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ABSTRACT 
 

 
 
 

This thesis focuses on the application of artificial intelligent techniques in 

fault detection and diagnosis. Fault detection and diagnosis scheme is a technique 

used in supervisory systems. The function of the supervisory system is to indicate 

unnecessary process states and to take the most appropriate actions to maintain 

continuous operation and to avoid damages. There are two main methods in fault 

detection and diagnosis: model free and model-based. In this thesis, model-based 

fault detection and diagnosis is used. One of the research challenges in model-based 

fault detection and diagnosis of a system is to find the accurate models. The objective 

of this thesis is to detect and diagnose the faults to a process control rig. A technique 

for the modeling of nonlinear control processes using fuzzy modeling approach 

based on the Takagi–Sugeno fuzzy model with a combination of genetic algorithm 

and recursive least square is proposed. This thesis discusses the identification of the 

parameters at the antecedent and consequent parts of the fuzzy model. For the 

antecedent fuzzy parameters, genetic algorithm is used to tune them while at the 

consequent part, recursive least squares approach is used to identify the system 

parameters.  The proposed method is used to develop fault model and to detect the 

fault where this task is performed by using residual signals. When the residual signal 

is zero or nearly zero, the system is in normal condition, and when the fault occurs, 

residual signals should distinctively diverge from zero. Meanwhile, neural network is 

used for fault classification where this task is performed by identifying the fault in 

the system. This approach is applied to a process control rig with three subsystems: a 

heating element, a heat exchanger and a compartment tank. Experimental results 

show that the proposed approach provides better modeling when compared with 

Takagi Sugeno fuzzy modeling technique and the linear modeling approach. The 

overall accuracy for classification results also shows the best performance of around 

93%. 
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ABSTRAK 
 
 
 
 

Tesis ini memberi tumpuan kepada aplikasi teknik-teknik kepintaran buatan untuk 

pengesanan dan diagnosis kerosakan.  Skim pengesanan dan diagnosis kerosakan  adalah 

teknik yang digunakan dalam sistem penyeliaan. Fungsi sistem penyeliaan adalah untuk 

menunjukkan keadaan proses yang tidak perlu dan untuk mengambil tindakan yang paling 

sesuai untuk mengekalkan operasi yang berterusan dan untuk mengelakkan kerosakan. 

Terdapat dua kaedah utama dalam pengesanan dan diagnosis kerosakan: model-bebas dan 

berasaskan model. Dalam tesis ini berasaskan model pengesanan dan diagnosis kerosakan 

digunakan. Salah satu cabaran kajian kepada berasaskan model pengesanan dan diagnosis 

kerosakan sistem adalah mencari model yang tepat. Objektif tesis ini adalah untuk mengesan 

dan mendiagnosis kerosakan kepada pelantar kawalan proses. Satu teknik untuk pemodelan 

proses kawalan tak lelurus berdasarkan model samar Takagi-Sugeno dengan gabungan 

algoritma genetik dan rekursi kuasa dua terkecil dicadangkan. Tesis ini membincangkan 

pengenalpastian parameter bahagian anteseden dan akibat langsung pada model samar. Bagi 

parameter anteseden samar, algoritma genetik digunakan untuk pelarasan parameter tersebut, 

manakala pada bahagian akibat langsung pendekatan rekursi kuasa dua terkecil digunakan 

untuk mengenalpasti parameter sistem. Kaedah yang dicadangkan digunakan untuk 

membangunkan model yang rosak untuk mengesan kerosakan di mana tugas ini dilakukan 

dengan menggunakan isyarat sisa. Apabila isyarat sisa adalah sifar atau hampir sifar, sistem 

ini dalam keadaan normal, dan apabila kerosakan berlaku, isyarat sisa akan menyimpang dari 

sifar. Sementara itu, rangkaian neural digunakan untuk pengkelasan kerosakan di mana tugas 

ini dilakukan dengan mengenal pasti kerosakan dalam sistem. Pendekatan ini digunakan 

untuk pelantar kawalan proses dengan tiga subsistem: elemen pemanas, penukar haba dan 

ruang tangki. Keputusan eksperimen menunjukkan bahawa pendekatan yang dicadangkan 

menyediakan pemodelan yang lebih baik apabila dibandingkan dengan teknik pemodelan 

kabur  Takagi Sugeno dan pendekatan pemodelan lelurus. Keseluruhan keputusan ketepatan 

bagi pengkelasan juga menunjukkan prestasi terbaik di sekitar 93%. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 

 
 

 
1.1       General 
 
 

Monitoring system that can monitor process control system component and 

diagnose fault detected is important to develop since the performance of computers 

into daily activities is growing fastest. This will provide the solutions without human 

intervention. The increasing demand of quality in production processes has 

encouraged the research and development on fault detection and diagnosis (FDD) in 

industrial plant. An unexpected change of system functionality may call a “fault” 

which it is maybe related to a failure in a physical component or in a system sensor 

or actuator. 

  
 
Fault detection and fault diagnosis are the two main tasks that should perform 

in monitoring system. The first task is to determine whether a fault has occurred in 

the system. To achieve this goal, all the available information from the system should 

be collected and processed to detect any changes from nominal behaviour of the 

process. The second task is classifying the fault into several categories of faults such 

as the location and type of faults. 

 
 
There are several methods that may solve the problem of FDD. Classical 

methods also called model-free FDD methods used physical redundancy, limit 

sensors, frequency spectrum and logic reasoning (Gertler, 1998). Eventhough the 

methods is easy to implement, the disadvantages are high cost, extra space and 

complex computation. 
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Model-based FDD is the innovative methods in recent years.  The classical 

model-based FDD used dynamic models of the process. Because faults are supposed 

to appear as state changes caused by malfunctions, they are often monitored using 

estimation techniques (Willsky, 1976; Isermann, 1984; Baseville, 1988; Trank, 

1990), or parity equations (Gertler, 1991; Patton et al., 1991). The basic idea is very 

simple: the behaviours such as input-output time series of the model and real system 

are compared to generate residual signals, which, in the presence of faults, take non-

zero values. Rule-based expert systems have also been investigated very intensively 

for FDD problems (Kramer, 1987; Rich et al., 1987; Patton et al., 1989). However, 

these systems need an extensive database of rules and the accuracy of diagnosis 

depends on the rules. Therefore, the less number of rules with accurate model is 

represented in this research. 

 
 
In order to get accurate fault diagnosis, the optimized model is developed. In 

this research, fuzzy model with genetic algorithm and recursive least square (GA-

RLS) is proposed. This fuzzy model is developed to representing the process control 

rig sub-model. Four sub-models is proposed from the test bed of process control rig 

which are heating element, heat exchanger for hot water, heat exchanger for cold 

water and compartment tank models. In this proposed fuzzy model, the mean squared 

error is used as a performance index. The minimum error will produced the 

optimized model of the system. The model for every fault occurred is also developed 

by using the same approach. The residual is generating based on the differences 

between fault model and system model. Then, artificial neural network (ANN) is 

used to classify the fault. The highest accuracy is the best classification.  

 
 
 
 

1.2       Problem Statement and Importance of Research  
 
 

In the process plant application, many variables and instruments involved 

needs to monitor to make sure the process functioning and running accordingly. If 

there is just a small problem or faults occurred, sometimes it is undetected by the 

operator. Normally, only expert personnel know about the fault and will cause the 

late action to detect the fault.  The late detection of fault may result in high 
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maintenance cost because may be the fault is already spread to other system. 

Therefore, a good and intelligent fault monitoring and diagnosis system is needed. In 

order to do that, the fault detection and diagnosis software with the optimized fuzzy 

model was developed to overcome the problem of the tedious process of detecting 

fault in the process control application. 

 
   
 

 
1.3       Research Objectives and Scope 

 
 
1.3.1 Objectives 
 
 

The objectives of the thesis are: 

1. To derive a mathematical model for process control rig. 

2. To develop an optimized fuzzy model using genetic algorithm and 

recursive least square. 

3. To use optimized fuzzy in development of fault detection and 

diagnosis system. 

4. To develop an intelligent fault detection and diagnosis for process 

control rig. 

  
 
 
 
1.3.2 Research Scope 

 
 
The scopes of the research are 

1. To use Labview 8.6 as the computation platform for developing of 

data acquisition (DAQ), fuzzy modeling and fault detection and 

diagnosis software. 

2. To use the process control rig as test bed system as a reference system 

for model development. 

3. To model and validate the system using input and output data from 

experiments on the process control rig. 



4 
 

4. To model and classify the fault through simulated or offline process 

for fault detection and diagnosis. 

 
 
 
 
1.4       Methodologies 
 
 

There are two methods proposed in this research which in general depend on 

the scopes and objectives of the work as follows: 

 
 
 
 

1.4.1 Part 1 
 
 
Fuzzy model with GA-RLS is proposed to model the process control rig to 

represent the real system. Because of the fuzzy model is the blackbox model, the 

input and output data is required to model the system. To acquire the data, the data 

acquisition software for the process needs to be done. In this research, there are three 

sub-systems, which are heating element, heat exchanger and compartment tank. The 

heat exchanger contents of two mathematical models such as heat exchanger for hot 

water and heat exchanger for cold water. Therefore, there is four model developed in 

this research. The input and output variables to the fuzzy model is depending on the 

mathematical model of the system.  In fuzzy modeling, genetic algorithm (GA) is 

used for tuning the antecedent parts parameters and recursive least square (RLS) is 

used for tuning the consequents part parameters of fuzzy model. 

   
   
 
 
1.4.2 Part 2 
 
 

In this part the fault model is develop by using the proposed technique fuzzy 

modeling. The input and output data of the faults is obtained from the experiments 

based on the fault injection discussed in Chapter 3. The residuals are generated by 

comparing this fault model and system model obtained in Part 1. Then the residuals 

are fed into ANN to classify the fault.  
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1.5       Contribution of Thesis 
 
 

The most important contributions of this thesis are the development of a 

fuzzy model with GA-RLS applied to process control rig and to classify the fault by 

using ANN. It can be summarized as follows: 

1. Mathematical derivation for modeling of process control rig. 

2. Optimized model by using fuzzy model with GA-RLS. 

3. Development of FDD software. 

 
 
 
 

1.6       Outline of Thesis 
 
 

The thesis is divided into five chapters: 

• Chapter 1 introduces the thesis which covers some background 

information on FDD problems. The proposal to resolve the 

phenomena is also described. Fuzzy model with GA-RLS is identified 

to model the system in this research. The chapter consists of scope and 

objective, research methodology, the contribution and layout of the 

thesis. 

• Chapter 2 reviews the FDD, fuzzy modeling and optimization 

techniques through literature search. A summary on the previous 

research dealing with FDD and fuzzy model is described in this 

chapter. It also covers the traditional and the intelligent FDD and the 

achievements made by other researchers in this field. 

• Chapter 3 presents the methodology of this research. The 

mathematical models of process control rig are derived for each-

subsystem in this chapter. The techniques used on the developments 

of the three softwares such as DAQ, fuzzy modeling and FDD are 

described. The optimization techniques such as GA and RLS are also 

discussed. In FDD, the method how the residual is generated and 

classified is presented.  

• Chapter 4 discusses the results and discussion of the fuzzy modeling 

and FDD application on process control rig. In the modeling part, the 
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proposed model, fuzzy model with GA-RLS is used to model the 

system and then compared with another two methods such as 

conventional fuzzy model and linear model. In FDD, the residual is 

generated by comparing the system model and fault model. Then it is 

classified by using ANN. The used of three softwares are also 

discussed in this chapter. 

• Chapter 5 concludes the thesis on a fuzzy model with GA-RLS and 

the FDD applied to process control rig. It also summarizes the 

achievements made in this research and further work recommended to 

be carried out.  
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