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ABSTRACT 

Previous research works have proposed Savonius vertical axis marine current 

turbine as appropriate for low current velocity applications such as in the Malaysian 

sea. The numerous benefits of Savonius turbine such as its simple structure, self-start 

ability, relatively low operating velocity, independence from flow direction and low 

environmental impact have generated interests among researchers. Despite these 

advantages, it suffers from low efficiency. Savonius turbine is composed of multiple 

physical parts; in which in this study, certain important parameters including blades, 

end plate, aspect ratio and overlap ratio had been investigated. This thesis proposes a 

newly modified Savonius turbine, designated ReT (Reza Turbine), for low speed 

marine currents to enhance the efficiency. The ReT consists of two blades, each blade 

divided into two parts which are joined by hinge. This makes ReT considerable as a 

turbine with movable blades. The blades, being movable, necessitates a specific design 

of endplates to ensure the blades to function properly. This research explored the 

nonlinear two-dimensional flow numerically over the novel type rotor. Simulations 

were conducted using Computational Fluid Dynamics (CFD) software, by applying 

the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The 

unsteady Reynolds Averaged Navier-Stokes (RANS) equations were solved for 

velocity and pressure coupling with a code, based on the programming Language C 

through the User Defined Functions (UDF) at variation of marine current velocities. 

Dynamic Mesh Method (DMM) was used for solving the movement of the blades and 

adjusting the mesh according to the position of the blades on the surface. The 

numerical simulation using turbulence model Shear Stress Transport (SST k-ω) 

produced satisfactory results when compared with experimental results of the modified 

turbine and classical Savonius turbine. For validation purpose, the modified model was 

tested in Universiti Teknologi Malaysia’s low speed wind tunnel at different flow 

velocities. Important parameters such as torque, power and performance as well as the 

pressure distribution on the blades surfaces were measured at different angles of attack. 

Parametric study was conducted in six subsections, in which the modified turbine had 

been investigated and analysed. The maximum coefficient of power of ReT was found 

to be 0.34 at tip speed ratio (λ) of 0.9. This is 52% improvement in efficiency (power 

coefficient) compared to classical Savonius turbine without any extra accessories. The 

use of ReT will enable power to be extracted more efficiently from low speed marine 

currents. 
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ABSTRAK 

Kajian-kajian terdahulu telah mencadangkan turbin arus marin paksi tegak 

Savonius adalah sesuai untuk aplikasi halaju rendah seperti lautan di Malaysia. 

Beberapa kelebihan turbin Savonius seperti struktur yang ringkas, kebolehan 

dihidupkan sendiri, halaju operasi yang rendah, bebas daripada arah aliran dan kesan 

alam sekitar yang rendah telah menarik perhatian para pengkaji. Walaubagaimanapun, 

turbin ini mempunyai kelemahan dari segi kecekapan. Turbin Savonius terdiri 

daripada beberapa bahagian fizikal, yang mana dalam kajian ini, beberapa parameter 

penting termasuklah bilah, plat akhir, nisbah aspek dan nisbah pertindihan, telahpun 

dikaji. Tesis ini mengusulkan rekabentuk baru konfigurasi turbin Savonius yang 

diubahsuai (Reza Turbine) untuk halaju arus marin yang rendah untuk meningkatkan 

keberkesanan yang sedia ada. ReT mempunyai dua bilah; setiap satu terbahagi kepada 

dua bahagian yang dihubungi oleh engsel. Ini bermakna ReT boleh dikategorikan 

sebagai turbin dengan bilah yang boleh bergerak. Bilah-bilah ini, disebabkan fungsi 

gerakan, memerlukan rekabentuk spesifik pada plat akhir untuk memastikan bilah- 

bilah mampu berfungsi dengan betul. Kajian ini mengkaji arus dua dimensi tidak linear 

secara numerikal melalui rekabentuk rotor baru. Simulasi telah dijalankan 

menggunakan aplikasi Dinamik Bendalir Berbantukan Komputer (CFD), dengan 

pengintegrasian logaritma SIMPLE (Semi-Implicit Method for Pressure Linked 

Equations). Persamaan Navier-Stokes berasaskan purata Reynolds telah diselesaikan 

untuk halaju dan tekanan bersama dengan kod komputer, berdasarkan program Bahasa 

C melalui User Defined Functions (UDF) dengan memanipulasikan halaju arus yang 

berubah- ubah. Kaedah Dynamic Mesh (DDM) telah digunakan untuk menentukan 

pergerakan bilah dan melaraskan jaringan berdasarkan kedudukan bilah di permukaan 

air. Simulasi numerikal menggunakan model pergolakan SST k-ω telah menghasilkan 

keputusan yang memuaskan, berbanding keputusan oleh rekabentuk terkini dan juga 

model konvensional turbin Savonius. Untuk pengesahan keberkesanan, satu model 

daripada rekabentuk ReT ini telah diuji di terowong udara berkelajuan rendah 

Universiti Teknologi Malaysia. Beberapa parameter penting seperti tork, kuasa, 

prestasi dan edaran tekanan pada permukaan bilah telah diukur pada sudut berlainan. 

Kajian parametrik telah dilakukan di enam subseksyen, dalam mana turbin yang 

diubahsuai telah dikaji dan dianalisa. Pekali kuasa ReT didapati pada tahap tertinggi, 

iaitu 0.34 pada hujung nisbah kelajuan (λ) 0.9. Ini menunjukkan peningkatan 

keberkesanan pekali kuasa sebanyak 52% berbanding turbin Savonius konvensional 

tanpa tambahan aksesori. Penggunaan ReT berupaya menambahkan keberkesanan 

penghasilan tenaga daripada arus marin yang rendah. 
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δ    - Boundary layer thickness     

ε   - Turbulence dissipation rate    

θ  - Rotor angle     

λ - Tip speed ratio    

μ  - Molecular velocity     

μt    - Turbulence viscosity     

ρ    - Density 

τω   - Pressure coefficient     

𝜙𝑃 & 𝜙𝑛𝑏  -          Properties of known cell and its neighbouring cells 

ω   - Angular velocity    
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Fossil fuel reduction reservoirs, increase of oil price and other petrochemical 

substances, as well as the irrefutable and inseparable dependence on fossil reserves 

and resources are obvious in every life. Creation of the environmental pollution is from 

consumption of fossil fuel that leads to horrible phenomena including greenhouse gas 

emissions, air pollution, water pollution and the destruction of the ozone layer. These 

striking threats turn the focus of many governments and societies from conventional 

energy resources to the pure and renewable energies i.e. wind energy, solar energy, 

biomass energy, geothermal and ocean energy (Martinot and Sawin, 2009). According 

to the International Energy Agency (IEA) (Shindell et al., 2012)  and World Energy 

Outlook (WEO) (Alternative policy scenario 2009), by the year 2030, 29% of global 

required energy and 7% of transport fuel will be provided through renewable energies. 

Recently, the studies on pure energy has been multiplied and big nations start to take 

significant advantages of renewable energy (Olivier et al., 2012).   

The reports from authorities indicated that nearly 70% of earth surrounded by 

water. This vast resource can be considered as a giant energy generator.  Marine 

Renewable Energy (MRE) initiatives are being pursued in five fronts; Ocean Thermal, 

Ocean Tides, Ocean Salinity Gradient, Ocean Current and Ocean Waves (Vega, 1999). 

Renewable energy development in Malaysia is still in the primary stage, Hashim and 

Ho (2011) estimated that utilization of 5% of renewable energy for 5 years will save 

the country RM 5 billion (US$ 1.32 billion).  According to Tenth Malaysia plan (2011- 
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2015) expansion of research on green technology is encouraged towards 

commercialization through proper mechanism (Chua and Oh, 2010; Ong et al., 2011; 

Shafie et al., 2011). Recently, three significant moves were introduced by the 

Malaysian government to encourage Renewable Energy development:  

(i) National Renewable Energy Policy and Action Plan (2009)  

(ii) Renewable Energy Act 2011 

(iii)      Sustainable Energy Development Authority Act 2011 

To support the national renewable energy policy and action plans, as well as 

the two new acts, research in renewable energy must be given priority (Ali et al., 2012; 

Saadatian, 2012; Chong and Lam, 2013). The potential of the ocean as a source of 

alternative renewable energy is great. To underline this potential, a number of 

initiatives are being pursued in various parts of the world. A very comprehensive 

survey of various energy resources, including all forms of ocean energy, is given by 

World Energy Council (2010). The implementing agreement of the International 

Energy Agency (IEA) (Shindell et al., 2012)  is published in an annual report detailing 

progress in MRE technology in various countries, IEA. In Figure 1.1 shown the global 

description of mean daily tidal range, as can be seen the west seas of Malaysia has 

suitable potential in marine current. 

 

Figure 1.1 Global description of mean daily tidal range (NREL, 2009) 
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Demand for electricity is growing in Malaysia increasing from 91,539 GWh 

in the year 2007 to 108,732 GWh in the year 2011 (Chandran et al., 2010). 

Consequently, it can be predicted that in 2020, the last demand of energy based on 

an annual increased ratio 8.1% will reach 1,349,080 GWh (116 million tons of oil 

equivalent (Mtoe)) in Malaysia (Shafie et al., 2011). Therefore, with the rapid growth, 

it is required that to support the development in the power sector with further 

resources and to improve the efficiency of capital, labor and other relevant factors 

(Faez Hassan et al., 2012).  

According to these references  Faez Hassan et al. (2012) and also Hashim and 

Ho (2011), Malaysia is dependent on fossil fuel for generating electricity because 

approximately 94.5% of electricity is generated through fossil fuel (i.e.  Oil, natural 

gas, and coal). In the same year, the National Green Technology Policy formulated 

by Malaysia, cautioned the energy stakeholders to join clean and green group not 

only to boost the economy but also to find sustainable solutions to migrate to global 

green movement.  

One of the best identified renewable sources is marine current in Malaysia, 

which is due to the fact that Malaysia is surrounded by water in most areas, yet the 

marine current is considered to have more advantages to be used in this study 

compared to other renewable resources.(Yaakob et al., 2006).  

In this regards, Yaakob et al. (2006) demonstrated that Malaysian coastal 

environment have shallow water depth and as well as low current velocity. 

Furthermore, the annual average speed current of 30 meters in deep water of Malaysian 

coastal environment is estimated to be 0.56 m/s (Yaakob et al., 2008a). Nevertheless, 

in this condition, operation of low current velocity by turbine design is feasible.  

This concept contains Gorlov (helical), Darrieus, Kobold and Davis turbines. 

These rotary devices are positioned in the ocean and worked with current velocity 

above 1.1 (m/s) (Yaakob et al., 2008b). Another type the turbine is called Savonius 

rotor that has been used for wind turbine application.  
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Nowadays, these turbines are divided into two groups; Horizontal Axis Marine 

Current Turbine (HAMCT) Jo et al. (2012); Bahaj  et al. (2007); Ben Elghali et al. 

(2007); Myers and Bahaj (2006) and Vertical Axis Marine Current Turbine (VAMCT) 

Akwa et al. (2012a); Yaakob et al. (2010); Blackwell et al. (1978); Khalid and Shah (2013); 

Ueno et al. (2004).  

Different designs of VAMCT have been suggested, among them, several 

made for marine current turbines, which Savonius turbine is one of the appropriate 

choice because it can work in low speeds current as well.  

At present, due to the different conditions Savonius in water and also whereas, 

the density of water is about 835 times higher than air; it is expected to produce 

appropriate power of Savonius turbine. 

1.2 Problem Statement 

Ocean energy is one of the vastly available renewable energy, that has yet 

being harvest in big scale around the world. This is mainly due to technical constrain 

and financially not feasible as compared to other energy sources. In Malaysian 

coastal environments due to low current velocity and likewise, shallow water the 

Savonius turbine is convenient perfectly (Yaakob et al., 2006; Yaakob et al., 2008a; 

Yaakob, 2012; Yaakob et al., 2012). 

This study aims to develop a modified vertical axis marine current device 

using hydro turbine to harvest the current energy from Malaysia’s ocean. Many 

studies have been done previously on ocean energy devices similar existing turbine 

in UTM, which has the potential in low current velocity (Yaakob et al., 2006; 

Suprayogi Sunanto, 2008; Yaakob et al., 2008a; Yaakob et al., 2013), nevertheless 

the efficiency of design is low around 15% needs to be changed to increase the 

performance in transforming the current energy into harvestable electric energy for 

direct application in coastal environments and small island communities. However, 

it suffers from lower efficiency compared to other water turbines. One of the most 
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important parameter that effect on the Savonius turbine efficiency directly is torque. In 

previous models, negative torque is an important reason of decreasing of turbine 

performance, which happen at different angles of rotation (Altan and Atılgan, 2008; 

Kamoji et al., 2009b; Mohamed et al., 2010). On the other hand, for a modified design 

and achieve a desired result the old method to should be improved. There is a need to 

develop a Savonius undesirable effect which can reduce the effect of negative torque. 

In order to reduce the effect of negative torque leading to enhancing the efficiency of 

the rotor, a modified configuration of Savonius turbine which is called ReT (Reza 

Turbine) was proposed. This can be suitable for Malaysian ocean conditions too. 

1.3 Objectives 

The objectives of this research are: 

1. To determine effective parameters of the Savonius rotor used for a 

low current velocity. 

2. To develop and redesign a modified vertical axis marine current 

turbine by employing efficient advanced methods in CFD 

simulations. 

3. To evaluate the performance of the modified hydro turbine using 

model testing, and to analyze the ReT by a systematic parametric 

study. 

1.4 Scope of Study 

The study will look at the new concepts to modify the conventional ones for 

increasing the efficiency of the turbine. The best items factors of the Savonius rotor 

are also determined. This research employed an advanced setting oriented 

Computational Fluid Dynamics (CFD) by using dynamic mesh as a complex method. 

The lack of facility made the researcher to conduct the CFD simulation as a two-

dimensional analysis. A small-scale model was designed, constructed and tested for 
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performance evaluation in Universiti Teknologi Malaysia low speed wind tunnel. 

Moreover, parametric study was employed to analyse the modified turbine for more 

investigation at different conditions. 

1.5 Significance of the Study 

This project starts with reviewing the previous marine current energy devices 

and tries to introduce a suitable modified turbine for Malaysian seas. The modified 

rotor called ReT uses movable blades with specific design of end plates. Reducing 

negative torque and growing positive torque as novel design, the ReT increases the 

conventional turbine efficiency. Compared to previous models, the novel design has 

achieved a significantly higher performance. In addition, it provides many coastal 

areas and islands with electricity, which can be a reasonable activity to reduce 

environmental pollution in Malaysia. Furthermore, using the ReT can help 

government to take advantage of ocean energy as a renewable energy more seriously. 

1.6 Organization of Thesis   

This dissertation is organized by 5 chapters; a brief content of each chapter is 

explained as follow; 

Chapter 1, presents an introduction to the research problem are given such as 

background, problem statement, objectives of the study, scopes and significant of the 

study. 

Chapter 2, a comprehensive literature review is provided, which includes 

global energy review, introduction of marine current turbines, explanations of 

Savonius turbine parameters with its weakness. The research issues are presented with 

more detailed as well. 
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Chapter 3 introduced a novel model proposed, the modified configuration of 

turbine which called ReT is illustrated and shown in this chapter. The computational 

and experimental methods are explained. The numerical simulation including 

meshing, turbulence model of flow around the turbine, wall function at near wall and 

boundary layers, solver, solutions controls and etc. were described. In this section, the 

turbulence model solves the unsteady Reynolds averaged Navier-Stokes equations 

with a script, based on the programming Language C through the User Defined 

Functions (UDF) for various set of marine current velocity coupled with pressure. It 

employs the Dynamic Mesh Method (DMM) for solving the movements of blades. 

In addition, three different experimental works with introduces the low speed 

wind tunnel of UTM were carried out to evaluate and measure the goal function of the 

new design. Furthermore, set up of experimental and procedure of tests with several 

explanation are given. A flow diagram and structure of the research flowchart are 

given in this chapter. Finally, turbine analysis is usually done through parametric study 

using CFD simulations. 

In chapter 4, the simulation results such pressure contours, velocity vectors, 

torque and power coefficient were presented and moreover validated with other 

studies. The results series of experiments of proposed model consist of pressure 

distribution and measuring of torque and RPM were presented. There are some 

comparisons between conventional Savonius and the modified model. The advantages 

of the ReT in low current speeds are described. Many important parameters of the 

turbine that obtained from tests were presented in this chapter. In the last part of this 

chapter the design parametric study on the novel turbine is numerically investigated. 

Items such as various angles of opening blades, force and torque produced by different 

parts of ReT and different current speed are discovered. 

Finally, the major conclusions are given in chapter 5 which including of brief 

review on the discussion and results of the current study. Additionally, some future are 

works recommended for further research. 
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