequency was greater than depth ratio. The minimum relative vertical displacement was attained when modulus elasticity ratio between shell and core clay was less than five. The optimal behavior was obtained by using clay in blanket layer when a modulus elasticity ratio was equal to 2.50, between this layer and weak foundation. The blanket layer was designed based on mixed product of laterite soil with shredded tire and micro silica. The main role of silica was to control seepage. The qualified combination by comparison of thirteen samples was distinguished. Subsequently, nine physical models were vibrated using dominant frequency. Most of damage occurred at upstream of one third near to the crest. The best absorption of energy without any destruction was observed when the layer thickness of reinforced blanket was one fourth of dam height. The safety factor was increased using blanket reinforced layer. Finally, IDL system showed the best performance in order to reinforce dam under resonance seismic motion.

ABSTRAK

Pelakuan struktur semasa gempa bumi adalah salah satu daripada kebimbangan utama bagi empangan bumi saiz sederhana untuk ketinggian kira-kira 30 meter dan 90 meter lebar. Keretakan pada empangan tanah disebabkan oleh anjakan tegak relatif pada penjuru struktur tersebut. Kegagalan struktur direkodkan bersama dengan retak dalam badan empangan oleh interaksi antara empangan dan takungan. Untuk mengukuhkan empangan, beberapa kaedah telah digunakan oleh penyelidik yang lepas seperti longkang serenjang, pasang siap longkang menegak, lapisan geotekstil, kumpulan cerucuk, suntikan cerucuk mikro dan sistem dinding potong. Terdapat tiga objektif kajian; (i) mengenalpasti lokasi kerosakan dalam empangan bumi seperti dalam kajian kes (Empangan Bakun), (ii) mengkaji kesan Isolated Damping Layer IDL sistem dalam lapisan selimut menggunakan model fizikal di atas meja penggegar dan (iii) menilai kestabilan cerun berdasarkan gerakan seismik. Untuk menjalankan kajian ini, kaedah Unsur-Terhingga oleh program ANSYS13 dan kaedah keseimbangan dalam Geostudio 2007 (Slope/W) telah digunakan. Beberapa siri ujian mekanik tanah dibuat untuk mereka bentuk (IDL) dan skala kecil model (1/100) menggunakan IDL juga dibuat. Anjakan, tegasan ricih dan tekanan ricih empangan telah dinilai daripada analisis tidak linear di bawah keamatan gempa bumi 0.6g. Kesan yang besar ke atas anjakan empangan adalah kerana sifat-sifat asas yang berbeza (tanah lembut, sederhana dan keras) berbanding dengan konfigurasi teras yang berbeza dari segi geometri. Nisbah modulus elastik antara bahagian tepu empangan dan asas, β adalah 0.66 dan antara bahagian tepu dan asas, λ adalah 0.13 untuk mengurangkan tindak balas empangan bumi. Masa sejarah dan analisis spektrum gerak balas empangan Bakun menunjukkan anjakan tegak relatif minimum antara kedua-dua tepi puncak oleh pecutan bumi puncak kurang daripada 0.24g. Selain itu, nisbah anjakan(Δ =2) untuk kembali pada tempoh gempa bumi dari 2500 ke arah 500 tahun untuk semua kelas tapak direkodkan. Sehubungan dengan analisis modal, tingkah laku tegar asas dicapai oleh nisbah modulus lebih daripada tiga. Anjakan minimum menegak relatif dicapai apabila nisbah modulus keanjalan antara cengkerang dan teras tanah liat adalah kurang daripada lima. Tingkah laku yang optimum ditunjukkan dengan menggunakan tanah liat pada lapisan selimut apabila nisbah modulus keanjalan adalah sama dengan 2.50, antara lapisan ini dan asas tapak yang lemah. Lapisan selimut telah dibuat berdasarkan campuran produk daripada tanah laterit bersama hirisan tayar dan mikro silika. Peranan utama silika adalah untuk mengawal resapan. Kombinasi terbaik diperolehi daripada perbandingan lima belas sampel. Selepas itu, sembilan model fizikal telah digetarkan. Kebanyakan kerosakan berlaku di bahagian satu pertiga puncak. Penyerapan terbaik oleh tenaga tanpa apa-apa kemusnahan diperhatikan apabila ketebalan lapisan penutup bertetulang adalah satu perempat daripada ketinggian empangan. Selain itu, faktor keselamatan telah meningkat dengan lapisan selimut bertetulang. Akhirnya, system IDL menunjukkan kelakunan terbaik bagi memperkuatkan empangan di bawah gegaran sismik resonan.

LIST OF CONTENTS

PAGE CHAPTER TITLE DECLARATION **DEDICATION** iii ACKNOWLEDGEMENTS iv ABSTRACT ABSTRAK LIST OF CONTENTS vii LIST OF TABLES xiv LIST OF FIGURES xvii LIST OF SYMBOLS xxxiv

LIST OF STMDOLS	ΑΛΛΙΫ
LIST OF APPENDICES	xxxvi

1 **INTRODUCTION** 1 1.1 Introduction 1 Problem Study 1.2 2 Aim of Research 3 1.3 Objectives of Research 1.4 3 Scope of Research 4 1.5 Significance of the Research 4 1.6 1.7 Organization of thesis 5 1.8 Summery 6

2	LITERATURE REVIEW		
	2.1	Seismic behavior of earth dam	7

ii

v

vi

2.2	Dams subjected to earthquakes		7	
2.3	Models subjected to vibration failure tests			8
2.4	Damage patterns			9
2.5	Properties of the rock fill body		10	
2.6	Embankment deformation under dynamic loads		11	
2.7	Earthqua	Earthquake response of dams		13
	2.7.1	Mathema	tical model	14
	2.7.2	Natural v	ribration properties	15
	2.7.3	Effect of	modulus deformation on the	
		seismic r	esponse	16
	2.7.4	Effect of	the Elastic-Plastic behavior	18
	2.7.5	Effect of	the Viscos-elastic behavior	19
	2.7.6	Effect of	dam-reservoir interaction	22
	2.7.7	Effect of	dam-foundation interaction	24
	2.7.8	Effect of	the three-dimensional treatment of dam	25
2.8	Stability	criteria		25
	2.8.1	Analysis	methods	25
		2.8.1.1	Static and psedue-static methods	26
		2.8.1.2	Dynamic methods	28
2.9	Commen	ntary of dy	namic analysis with respect to systematic	
	process			29
2.10	Assessm	ent of dam	n performance under earthquake	30
	2.10.1	Plane st	ress & Plan strain method	31
	2.10.2	Data mo	onitoring	36
	2.10.3	Numeri	cal analysis and case studies	38
	2.10.4	Earth da	im reinforcement	49
	2.10.5	Fundam	nental frequency	54
	2.10.6	Shaking	table and centrifuge test	57
	2.10.7	Summa	ry	61

RESEARCH METHODOLOGY		63		
3.1	Introduc	ction		63
3.2	Numeri	Numerical analysis		64
	3.2.1	Modal a	nalysis and dominant frequency	65
		3.2.1.1	Modeling process	66

		3.2.1.2	Introduce program	66
		3.2.1.3	Elements	67
		3.2.1.4	Meshing process	67
		3.2.1.5	Material Properties	67
3.3	Limit E	quilibrium M	fethod (LEM-slices)	74
	3.3.1	A Suita	ble selection of short embankment with	
		respect	to safety factor	76
		3.3.1.1	Program Introducing	76
		3.3.1.2	Boundary conditions	77
		3.3.1.3	Parameters dimension and scope	
			of study	77
		3.3.1.4	Material Properties	78
		3.3.1.5	Bishop Method	78
	3.3.2	A suitab	le selection of dynamic safety factor for	
		short en	ıbankment	80
3.4	Case stu	udy		81
	3.4.1	Backgro	und of the peak ground acceleration	82
	3.4.2	Response	e spectrum analysis	83
3.5	Time –	History analy	ysis	84
	3.5.1	Element		85
	3.5.2	Boundar	y conditions	85
	3.5.3	Configur	ation and material properties of dam	85
	3.5.4	Meshing		86
	3.5.5	Earthqua	ke record	86
	3.5.6	Flow cha	art of data collection for dynamic analysis	88
	3.5.7	Rayleigh	Damping Coefficients	88
3.6	Experin	nental tests		90
	3.6.1	Introduc	tion	90
	3.6.2	Laborato	bry tests	90
	3.6.3	British S	tandard	91
	3.6.4	Small sca	le model on vibrator table	91
		3.6.4.1	Vibrator table	91
		3.6.4.2	Displacement transducer	92
		3.6.4.3	Data logger	93

		3 6 4 4 Sinusoidal vibrate loading	94
		3.6.4.5 Scaling laws) - 05
		2.6.4.6 Dynamia problems	95
		3.6.4.7 Physical small modeling on vibrator table	97
37	Input d	ata for Time _history analysis	102
5.7	3 7 1	Relationship between material property of foundation	102
	5.7.1	and relative displacement in the earth dam	102
	3.7.2	Effect of material property in the shallow foundation of earth dam on dynamic settlement	104
	3.7.3	Effect of material property in foundation during	
		earthquake on the Embankment	106
	3.7.4	Relationship between material properties of embankmen	ıt
		saturated on soft soil and dynamic settlement during	
		earthquake	107
	3.7.5	Settlement during an earthquake in the unsaturated crest	
		of embankment on soft soil	109
	3.7.6	Dynamic behaviour of homogenize earth dam using	
		different characteristics in the cut off wall method	112
	3.7.7	Dynamic analysis of homogenize earthen dam using Blanket layer technique	115
	3.7.8	Effect of material properties in CFRD Tailing-Embankment Bridge during a strong Earthquake	118
3.8	Soil prop	perties	121
3.9	Computi	ing of the secant modulus (E50%) for soil samples	122
3.10	Compari	ision between present methodology and literature review	122
3.11	Verify p	hysical modeling	123
3.12	Summery		124
ANAI	.YTICAL A	ND EXPERIMENTAL TESTS	125
4.1	Introduc	ction	125
4.2	Numeri	cal results	125
	4.2.1	Dominant frequency result	126

	4.2.1.1	Modal Analysis of Short Embankment with	
		effect of Depth and Modulus Elasticity of	
		Foundation	126
	4.2.1.2	Dominant Frequency Tailing Embankment	
		Interface to Bridge By 3D Finite Element	
		Method	130
	4.2.1.3	Modal analysis of the earth dam in terms of	
		parametric configuration and material	
		properties	135
	4.2.1.4	Modal analysis of the embankment with	
		parametric configuration and material	
		properties	143
4.2.2	Slope sta	ability	150
	4.2.2.1	A Suitable selection of short embankment w	ith
		respect to safety factor	150
	4.2.2.2	A suitable selection of dynamic safety facto	r
		for short embankment	155
Experi	mental test		160
4.3.1	Laborato	ry test with respect to soil Properties	160
	4.3.1.1	Classification tests BS 1377-1 1990;	
		Determinati of the liquid limit test	
		BS 1377-2 1990 and Determination of	
		the plastic limit and plasticity	
		index BS 1377-2 1990	160
	4.3.1.2	Determination of dry density/moisture	
		content relationship test BS 1377-4 1990	163
	4.3.1.3	Quick shear strength test without measuremen	t
		of pore pressure	164
	4.3.1.4	Consolidation test	179
	4.3.1.5	Permeability test	181
	4.3.1.6	Direct shear test	181
	4.3.1.7	Estimation of damping ratio	183
Small	scale mode	el	185
4.4.1	Slop st	tability for physical modeling	185

4.3

4.4

4.4.2	Free vibration Analysis for small-scale modeling 1		189	
4.4.3	Small sca	Small scale physical models		
	4.4.3.1 First model		191	
	4.4.3.2	Second model	195	
	4.4.3.3	Third model	198	
	4.4.3.4	Fourth model	202	
	4.4.3.5	Fifth model	204	
	4.4.3.6	Sixth model	206	
	4.4.3.7	Seventh model	210	
	4.4.3.8	Eighth model	213	
	4.4.3.9	Ninth model	216	

5	TIME	-HISTO	RY ANALYSIS WITH CASE STUDY (BAKUN DAM)	221
	5.1	Introd	uction	221
	5.2	Case s	study (Bakun Dam)	221
		5.2.1	Response spectrum analysis of Bakun dam with concrete	
			face rock-fill dam	222
		5.2.2	A seismic Assessment of Concrete Face Rock-Fill Dam	
			(CFRD); Bakun Dam	236
		5.2.3	Safety factor for concrete face rock-fill dam (Bakun dam)	242
	5.3	Time-h	istory Analysis	243
		5.3.1	Relationship between material property of foundation and	
			relative displacement in the earth dam	243
		5.3.2	Effect of material property in the shallow foundation of	
			earth dam on dynamic settlement	245
		5.3.3	Effect of material property in foundation during	
			earthquake on the Embankment	247
		5.3.4	Relationship between material properties of embankment	
			saturated on soft soil and dynamic settlement during	
			earthquake	249
		5.3.5	Settlement during an earthquake in the unsaturated crest	
			of embankment on soft soil	252
		5.3.6	Dynamic behaviour of homogenize earth dam using	
			different characteristics in the cut off wall method	254

5.3.7	Dynamic analysis of homogenize earthen dam using		
	blanket layer technique	260	
5.3.8	Effect of material properties in CFRD		
	Tailing-Embankment Bridge during a strong earthquake	267	

6 CONCLUSION

6.1	Introduction	275
6.2	Conclusion of numerical results	275
6.3	Case study and parametric study	277
6.4	Slope stability	278
6.5	Experimental test to design isolated damping layer	279
6.6	Small-scale model on vibrator table	280
6.7	Recommendation	280

REFERENCES	281-287
Appendices A-C	288-315

275

LIST OF TABLES

TABLE N	D. TITLE	PAGE
2.1	Deformation moduli from static and dynamic conditions	12
2.2	Visco Elasto-plastic properties from Kisenyama dam	22
2.3	Comparison result between $\tau xy2D/\tau xy3D$ in the base of dam	32
3.1	Amplitude of model dimensions	68
3.2	Material Properties	69
3.3	Amplitude of model dimensions	70
3.4	Material Properties	70
3.5	Dimensions amplitude	71
3.6	Material Properties	72
3.7	An amplitude of the model dimensions	72
3.8	Material Properties	73
3.9	An amplitude of the model dimensions	77
3.10	Equations for Sinusoidal Motion, Displacement (D), Velocity (V),	
	Acceleration (A), and Frequency (F)	95
3.11	Model dimension	103
3.12	Material properties	103
3.13	Model dimension	104
3.14	Material properties	105
3.15	Material properties	106
3.16	Model dimension	107
3.17	Material properties	108
3.18	Model dimension	109
3.19	Material properties	110
3.20	Dimension parametric of models	113
3.21	Material Properties	113

3.22	Introduce of models	114
3.23	Parametric dimensions of model	115
3.24	Material properties	116
3.25	Introduce of Models	117
3.26	Models dimension	119
3.27	Material properties	119
3.28	Introduce of models	120
3.29	Concrete Slab Properties	120
3.30	Characteristics of the natural laterite soil	121
3.31	Characteristics of river sand	121
4.1	Dominant frequency distribution with different abutment angular	133
4.2	Factor of safety distribution at the end of construction; H=15m,	152
	$8=1800 \text{ Kg/} m^3$	
4.3	Factor of safety distribution at the end of construction;	152
	H=20m, 8=1800 Kg/ m^3	
4.4	Factor of safety distribution at the end of construction;	153
	H=25m, 8=1800 Kg/ m^3	
4.5	Factor of safety distribution at the end of construction; H=30m,	153
	$8=1800 \text{ Kg}/m^3$	
4.6	A seismic safety factor distribution in the end of construction,	155
	H=15m, 8=1800 Kg/ m^3	
4.7	A seismic safety factor distribution in the end of construction,	155
	H=20m, 8=1800 Kg/ m^3	
4.8	A seismic safety factor distribution in the end of construction,	156
	H=25m, 8=1800 Kg/ m^3	
4.9	A seismic safety factor distribution in the end of construction,	157
	H=30m, 8=1800 Kg/ m^3	
4.10	Sample definition	164
4.11	Distribution of yang modulus for samples	175
4.12	Distribution of cohesion and angle of internal friction in	182
	different samples	
4.13	Safety Factor for horizontal direction	186
4.14	Safety Factor for Vertical direction	187
4.15	Safety Factor for Horizontal direction	188
4.16	Safety Factor for Vertical direction	189

Frequency distribution in different vibration mode for	190
small-scale model	
Distribution of vertical displacement at the crest in small-scale	219
model (1-6)	
Distribution of vertical displacement at the crest in small-scale	219
model (7-9)	
Site classification	222
Site Coefficient, Fa	223
Site Coefficient, Fv	224
Variable items of the acceleration spectrum for	225
500 years and 2500 years return earthquake	
Material properties [Chin, 2004]	228
Frequency (Hz) in twenty mode shape for Bakun Dam	228
Maximum displacements (meter) in site classes (A to E)	235
for 500 to 2500 years	
Material properties	242
Safety factor for horizontal direction	242
	Frequency distribution in different vibration mode for small-scale model Distribution of vertical displacement at the crest in small-scale model (1-6) Distribution of vertical displacement at the crest in small-scale model (7-9) Site classification Site Coefficient, <i>Fa</i> Site Coefficient, <i>Fv</i> Variable items of the acceleration spectrum for 500 years and 2500 years return earthquake Material properties [Chin, 2004] Frequency (Hz) in twenty mode shape for Bakun Dam Maximum displacements (meter) in site classes (A to E) for 500 to 2500 years Material properties Safety factor for horizontal direction

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1	Failure of isotropic model after test	8
2.2	Failure process of a center core model	9
2.3	Earthquake damage of rock-fill dams	10
2.4	Relation between dynamic cyclic loading and reduction	11
	of void ratio	
2.5	Variation of the dynamic modulus of deformation with the	12
	magnitude and frequency of dynamic stresses σ_d	
2.6	Distribute of dynamic modulus of deformation for	12
	Kisenyama dam	
2.7	Relation between static and dynamic modulus of deformation	13
2.8	The correlation between dam height and fundamental	15
	period of vibration	
2.9	Effect of gradient face (a) and stiffness of the sealing	16
	element (b) on the fundamental period of vibration	
2.10	Dynamic reaction of Vidra-Lotru dam	17
2.11	Dynamic reaction of Bolboci dam	18
2.12	Relationship between residual strain and cyclic loadings	19
2.13	Earthquake reaction of Kisenyama dam in the Viscos elastic	22
	range assumption	
2.14	Hydrodynamic pressure (P_H) and hydrostatic pressure (p)	23
	on rock fill dams impervious core	
2.15	Resonance curves for Kisenyama dam	23
2.16	Change of the fundamental frequency of vibration with	24

	the deformation	
2.17	Verification of stability of the rock-fill dams under	27
	earthquake loading	
2.18	Verity of the safety factor with the location of the	28
	sliding surface	
2.19	3D finite element mesh with 591 elements and 705 nodal points	32
2.20	2D finite element mesh for quarter and maximum section	32
	from Orovill dam	
2.21	3D condition from Villita dam	33
2.22	Lavillita dam: a) Maximum crosses section	33
	b) Plan view c) Geological profile	
2.23	Main points at the crest of the La Villita dam with geometry	34
2.24	Acceleration distribution at the crest of the La Villita dam	34
2.25	Parametric modeling of dams	35
2.26	Relationship between Fs and η with different gradient of slopes	35
2.27	Arrangement of sensors to record data on long valley dam	37
2.28	Arrangement of sensors to record data on dam at the crest	37
2.29	Distribution of vertical displacement during time for	38
	S20 (middle) and S28 (toward the tail-end) at crest	
2.30	Positions of node number along the centerline of the dam	39
2.31	Maximum acceleration along the vertical axis of the dam body	39
2.32	Dam deformation at the maximum excitation under Kocaeli	40
	record (Umax=0.30m at the crest)	
2.33	Velocity amplification in the dam axis	40
2.34	Influence of the core stiffness on the velocity response	41
	under Kocaeli record	
2.35	PGA=0.15g at the base	42
2.36	PGA=0.50g at the crest	42
2.37	Crest settlement as function of time for different	43
	core arrangements	
2.38	Settlement at the crest	43
2.39	Concrete slab dislocation Zpingpu dam during	44
	Wenchuan earthquake	

2.42	Regular mesh method with reservoir interaction	45
2.43	Vertical displacement at crest during loading	46
2.44	Safety factor during earthquake	46
2.45	Horizontal and vertical displacements during earthquake	47
2.46	Horizontal and vertical displacements contoures during	47
	earthquake in each sub step	
2.47	Typical buttress and dam cross section	48
2.48	Vertical drains on soft soil	50
2.49	Drain installation pattern	51
2.50	3D model of vertical drains	51
2.51	Mechanism of the pile with geotextile	52
2.52	Membrane effect observed over the pile	52
2.53	Membrane behavior of the geotextile	53
2.54	Idealized stress distribution on geotextile	53
2.55	Spectral ratio of Nanhua dam during the	55
	16 February 2000 earthquake	
2.56	The first natural frequency verse length-height ratio	56
2.57	The first natural frequency verse Width-height ratio	56
2.58	Cases on the shaking table test	57
2.59	Photographs after shaking for all cases	58
2.60	Excess pore water pressure distribution	59
2.61	Location of the pore water pressure sensor	59
2.62	Deformation shape of embankment-Subsoil system at	59
	different instants of time	
2.63	Primary centrifuge test	60
2.64	Embankment with reservoir on shaking table test	60
2.65	Central core dam model with relative density of dam body	61
	(a) 70%(b) 50% (c) 20% and (d) dam model with membrane	
	coverd face	
3.1	The framework of research methodology	64
3.2	Mass spring system	65
3.3	Mesh with regular method	67
3.4	Parametric dimensional of models	68
3.5	3D shape of model	70
3.6	Free mesh of model	70

3.7	Configuration parameters of models in 2D condition	71
3.8	Mesh model, H =50m , θ =60°	72
3.9	A parametric dimensional of models	73
3.10	The regular mesh of the model with 30 m height and α =40°	74
3.11	The idea of slice method and definition of safety factor	75
	according to equations 1-3	
3.12	Flow chart of slope stability	76
3.13	A parametric dimensional of models	77
3.14	Safety Factor in the end of construction for isotropic	78
	Embankment (H=30m, α =20°, C=50 <i>Kp</i> , φ =40°,	
	$8 = 1900$ Kg/ m^3 , SF=2.389)	
3.15	Large scale of all slices in slip surface	79
3.16	Safety map	79
3.17	Distribution of Shear Mobilized in slice, same condition	80
3.18	Superposition from shear strength with Frictional and	80
	Cohesive in critical surface slip; A) Shear strength, B) Frictional,	
	C) Cohesion	
3.19	A) Tappar dam displayed longitudinal cracks at its upstream	81
	toe during the Bhuj Earthquake. B) Lateral spreading zone at the	
	downstream toe of the Kaswati dam	
3.20	Situation of Bakun dam (CRFD) in the east of Malaysia	81
3.21	Dam perspective before reservoir	82
3.22	PGA map, 500 years	82
3.23	PGA map, 2500 years	83
3.24	Chart process	84
3.25	Regular mesh for Bakun dam	86
3.26	Nagan earthquake, displacement on the vertical axis (meter)	86
	and time on the horizontal axis (seconds)	
3.27	Azna earthquake, displacement on the vertical axis (meter)	87
	and time on the horizontal axis (seconds)	
3.28	Palm Springs earthquake, displacement on the vertical	87
	axis (meter) and time on the horizontal axis (seconds)	
3.29	Flow Chart processing of dynamic analysis using	88
	Time –history method	
3.30	Variation of damping ratio with natural frequency of a system	90

3.31	Vibrator Table	92
3.32	Displacement transducer, CDP-100	93
3.33	Dimension of displacement transducer, CDP-100	93
3.34	Data logger, UCAM-70A	94
3.35	20 Hz Sinusoidal motion	95
3.36	First physical small scale modeling	98
3.37	Second physical small-scale modeling	98
3.38	Third physical small-scale modeling	99
3.39	Fourth physical small-scale modeling	99
3.40	Fifth physical small-scale modeling	100
3.41	Sixth physical small-scale modeling	100
3.42	Seventh physical small-scale modeling	101
3.43	Eighth physical small-scale modeling	101
3.44	Ninth physical small-scale modeling	102
3.45	Dam section with parameters for 2D analysis	103
3.46	Regular mesh with five main points	104
3.47	This figure illustrated a dam model for plane strain	105
	analysis (2D) with parameters and main points	
3.48	Mesh model with five main points	107
3.49	A dimension of models according to Table 3.16 for	108
	plane strain analysis (2D)	
3.50	Main points of model	109
3.51	Regular mesh of model	109
3.52	Model dimension according to Table 4.24 for	110
	plane strain (2D) analysis	
3.53	This figure main point (1-5) to exist data analysis	111
3.54	Model mesh with regular method	111
3.55	Parametric model	112
3.56	Parametric reinforcement models	112
3.57	Initial mesh	114
3.58	Reinforcement mesh	114
3.59	Main points for initial model	114
3.60	Main points for reinforcement models	114
3.61	Parametric initial model	116
3.62	Parametric blanket layer model	116

3.63	Initial model with regular mesh	117
3.64	Reinforcement model with regular mesh	117
3.65	Key points of the models	118
3.66	Parametric Dimension of model	118
3.67	Mesh of the initial model with regular method	120
3.68	Key points of models	120
3.69	Definition of secant modulus	122
3.70	Sinusoidal motion calculator	123
3.71	Factor of safety for PGA=0.4 g in third small scale model	124
4.1	Flowchart of results	125
4.2	Distribution of frequency (vertical axis) and Mode shape	126
	(x= 1-5 (Horizontal axis)), n=0.5, k=0.25	
4.3	Mode shape 1, n=0.50, K=0.25, Frequency=0.144186 Hz	127
4.4	Mode shape 2, n=0.50, K=0.25, Frequency=0.222663 Hz	127
4.5	Mode shape 3, n=0.50, K=0.25, Frequency=0.257265 Hz	127
4.6	Mode shape 4, n=0.50, K=0.25, Frequency=0.319943 Hz	127
4.7	Amplitude of dominant frequency with a variant of modulus	128
	ratio (k=0.25-1.00) and depth ratio of foundation for short	
	embankment with h=30 meter so horizontal axis - deep	
	ratio (0.1-1.00) and vertical axis - dominate the frequency (Hz)	
4.8	Horizontal displacement (meter) with different depth ratio	129
	and modulus ratio	
4.9	Vertical displacement (meter) with different depth ratio and	129
	modulus ratio	
4.10	Relative vertical displacement (meter) for slopes,	130
	n=0.50 and k=0.25	
4.11	DF curves for different modulus elasticity, relative density	131
	is 1700 Kg/m ³	
4.12	DF curves for different modulus elasticity, relative density	131
	is 1800 Kg/m ³	
4.13	DF curves for different modulus elasticity, relative density	132
	is 1900 Kg/m ³	
4.14	Abutment angular	133
4.15	Relationship between angular abutment and (DF)	134
4.16	DF for mode shape 1-5. H=20m, relative density	134

	is 1900 Kg/ m^3	
4.17	Total displacement, H=25m,	134
	$8=1900 \text{ Kg}/m^3$, E=0. 50e6 Kg/ m^2 (Mode1)	
4.18	Displacement (x), H=25m,	134
	$8=1900 \text{ Kg}/m^3$, E=0. 50Kg/ m^2 (Mode1)	
4.19	Displacement (Y), H=25m,	135
	$8=1900 \text{ Kg/}m^3$, E=0.50e6 Kg/ m^2 (Mode1)	
4.20	Displacement (Z), H=25m,	135
	$8=1900 \text{ Kg/}m^3$, E=0.50e Kg/ m^2 (Mode1)	
4.21	Dominate frequency curve; Core clay gradient=45 degree,	136
	K=1-10	
4.22	Dominate frequency curve; Core clay gradient=60 degree,	136
	K=1-10	
4.23	Dominate frequency curve; Core clay gradient=90 degree,	137
	K=1-10	
4.24	Dominate frequency curves with different core clay gradient	137
	and modulus ratio	
4.25	Frequency curves in vibration modes 1-5. The Horizontal	138
	and vertical axis have introduced modulus ratio (K), and	
	dominant frequency(Hz) respectively	
4.26	Mode shape 1, (f=0.098103Hz), θ = 45, k =1	139
4.27	Mode shape 1, (f=0.098103Hz), $\theta = 60$, k = 1	139
4.28	Horizontal displacement in vibration	139
	mode 1(f=0.098103Hz), θ =45, K=1	
4.29	Vertical displacement in vibration mode 1	139
	(f=0.098103Hz), θ =45, K=1	
4.30	Horizontal displacement, mode vibration 1	140
4.31	Minimum vertical displacement, mode vibration 1	140
4.32	Maximum vertical displacement, mode vibration 1	140
4.33	Mode shape 1, θ =60, K=5	141
4.34	Mode shape 1, θ =60, K=10	141
4.35	Mode shape 1 for model with $\theta=90^{\circ}$, k=1	142
4.36	Mode shape 5 for model with θ =90°, k=1	142
4.37	H-displacement, mode 1	142
4.38	H-displacement, mode 1	142

4.39	H-displacement, mode 1	142
4.40	V-displacement, mode 1	142
4.41	V-displacement, mode 1	143
4.42	V-displacement, mode 1	143
4.43	Dominant frequency of the first mode for H=30m in models	144
	with different slope	
4.44	Dominant frequency of the first mode for H=40m in models	144
	with different slope	
4.45	Dominant frequency of the first mode for H=50m in models	144
	with different slope	
4.46	Dominant frequency of the first mode for H=60m in models	145
	with different slope	
4.47	Dominant frequency of the first mode for H=70m in models	145
	with different slope	
4.48	Dominant frequency of the first mode for H=80m in models	145
	with different slope	
4.49	Dominant frequency of the first mode for H=90m in models	146
	with different slope	
4.50	Dominant frequency (Model 5) of the first mode for different	146
	height of embankment (30-90 m) and different slope	
4.51	Dominate frequency of the first mode for different height	147
	of embankment (30-90 m) and different slope in model 6	
4.52	Comparison of the dominant frequency between models 5-6	147
4.53	Mode shape 1 (H=30, α =40°)	148
4.54	Mode shape 2 (H=30, α =40°)	148
4.55	Mode shape 3 (H=30, α =40°)	148
4.56	Mode shape 4 (H=30, α =40°)	148
4.57	Mode shape 5 (H=30, α =40°)	149
4.58	Horizontal displacement contour-Mode 1, (H=30, α =40°)	149
4.59	Vertical displacement contour- Mode1, (H=30, α =40°)	149
4.60	Factor of Safety distribution, H=15 m; α =20°, Black	151
	rectangular showed the base value to compute another	
	condition of density	
4.61	Safety Factor distribution, H=15m, C =20 KP,	151

	$8=1800 \text{ Kg/} m^3$; $\alpha = 15, 20, 30 \text{ and } 35$	
4.62	Factor of Safety distribution; C =50 KP; 8=1800 Kg/ m^3	154
4.63	Acceptable area of Safety Factor for isotropic embankment	154
4.64	Dynamical safety factor, H=15m, C=20KP	158
4.65	Dynamical safety factor, H=15m, C=50KP	158
4.66	Dynamical safety factor, H=30m, C=20KP	159
4.67	Dynamical safety factor, H=30m, C=50KP	159
4.68	Dynamical safety factor for vertical direction	160
4.69	Laterite gradation	161
4.70	TDA gradation	162
4.71	Micro silica gradation	162
4.72	Distribution of particle density for samples	163
4.73	Compaction test	163
4.74	The undrained Shear Strength in the Triaxial Compression	165
	without measurement of Pore Pressure (Quick undrained) for	
	sample 1 (laterite soil)	
4.75	The undrained Shear Strength in the Triaxial Compression	165
	without measurement of Pore Pressure (Quick undrained) for	
	sample 2 (laterite soil with 3% TDA)	
4.76	The undrained Shear Strength in the Triaxial Compression	166
	without measurement of Pore Pressure (Quick undrained) for	
	sample 3 (laterite soil with 5% TDA)	
4.77	The undrained Shear Strength in the Triaxial Compression	166
	without measurement of Pore Pressure (Quick undrained) for	
	sample 4 (laterite soil with 7% TDA)	
4.78	The undrained Shear Strength in the Triaxial Compression	167
	without measurement of Pore Pressure (Quick undrained) for	
	sample 5 (laterite soil with 10% TDA)	
4.79	The undrained Shear Strength in the Triaxial Compression	168
	without measurement of Pore Pressure, sample 1 to 5	
4.80	The undrained Shear Strength in the Triaxial Compression	168
	without measurement of Pore Pressure (Quick undrained) for	
	sample 6 (laterite soil with 3% TDA and 2%Si)	
4.81	The undrained Shear Strength in the Triaxial Compression	169
	without measurement of Pore Pressure (Quick undrained) for	

	sample 7 (laterite soil with 3% TDA and 3%Si)	
4.82	The undrained Shear Strength in the Triaxial Compression	169
	without measurement of Pore Pressure, sample 2, 6 and 7	
4.83	The undrained Shear Strength in the Triaxial Compression	170
	without measurement of Pore Pressure (Quick undrained) for	
	sample 8 (laterite soil with 5% TDA and 2%Si)	
4.84	The undrained Shear Strength in the Triaxial Compression	170
	without measurement of Pore Pressure (Quick undrained) for	
	sample 9 (laterite soil with 5% TDA and 3%Si)	
4.85	The undrained Shear Strength in the Triaxial Compression	171
	without measurement of Pore Pressure, sample 3, 8 and 9	
4.86	The undrained Shear Strength in the Triaxial Compression	172
	without measurement of Pore Pressure (Quick undrained) for	
	sample 10 (laterite soil with 7% TDA and 3%Si)	
4.87	The undrained Shear Strength in the Triaxial Compression	172
	without measurement of Pore Pressure (Quick undrained) for	
	sample 11 (laterite soil with 7% TDA and 4%Si)	
4.88	The undrained Shear Strength in the Triaxial Compression	173
	without measurement of Pore Pressure, sample 4, 10 and 11	
4.89	The undrained Shear Strength in the Triaxial Compression	173
	without measurement of Pore Pressure (Quick undrained) for	
	sample 12 (laterite soil with10% TDA and 4%Si)	
4.90	The undrained Shear Strength in the Triaxial Compression	174
	without measurement of Pore Pressure (Quick undrained) for	
	sample 13 (laterite soil with10% TDA and 5%Si)	
4.91	The undrained Shear Strength in the Triaxial Compression	174
	without measurement of Pore Pressure, sample 5, 12 and 13	
4.92	Distribution of modulus elasticity in sample one to five	175
4.93	Distribution of modulus elasticity for sample 2, 6 and7	176
4.94	Distribution of modulus elasticity for sample 3, 8 and 9	176
4.95	Distribution of modulus elasticity for sample 4, 10 and 11	177
4.96	Distribution of modulus elasticity for sample 5, 12 and 1	177
4.97	Distribution of elasticity modulus	178
4.98	Distribution of area under the stress strain curve of	178
	unconfined test	

4.99	Coefficient of Volume Compressibility (m _v)	180
4.100	Coefficient of Consolidation (cv)	180
4.101	Distribution of permeability for different samples	181
4.102	Distribution of cohesion in different sample	182
4.103	Distribution of aggregate friction in different samples	183
4.104	Damping definition, hysteretic and equivalent	184
	bilinear stress–strain relationships for soil: a stress–strain	
	curves; b bilinear idealization	
4.105	Estimation damping for sample 1	184
4.106	Estimation damping for sample 10	184
4.107	The end of construction before tank	185
4.108	The end of construction before tank with reinforced layer	185
4.109	Distribution of safety factor in small scale modeling with	186
	different reinforced layers, horizontal direction	
4.110	Distribution of safety factor in small-scale modeling	187
	with different reinforced layers, vertical direction	
4.111	The end of construction after tank with reinforced layer	187
4.112	Distribution of safety factor in small-scale modeling with	188
	different reinforced layers, horizontal direction with reservoir	
4.113	Distribution of safety factor in small scale modeling with	189
	different reinforced layers, vertical direction with reservoir	
4.114	Frequency distribution in different mode vibration of	190
	small scale model	
4.115	Vertical displacement distribution at the middle of	192
	crest length, first model	
4.116	Relative displacement at the middle of crest length,	192
	first model	
4.117	First small scale mode on vibrator table	193
4.118	Upstream damage after reservoir with vibration at	193
	resonance condition	
4.119	Longitude crack at line-c	194
4.120	Transverse crack at downstream-toe	194
4.121	Vertical displacement distribution at the middle of	195
	crest length, second model	
4.122	Relative displacement at the middle of crest length,	196

	second model	
4.123	Construction of second small-scale model during	196
	the compaction	
4.125	Second model section with network index	197
4.126	Upstream damage during shaking, section view	197
4.127	Upstream damage, after drain more than half volume of tank	198
4.128	a)Transvers crack at the crest (Line-l), b) Zoom photo	198
4.129	Damage at upstream near to abutment in second small model	198
4.130	Vertical displacement distribution at the middle of crest	199
	length, third model	
4.131	Relative displacement at the middle of crest length,	200
	third model	
4.132	Third model view, upstream at right side	200
4.133	Third model view with reservoir	200
4.134	Damage at upstream, middle to left side, near to abutment	201
4.135	Damage at upstream, middle to right side, near to abutment	201
4.136	Damage at downstream, total length of the toe	201
4.137	Vertical displacement distribution at the middle of crest	202
	length, fourth model	
4.138	Relative displacement at the middle of crest length,	203
	fourth model	
4.139	Fourth model view, upstream at right side	203
4.140	Damage at upstream toe area	203
4.141	Damage at upstream toe area, the end of vibration	204
4.142	Vertical displacement distribution at the middle of crest	205
	length, fifth model	
4.143	Relative displacement at the middle length of crest fifth model	205
4.144	Fifth model view, upstream at right side	206
4.145	Toe damage at upstream, fifth model	206
4.146	Vertical displacement distribution at the middle of	207
	crest length, sixth model	
4.147	Relative displacement at the middle length of crest, sixth model	207
4.148	Sixth physical model view, upstream at right side	208
4.149	Perspective of sixth model	208
4.150	Sixth model at the end of vibration without damage	209

	XXIX
Upstream of sixth model at the end of vibration without damage	209
Vertical displacement distribution at the middle of crest	210
length, seventh model	
Relative displacement at the middle length of crest, seventh	211
model	
Dam view during reservoir in seventh small model	211
Dam section with blanket layer on the bedrock	212
Seventh model after vibration without damage	212

4.155	Dam section with blanket layer on the bedrock	212
4.156	Seventh model after vibration without damage	212
4.157	Vertical displacement distribution at the middle of	213
	crest length, eighth model	
4.158	Relative displacement at the middle length of crest,	214
	eighth model	
4.159	Seventh model view, upstream at right side	214
4.160	Seventh model during reservoir	215
4.161	Damage at upstream-toe in left side	215
4.162	Damage at upstream-toe, right side	215
4.163	Vertical displacement distribution at the middle of	216
	crest length, eighth model	
4.164	Relative displacement at the middle length of crest, ninth model	217
4.165	Ninth model view, upstream at right side	217
4.166	Dam stability after vibration without any damage at upstream	218
4.167	Dam section after vibration without any damage at upstream	218
5.1	Flowchart of results	221
5.2	ASCE Acceleration spectrum curve, The period and	224
	acceleration spectrum matched by horizontal and vertical axis	
5.3	Acceleration spectrum, 500 year	226
5.4	Acceleration spectrum, 2500 year	226
5.5	Section of dam with different zones	227
5.6	Upstream face of dam with different types of joints	227
5.7	The models mesh with regular method	228
5.8	a) First vibration mode	229
5.8	b) Second vibration mode	229
5.8	c) Third vibration mode	229
5.8	d) Fourth vibration mode	229
5.8	e) Fifth vibration mode	229

4.151

4.152

4.153

4.154

5.8	f) Six vibration mode	229
5.8	g) Seven vibration mode	230
5.8	h) Eight vibration mode	230
5.8	i) Ninth vibration mode	230
5.8	j) Tenth vibration mode	230
5.9	Frequency distribution of the Bakun dam for initial until	230
	twentieth mode vibration. Vibration mode is horizontal axis	
	and vertical axis is frequency.	
5.10	a) Horizontal displacement, A-500 years	231
5.10	b) Vertical displacement, A-500 years	231
5.10	c) Horizontal displacement, B-500 years	231
5.10	d) Vertical displacement, B-500 years	231
5.10	e) Horizontal displacement, C-500 years	232
5.10	f) Vertical displacement, C-500 years	232
5.10	g) Horizontal displacement, D-500 years	232
5.10	h) Vertical displacement, D-500 years	232
5.10	i) Horizontal displacement, E-500 years	232
5.10	j) Vertical displacement, E-500 years	232
5.11	a) Horizontal displacement, A-2500years	233
5.11	b) Vertical displacement, A-2500 years	233
5.11	c) Horizontal displacement, B-2500 year	233
5.11	d) Vertical displacement, B-2500 year	233
5.11	e) Horizontal displacement, C-2500 year	234
5.11	f) Vertical displacement, C-2500 year	234
5.11	g) Horizontal displacement, D-2500 year	234
5.11	h) Vertical displacement, D-2500 year	234
5.11	i) Horizontal displacement, E-2500 years	234
5.11	j) Vertical displacement, E-2500 year	234
5.12	Maximum horizontal displacement chart	235
5.13	Maximum vertical displacement chart	235
5.14	Main points of the model	236
5.15	Horizontal displacement in points 1to5	237
5.16	Vertical displacement in points 1-5	238
5.17	Horizontal displacement on slab	238
5.18	Vertical displacement on slab	239

5.19	Shear stress distribution in dam	240
5.20	Shear stress XY in point 6 for 2500 years, The horizon axis is	240
	time (second) and the vertical axis is the shear stress (kg/m^2)	
5.21	Vertical displacement in point 1 for strong shock earthquake,	241
	The horizon axis is time (second) and the vertical axis is	
	displacement (meter)	
5.22	Vertical displacement at the end of earthquake for 2500 years,	241
	The horizon axis is time (second) and the vertical axis is the	
	Value with meter unit	
5.23	Safety factor for horizontal direction (PGA)	243
5.24	Horizontal displacements in main points, the horizontal axis is	244
	main points, and the vertical axis is horizontal displacement	
5.25	Compare vertical displacements in main points. The horizontal	244
	axis is main points and the vertical axis is vertical displacement	
5.26		245
5.26	vertical displacement in point2 (model1), Perpendicular axis is	245
5.07	displacement (meter), and horizontal axis is time (seconds)	245
5.27	Horizontal displacement in point1 (model1), vertical axis is	245
5.20	displacement (meter), and norizontal axis is time (seconds)	246
5.28.	Horizontal displacement in the main points, Horizontal axis	246
5.20	is main points and vertical axis is norizontal displacement (meter)	246
5.29	vertical displacements in main points, Horizontal axis is main	246
5.20	points, and vertical axis is vertical displacement (meter)	247
5.30	Horizontal dynamic displacement (meter)	247
5.31	Distribution of the vertical dynamic displacement in the end	248
	of earthquake, Horizontal axis is main points, and the vertical axis	
5.22	is dynamic vertical displacement (meter)	240
5.32	XY Shear strain in the end of earthquake for both models, the	249
	horizontal axis is main points, and the vertical axis is an	
	XY Shear strain	• • •
5.33	XY Shear stress in the end of earthquake for both models, the	249
	horizontal axis is main points, and the vertical axis is	
	XY Shear stress (Kg/m^2)	
5.34	Horizontal displacement (m) in the end of dynamic load for	250

	models, Horizontal axis is main points, and the vertical axis is	
	horizontal dynamic displacement (meter)	
5.35	Vertical displacement at the end of earthquake for models,	251
	horizontal axis is main points, and the vertical axis is dynamic	
	displacement (meter)	
5.36	XY Shear stress in the end of earthquake	251
5.37	Horizontal displacement (meter) in the end of earthquake	252
	for models	
5.38	Vertical dynamic displacement at the end of earthquake	253
	for models	
5.39	XY Shear stress (kg/m^2) in the end of earthquake for models	254
5.40	XY Shear strain at the end of earthquake for both of models	254
5.41	Horizontal displacement (meter) in Points1-4	255
5.42	Horizontal displacement (m) in Points 5, 9, 10 and 13	255
5.43	Vertical displacement (m) in Points1-2	256
5.44	Vertical displacement (m) in Points3 and 4	256
5.45	Vertical displacement (m) in Points 7, 9 and 11	257
5.46	Vertical displacement (m) in Points 9-10	257
5.47	Shear stress XY in Points 2, 3, 9 and 10	258
5.48	Shear stress XY in Points 5, 6, 10, 13 and 14	258
5.49	XY Shear stress in the secondary Reinforcement model	259
	at point 10	
5.50	Vertical displacement in the secondary Reinforcement	259
	model at point 10	
5.51	Vertical displacement in the Third Reinforcement model	259
	at point 3	
5.52	Horizontal displacement in Points1-4	260
5.53	Horizontal displacement in Points 5, 9, 10 and 13	261
5.54	Vertical displacement in Points1-2	261
5.55	Vertical displacement in Points3-4	262
5.56	Vertical displacement in Points 7, 9 and 11	262
5.57	Vertical displacement in Points 9-10	263
5.58	Shear stress XY in Points 2, 3, 9 and 10	264
5.59	Shear stress XY in Points 5, 6, 10, 13 and 14	264
5.60	XY Shear stress in the Blanket Layer-3 model at point 10	265

5.61	XY Shear stress in the Blanket Layer-1 model at point 10	265
5.62	XY Shear stress in the Blanket layer-2 model	266
5.63	XY Shear stress in the initial model	266
5.64	XY Shear strain in the Blanket layer-2 model	266
5.65	XY Shear strain in the initial model	267
5.66	Horizontal displacement in Models1-4, the unit measurement	268
	is meter	
5.67	Horizontal displacement at crest and upstream slab, the vertical	268
	axis is horizontal displacement (m)	
5.68	Damages of concrete slab Zipingpu dam after the	269
	Wenchuan earthquake in China	
5.69	Buckling of canal lining elements has been caused in	269
	the 21 September 1999 Chi-Chi earthquake in Taiwan	
5.70	Vertical displacement in Points (1-2)	270
5.71	Vertical displacement in Points (3, 4 and 5)	270
5.72	Tension cracks on Cogoti dam crest associated earthquake	271
	in 1997	
5.73	Vertical displacement in the Upstream	271
5.74	Vertical displacement in Points 9-10	271
5.75	Shear stress XY at the crest and upstream	272
5.76	Shear stress XY in saturate and unsaturated zones	272
5.77	Shear stress XY in the foundation	273
5.78	XY Shear stress in the secondary model at point 2	273
6.1	Flowchart of results	275

LIST OF SYMBOLS

δ	- Displacement
$\dot{\delta}$	-Velocity
$\ddot{\delta}$	-Acceleration
Т	-Priod
f	-Frequency
σ	-Stress
τ	-Shear stress
E	-Strain
θ	-Slope
γ	-Density
φ	-Angle of friction
С	-Cohesion
SF	-Safety factor
PGA	-Peak ground acceleration
0	-Degree
ζ	-Damping ratio
υ	-Poisson's ratio
Е	-Modulus elasticity
λ	-Gradient
2D	-Two dimensional analysis
3D	-Three dimensional analysis
FEM	-Finite Element Method
FDM	-Finite Difference Method
ω	-Natural frequency of the system
BS	-British Standard

Н	-Height
W	-Width
Hz	-Hertz
m _v	-Coefficient of Volume Compressibility
$C_{\rm V}$	-Coefficient of Consolidation
g	-Gravity

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
A	Consolidation test	288-300
В	Direct shear test	301-313
С	List of publications	314-315

CHAPTER 1

INTRODUCTION

1.1 Introduction

Nowadays, dam construction is critical trend in the world in order to access some requirements. The major purposes defined by water supply and electricity. In this context, some important aspects investigated by initial phase of design. One of the main problems is structural behavior during an earthquake. Besides, there are some case studies of damages. The earth dam damaged while some type of body cracks made in dam or foundation. Some phenomena occurred such as overflow, piping and structural failure in parallel to development of cracks. In brief, evaluation of earth dam in order to earthquake effects is one of the major purposes of design.

Dynamic analysis of earth dam is one of the main purposes through design process. According to the literature, there are some studies in this area like reinforcement techniques, shaking table test, data monitoring and numerical analysis. In terms of the numerical method, two famous methods such as Finite-element or Finite-difference are used. Besides, not only the effect of material properties on dynamic trend but also comparison of the two and three-dimensional analysis were reviewed. In addition, the distribution of frequency and acceleration evaluated for structure. In terms of earth dams under seismic load or earthquake, the integrated response is the increase of acceleration and displacement at the crest based on nonlinear aspect. The main role of this process appeared by interaction between dam and reservoir. It seems to be that, improvement of earth dam behavior with reinforced techniques is required.

Seismic-resistant capacity of the earth dams is a great issue within earthquake active zone. However, dynamic behavior is one of the main concerns. For a realistic evaluation of the seismic risk, one must consider some uncertainties. They are some major aspects such as site geology, material stiffness, and analysis method. In addition, depth investigation in this domain indicated that numerical methods applicably used to assess dynamic behavior during the earthquake. Moreover, the numerical results verified by some experimental tests like shaking table and centrifuge.

1.2 Problem Statement

In terms of problem statement, failure mechanism is the main problem in earth dams. Before failure, some significant factor like freeboard, overflow and piping that should critically controlled by design approach. Overflow is very huge danger for dam, and should avoid. In fact, most of the reports in order to damage in dam related to the overflow. Therefore, freeboard design is very important to control overflow. It is important to note that the wave height in reservoir increased during earthquake. Moreover, interaction between dam and reservoir is very effective to dam behavior under seismic load. It is worth noting that piping is other problem in this category. This phenomenon related to the body cracks. In addition, body cracks are directly corresponded to deformation during an earthquake. In this case, the plastic deformation created by relative displacement. After all, the main goal in order to control dynamic behavior is the relative displacement during earthquake with respect to damage.

Lower San Fernando dam suffered an underwater slide during the San Fernando earthquake, 1971. Fortunately, the dam barely avoided collapse, thereby preventing a potential disaster of flooding of the heavily populated areas below the dam[Karl V, 1971].

Two decades later, the 1994 Northridge earthquake put the Los Angeles Dam with concrete face rock-fill dam (CFRD) to the test [Robert et al, 1994]. The Northridge earthquake was almost equal in magnitude to the previous San Fernando earthquake. Ground shaking was very strong, with amplitudes among the highest ever recorded but consistent with the USGS estimates. Yet the dam showed only minor deformation and superficial cracking. Despite the intense shaking, the crest of the dam moved only 1 inch sideways and settled only 3.5 inches. Moreover, longitudinal crack reported in Fengshou reservoir dam. Dam was 200 meters (656 feet) long, 0.6 meters (2 feet) wide and 3 meters (10 feet) deep at its largest degree.

Furthermore, On May 12, 2008, a strong earthquake with 8.0 Richter scale jolted Wenchuan County in Sichuan province of China [Xu Zeping, 2008]. Zipingpu concrete faced rock-fill dam, which is only 17 km away from the epicenter, survived from the earthquake. However, it is also suffered severe damages during the strong earthquake.

1.3 Aim of Research

The main aim of this research work is improvement of earth dam behavior under earthquake by new reinforcement technique. This study tried to introduce Isolator Damper Layer (IDL) system in order to reinforce dam with respect to increase resistance under the strong earthquake.

1.4 Objectives of Research

To achieve such aim the following objectives are considered for the research work:

- i. To identify the location of damage by evaluating the effect of material properties in dam body and performing vibration analysis, time history and response spectrum analysis.
- ii. To study the effect of blanket layer using Isolated Damping Layer (IDL) system between dam and foundation to control dynamic behavior by investigating material properties, layer thickness and reinforcement arrangement.
- iii. To evaluate slope stability in earth dam by evaluating the safety factor under static and dynamic load conditions.

1.5 Scope of Research

This scope covers all objectives as mentioned in last section. Finite –Element method (FEM) is performed using Ansys13 program for numerical analysis such as time-history and response spectra in order to consider the location of damage. In parallel, evaluation of slope stability by Geostudio 2007 (Slope/W) program was performed utilizing equilibrium method to compute safety factor in both static and dynamic load conditions. Moreover, the British standard is applied for IDL geotechnical tests. Furthermore, for small-scale physical modeling, the short homogenized dam of 16.5 meter with scale ratio (1/100) is tested on top of the vibrator table. In addition, in terms of critical situation for earthquake effect, the resonance condition is evaluated according to dominant frequency. The vibrator table functions in one dimension (vertical motion) only and the duration is two minutes for all samples. The reason for two minutes is about background in Sumatra fault that is near to Malaysia. In terms of limitation for this research, Local soil (Laterite) is used from campus of the University Teknologi Malaysia. Vibrator table is used with capacity equal 250 kg. Data logger is used to record data in each two seconds during the vibration.

1.6 Significance of the Research

This research covers earthquake effect on some structures such as earth dam; homogenize embankment, concrete face rock-fill dam and embankment-bridge. This research also includes a case study for Bakun dam in the east of Malaysia. In addition, this research is the pioneer study to introduce new material (IDL), as can be used to increase structural resistance under seismic load. According to the use of blanket layer reinforced with new material (IDL), dam performance during the strong intensity of ground motion like resonance condition is very good. It is worth noting that, this material can use for different structures based on next study.

1.7 Organization of thesis

The organization of the thesis can described briefly as follows:

- Chapter 1 is the Introduction, which explains on the background, the aim, objectives, and scope.
- Chapter 2 is on Literature review that explains analysis of earth dam during an earthquake. This chapter included comprehensive review in some methods such as Finite-Element method (FEM), Finite-Difference method (FEM), Plane stress (3D), Plan strain (2D), Free vibration analysis, Time-history analysis, Response spectra analysis, Reinforcement techniques, Data monitoring and Shaking table test.
- Chapter 3 is Research Methodology that explains the methodology to complete the research besides the data collection and analysis technique used in this study.
- Chapter 4 is Analytical and experimental tests that includes dominant frequency and slope stability in dam, experimental test to design Isolated Damping Layer (IDL) and small-scale physical modeling.
- Chapter 5 is Time-history analysis with case study (Bakun dam).
- Chapter 6 is conclusion and recommendation that explains the significance of the research finding including recommendation or suggestion and benefit of the research for future study.

1.8 Summery

Introduction of thesis presented in this chapter. In addition, problem statement and aim of the research are described. Moreover, objectives of study based on scope with are explained. Finally, the significant points of present study and thesis organization are presented in this chapter.

References

- Abusharar, S. W., Zheng, J. J., Chen, B. G., & Yin, J. H. (2009). A simplified method for analysis of a piled embankment reinforced with geosynthetics. *Geotextiles and Geomembranes*, 27(1), 39-52.
- Adnan, A., Hendriyawan., Sunaryati, J., Suhana, S., Sophia, A. and Norsurian, BA, R.
 (2005). Siesmic Hazard Assessmenet for Bakun Hydroelectriv Project. *Structural Earthquake Engineering Research University teknologi Malaysia*
- Ahmad, M. H., Noorzaie, J., & Al Qbadi, F. (2008) Principal Stresses in non-linear analaysis of Bakun concrete faced rockfill dam. *AJSTD Vol.* 25 Issue 2 pp. 469-479
 ASCE 2007, seismic design chapter 11.
- Baker. R. (2006). A relation between safety factors with respect to strength and height of slopes. *Computers and Geotechnics*; 33: 275–277, 2006.
- Bayraktar, A., Kartal, M. E., & Adanur, S. (2011). The effect of concrete slab–rockfill interface behavior on the earthquake performance of a CFR dam. *International Journal of Non-Linear Mechanics*, 46(1), 35-46.
- Berhe, T. G., Wang, X. T., & Wu, W. (2010, June). Numerical Investigation into the arrangement of Clay Core on the Seismic Performance of Earth Dams. *In Soil Dynamics and Earthquake Engineering* (pp. 131-138). ASCE.
- Bishop. A.W. (1955). The use of slip circle in the stability analysis of slopes. Geotechnique; 5(1): 7–17, 1955. Board on Hydraulic structure department, Modern methods concerning the dam static and dynamic analysis (1977). Civil engineering institute. Bucharest, Romania.
- Borges, J. L. (2004). Three-dimensional analysis of embankments on soft soils incorporating vertical drains by finite element method. *Computers and Geotechnics*, *31*(8), 665-676.

- Chakraborty, D., & Choudhury, D. (2009). Investigation of the behavior of tailings earthen dam under seismic conditions. *American Journal of Engineering and Applied Sciences*, 2(3), 559.
- Chin, L. C. (2004). A Study on Concrete Faced Rockfill Dams. University of Southern Queensland Faculty of Engineering and Surveying
- Cho. S. E. (2009). Probabilistic stability analyses of slopes using the ANN-based response surface. Computers and Geotechnics; 36: 787–797, 2009.
- Chopra, A. k. and Perumalswami, P. R.(1971). Dynamic of rock and earthfill dams with foundation interaction. *Journal of the Eng Mech*. Div, April.
- Chowdhury, I., & Dasgupta, S. P. (2003). Computation of Rayleigh damping coefficients for large systems. *The Electronic Journal of Geotechnical Engineering*, 8(0).
- Clough. R.W. and Chopra. A.K. (1966). Earthquake stress analysis in earth dams. *J. Eng. Mech.*, *ASCE.*, 92: 197-211. <u>http://nisee.berkeley.edu/elibrary/Text/300451</u>.
- Das, B. M. (2008). Advanced soil mechanics. Psychology Press.
- Das, B. M., & Ramana, G. V. (2010). Principles of soil dynamics. *Cengage Learning,* USA, 128-129.
- Duncan, J. M., & Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. *Journal of the Soil Mechanics and Foundations Division*, 96(5), 1629-1653.
- El-Ramly. H., Morgenstern. N.R. and Cruden. D.M. (2002). Probabilistic slope stability analysis for practice. *Canadian Geotechnical Journal*; 39 (3): 665–683.
- Elgamal, A. W. (1992). Three-dimensional seismic analysis of La Villita dam. *Journal* of geotechnical engineering, 118(12),1937-1958.
- Fellenius. W. (1936). Calculations of the stability of earth dams, in: *Transactions of the* 2nd Congress on Large Dams. Washington, DC, vol. 4, p. 445, 1936.
- Finn, W. D. L., Yogendra kumar, M., Yoshida, N. and Yoshida, H. (1986). TARA-3: A Program for Nonlinear Static and Dynamic Effective Stress Analysis. *Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia,* Canada.
- Garnier, J.; Gaudin, C.; Springman, S.M.; Culligan, P.J.; Goodings, D.J.; Konig, D.;
 Kutter, B.L.; Phillips, R.; Randolph, M.F. and Thorel, L. (2007), Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling 7 (3), *International Journal of Physical Modelling in Geotechnics*, pp. 1–23, ISSN: 1346-213X, E-ISSN: 2042-6550

GEO-SLOPE International Ltd, Calgary, Alberta, Canada www.geos-slope.com. WABA Dam Permanent Deformation due to an earthquake.

Geostudio. (2007). Manuel. www. Geo-slope.com

- Gikas, V., & Sakellariou, M. (2008). Settlement analysis of the Mornos earth dam (Greece): evidence from numerical modeling and geodetic monitoring. *Engineering Structures*, 30(11), 3074-3081.
- Griffiths. D.V., and Fenton. G.A. (2004). Probabilistic slope stability analysis by finite elements. *Journal of Geotechnical and Geoenvironmental Engineering*; 130 (5): 507-518.
- Hayashi, M., Fuziwara, Y and Komada, H. (1975). Dynamic viscosity and dynamic deformability of rock-fill material in laboratory, application to response analysis and comparison with observed damping during earthquakes. *Proc. of symp. On criteria and assumptions for numerical analysis of dams.* Swansea.
- Hwang, J. H., Wu, C. P., & Chou, J. T. (2008, May). Motion Characteristics of Compacted Earth Dams under Small Earthquake Excitations in Taiwan. In *Geotechnical Earthquake Engineering and Soil Dynamics IV* (pp. 1-12). ASCE.
- IITK-GSDMA Guidelines for seismic design of earth dams and Provisions with Commentary and Explanatory Examples(August 2005; Revised May 2007). *Indian institute of technology Kanpur*. India.
- Ionescu, S. (1977). Contributions to the analysis of rockfill dams sealed with non-earthy materials (in Romanian). *Doctoral Paper, ICB*. Romania.
- Jahed. H., Noban. M. R., and Eshraghi. M. A. (2009). ANSYS Finite Element. *Tehran University*
- Janbu. N. (1973). Slope stability computations, in: R.C. Hirshfield, S.J. Poulos (Eds.), Embankment Dam Engineering. Cassagrande Volume, John Wiley and Sons; 47–86, 1973.
- Karl. V., Steinbrugge Collection, Earthquake Engineering Research Center, University of California, Berkeley.
- Kong, X. J., Zhou, Y., Xu, B., & Zou, D. G. (2010). Analysis on seismic failure mechanism of zipingpu dam and several reflections of aseismic design for high Rock-fill dam. *Earth and Space*, 3177-3189.
- Le Hello, B., & Villard, P. (2009). Embankments reinforced by piles and geosynthetics— Numerical and experimental studies dealing with the transfer of load on the soil embankment. *Engineering Geology*, *106*(1), 78-91.

- Li. K.S., and Lumb. P. (1987). Probabilistic design of slopes. *Canadian Geotechnical Journal*; 24: 520–535, 1987.
- Low, B., Tang, S., and Choa, V. (1994). Arching in Piled Embankments. J. Geotech. Engrg., 120(11), 1917–1938.
- Matsumaru, T., Watanabe, K., Isono, J., Tateyama. M. and Uchimura, T. (2008) Application of cement-mixed gravel reinforced by ground for soft ground improvement. *Proceedings of the 4th Asian Regional Conference on Geosynthetics June 17 - 20, 2008*. Shanghai, China.
- Maosong. H. and Cang-Qin. J. (2009). Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage. *Computers and Geotechnics*; 36: 93–101.
- Marto, A., Latifi, N., & Sohaei, H. (2013). Stabilization of laterite soil using GKS soil stabilizer. *Electron J Geotech Eng (EJGE)*, *18*, 521-532.
- Mejia, L. H., & Seed, H. B. (1983). Comparison of 2-D and 3-D dynamic analyses of earth dams. *Journal of Geotechnical Engineering*, *109*(11), 1383-1398.
- Mizokoshi, T and Minura , S.(1975). Studies on the earthquake forces in the design of Takase dam. *Proc. of. Symp. on Criteria and assumption for numerical analysis of dams.* Swansea.
- Morgenstern. N. R. and V.E. Price. (1965). The analysis of the stability of general slip surface. *Geotechnique*; 15 (4): 289–290, 1965.
- Namdar. A. and Pelko. A. K. (2010). Seismic Evaluation of Embankment Shaking Table Test and Finite Element Method. *The Pacific Journal of Science and Technology volume11, Number2, November.*
- Newmark, M. N. and Rosenblueth, E. (1971). Fundamental of earthquake engineering. *Mc Graw-Hill*, New Jersey.
- Noorzad, R., & Omidvar, M. (2010). Seismic displacement analysis of embankment dams with reinforced cohesive shell. *Soil Dynamics and Earthquake Engineering*, 30(11), 1149-1157.
- Nose, M., Takahashi, T and Kunii, K. (1976). Results of earthquake observation and dynamic tests on rockfill dams and their consideration. *12-th ICOLD Congress*, Mexico.
- Okamoto, S. (1973). Introduction to earthquake engineering. *Tokyo University of Tokyo Press*.

- Okamoto, S., Tamura, C., Kato, K. and Ohmachi, T.(1974). A study on the dynamic stability of rockfill dams during earthquakes based on vibration failure tests of models. *Bull of ERS*, University of Tokyo.
- Özkan, M. Y., Erdik, M., Tuncer, M. A., & Yilmaz, C. (1996). An evaluation of Sürgü dam response during 5 May 1986 earthquake. *Soil Dynamics and Earthquake Engineering*, *15*(1), 1-10.
- Palmeria, E. M., Pereira, J. H.F and da Silva, A. R.L. (1998). Back analyses of geosynthetic reinforced embankmen-ts on soft soils. *Geotextiles and Geomembrances* 16 (1998) 273-292.
- Papalou, A., & Bielak, J. (2001). Seismic elastic response of earth dams with canyon interaction. *Journal of geotechnical and geoenvironmental engineering*,127(5), 446-453.
- Parish, Y., & Abadi, F. N. (2009). Dynamic Behaviour of Earth Dams for Variation of Earth Material Stiffness. World Academy of science Engineering and Technology, 50, 2009.
- Papalou, A., & Bielak, J. (2001). Seismic elastic response of earth dams with canyon interaction. *Journal of geotechnical and geoenvironmental engineering*,127(5), 446-453.
- Popovici, A. (1978). Hydrotechnical structure analysis of large structure (dams, dukes, etc.). *doctoral paper, ICB*. Romania.
- Priscu, R. (1974). Hydrotechnical construction (in Romanian). *Editura didactica si pedagogica, Bucharest*.
- Priscu, R. (1985). Earthquake engineering for large dams.
- Priscu, R., Lonescu, S and Stematiu. (1978). A new model for movement analysis of rockfill dams "*L'Energia Elettrica*", Milan.
- Robert. A., Page, David M., Boore, Robert F, Yerkes (1994). The Los Angeles Dam Story. USGS. <u>http://earthquake.usgs.gov</u>
- Sarma. S. K. (1973). Stability analysis of embankments and slopes. *Geotechnique*; 23 (3): 423–433.
- Sarma. S. K. (1979). Stability analysis of embankments and slopes. *Journal of the Geotechnical Engineering Division*. ASCE; 105 (12): 1511–1524, 1979.
- Schanz, T., Vermeer, P. A., & Bonnier, P. G. (1999). The hardening soil model: formulation and verification. *Beyond 2000 in computational geotechnics*, 281-296.

- Seed, B. H. (1973). Stability of earth and rock-fill dams during earthquakes. *Embankment dam engineering*, Prentice-Hall. New York.
- Seed, H. B. (1979). Considerations in the Earthquake Resistant Design of Earth and Rockfill Dams. *Geotechnique*, 29(3), pp. 215-263.
- Seed, H. B., Wong, R. T., Idriss, I. M., & Tokimatsu, K. (1986). Moduli and damping factors for dynamic analyses of cohesionless soils. *Journal of Geotechnical Engineering*, 112(11), 1016-1032.
- Sivakumar. B. G. L., Srivastava. A., and Sahana. V. (2007). Analysis of stability of earthen dams in kachchh region, Gujarat, India. *Engineering Geology* 94(2007)123-136.
- Siyahi, B., & Arslan, H. (2008). Earthquake induced deformation of earth dams. *Bulletin* of Engineering Geology and the Environment, 67(3), 397-403.
- Spencer. E. (1967). A method of analysis of the stability of embankments assuming parallel inter-slice forces. *Geotechnique*; 17 (1): 11–26, 1967.
- Torisu, S. S., Sato, J., Towhata, I., & Honda, T. (2010). 1-G model tests and hollow cylindrical torsional shear experiments on seismic residual displacements of fill dams from the viewpoint of seismic performance-based design. *Soil Dynamics* and Earthquake Engineering, 30(6), 423-437.
- Tsai, P. H., Hsu, S. C., & Lai, J. (2009, August). Effects of Core on Dynamic Responses of Earth Dam. In Slope Stability, Retaining Walls, and Foundations@ sSelected Papers from the 2009 GeoHunan International Conference (pp. 8-13). ASCE.
- Wang, L., Zhang, G., & Zhang, J. M. (2011). Centrifuge model tests of geotextilereinforced soil embankments during an earthquake. *Geotextiles and Geomembranes*, 29(3), 222-232.
- Watanabe, H. (1975). A numerical method of seismic analysis for rock and earthfill dams and verification of its reliability through both model test and observation of earthquake on an actual dam. Proc. of Symp. on Criteria and assumptions for numerical analysis of dam. Swansea.
- Wieland. M. (2008). Analysis aspects of dams subjected to strong ground shaking. International water power & Dam construction, pp:28-31
- Xie. G., Zhang. J., and Li. J.(2008). Adapted genetic algorithm applied to slope reliability analysis, in: 4th International Conference on Natural Computation. vol. 1, pp. 520-524.

- Xia, Z. F., Ye, G. L., Wang, J. H., Ye, B., & Zhang, F. (2010). Fully coupled numerical analysis of repeated shake-consolidation process of earth embankment on liquefiable foundation. *Soil Dynamics and Earthquake Engineering*, 30(11), 1309-1318.
- Yang. C.X., Tham. L. G., Feng. X. T., Wang. Y. J., and Lee. P.K.K. (2004). Twostepped Evolutionary algorithm and its application to stability analysis of slopes. *Journal of Computing in Civil Engineering*; 18 (2): 145–153.
- Yildiz, A. (2009). Numerical analyses of embankments on PVD improved soft clays. *Advances in Engineering Software*, 40(10), 1047-1055.
- Yu, Y., Xie, L., & Zhang, B. (2005). Stability of earth–rockfill dams: influence of geometry on the three-dimensional effect. *Computers and Geotechnics*, 32(5), 326-339.
- Zeghal, M. and Abdel-Ghaffar, A. (1992). Analysis of Behavior of Earth Dam Using Strong- Motion Earthquake Records. J. Geotech. Engrg., 118(2), 266–277.
- Zeping, X. (2008). Performance of Zipingpu CFRD during the strong earthquake. *China Institute of Water Resources and Hydropower Research.*