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ABSTRACT 

 

 

 

 

This project aimed to produce highly crystalline lithium iron phosphate coated 

aerogel (LiFePO4 nanowires) via coating and sintering LiFePO4 on the surface of an 

aerogel template prepared from cellulose nanofibril (SPCNF) extracted from sago pith 

waste (SPW).  The effects of SPCNF aerogel quantity (Xq), sintering duration (Xt) and 

sintering temperature (XT) on the quality of LiFePO4 were studied.  Specifically, 

SPCNF were first extracted from SPW through combined chemical and mechanical 

treatments, followed by a freeze-drying step to produce an aerogel.  The resulting 

white and spongy SPCNF aerogel was characterized to elucidate its morphology, 

crystallinity, and thermal resistance using field-emission scanning electron 

microscopy, powder x-ray diffraction (PXRD) and thermogravimetric analysis, 

respectively.  Results showed that the morphology of SPCNF aerogel resembled that 

of a web-liked structure with the diameters of each SPCNF measured to be within 15-

30 nm.  The degree of crystallinity of the aerogel was approximately 88.38% and its 

thermal degradation temperature was in the range of 260-350 °C.  The aerogel was 

then coated with LiFePO4 through direct coating on aerogel by applying a uniform 

solution containing Li+, Fe2+ and PO4
3− in 1:1:1 molar ratio and followed by calcination 

and sintering.  The final product, LiFePO4 nanowires had wire-liked structure with the 

diameters between 15-30 nm, and the PXRD and transmission electron microscopy 

verified the nanowires were covered with LiFePO4.  Results from design of experiment 

of full-factorial design showed that the three parameters are significant and the coating 

quality, Y can be correlated with the following equation: Y = 5.662 + 7.23875Xq + 

7.23875Xt + 5.60125XT + 7.23875XqXt + 5.60125XqXT + 5.60125 XtXT + 5.60125 

XqXtXT. 
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ABSTRAK 

 

 

 

 

Projek ini bertujuan untuk menghasilkan kristal litium besi fosfat bersalut 

aerogel (nanodawai LiFePO4) melalui penyalutan ke permukaan templat aerogel 

nanofibril selulosa (SPCNF) yang diekstrak daripada hampas sagu (SPW).  Kesan 

kuantiti aerogel SPCNF  (Xq), tempoh pensinteran (Xt) dan suhu pensinteran (XT) ke 

atas kualiti LiFePO4 telah dikaji.  Secara khusus, SPCNF diekstrak daripada SPW 

melalui gabungan rawatan kimia dan mekanikal, diikuti oleh pengeringan secara 

pembekuan untuk menghasilkan aerogel.  Aerogel SPCNF yang bertekstur lembut dan 

berwarna putih dicirikan dari segi morfologi, darjah penghabluran dan rintangan haba, 

masing-masing melalui kaedah bidang pelepasan mengimbas mikroskopi elektron, 

pembelauan sinar-x serbuk (PXRD) dan analisis termogravimetri.  Hasil ujian 

menunjukkan bahawa morfologi aerogel SPCNF adalah dalam struktur bentuk web 

dengan diameter SPCNF dalam lingkungan 15-30 nm.  Darjah penghabluran aerogel 

SPCNF adalah sebanyak 88.38% dan degradasi termal berlaku pada suhu antara 260-

350 °C.  Aerogel tersebut kemudian disaluti dengan LiFePO4 melalui penyalutan 

langsung ke atas aerogel dengan menggunakan satu larutan homogen yang 

mengandungi ion Li+, Fe2+ dan PO4
3−dalam nisbah molar 1:1:1 dan diikuti oleh proses 

pengkalsinan dan pensinteran.  Produk terakhir, nanodawai LiFePO4 mempunyai 

struktur bentuk dawai dengan diameter dalam lingkungan 15-30 nm, dan analisis 

PXRD dan transmisi elektron mikroskopi mengesahkan nanodawai telah diliputi 

dengan LiFePO4.  Keputusan daripada rekabentuk eksperimen faktorial penuh 

menunjukkan bahawa ketiga-tiga parameter tersebut adalah penting dan boleh 

dihubungkaitkan dengan kualiti salutan, Y melalui persamaan berikut: Y = 5.662 + 

7.23875Xq + 7.23875Xt + 5.60125XT + 7.23875XqXt + 5.60125XqXT + 5.60125 XtXT 

+ 5.60125 XqXtXT. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Background of the Study 

 

 

Malaysia is the world’s third largest exporter of sago starch with a total sago 

palm plantation area of 68,000 ha, after Indonesia (1,843,278 ha) and Papua New 

Guinea (1,020,000 ha) (Ahmad, 2014).  Each year, a large amount of agro-residue 

termed sago pith waste (SPW) or hampas by the locals, is generated during the 

processing of the rasped pith of the sago palm trees.  Improper handling of this agro-

waste can eventually cause environmental problems (Toh et al., 2011).  To date, 

different works have been done in order to turn the SPW into value-added products. 

For example, as an alternative substrate for fermentable sugars production (Linggang 

et al., 2012), bioethanaol production (Saravana et al., 2014) and etc. 

 

 

Aerogel is a highly porous material with high specific surface area, low density 

and low thermal conductivity.  It can be used as thermal insulators, super adsorbents, 

batteries and more.  Kitsler (1932) published the first report on aerogel prepared from 

inorganic gels.  The main drawback of these inorganic aerogel is their poor mechanical 

properties (brittle and fragile) and thus, organic aerogels were introduced (Kim et al., 

2011).  Cellulose nanofibril (CNF) aerogel is a strong organic aerogel. The fibrillar 

morphology of and strong mutual hydrogen bonds in CNF facilitate the mechanical 

ductility and flexibility of the aerogel (Chen et al., 2011 and Pääkkö et al., 2008).  Due 

to their mechanical robustness, CNF aerogels can be used in various applications such 
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as templates for synthesizing inorganic hollow nanotubes (Korhonen et al., 2011) and 

cobalt-ferrite nanoparticles (Olsson et al., 2010).   

 

 

Lithium iron phosphate (LiFePO4) has been identified as the most promising 

cathode material for making lithium ion batteries because of its low cost, high 

theoretical capacity (170 mAh g-1) and long cycle life (Zhang, 2010).  LiFePO4 in the 

form of nano-sized particles has a higher surface electrochemical reactivity, shorter 

diffusion length for electrons and Li-ions and thus, better electrochemical performance 

(Yamada et al., 2001, Jamnik et al., 2003, Dominko et al., 2007 and Saravanan et al., 

2009).  Therefore, different synthetic methods were introduced for the preparation of 

nano-sized LiFePO4 (Gong et al., 2011).  For instance, hydrothermal method was used 

by Yang et al., (2001) to produce high purity, single crystalline LiFePO4 nano-particles. 

This method, however, requires long time i.e. three days to complete the synthesis 

process.  After that, solvothermal processes were utilized by Muraliganth et al. (2008), 

Murugan et al. (2008) and Saravanan et al. (2009) to produce nanostructured LiFePO4. 

Some drawbacks of this method include, low precursor solubility, high cost and high 

reaction temperature.  

 

 

Numerous studies have also been done to synthesize nano-sized LiFePO4 with 

different morphologies such as nanoparticles (Delacourt et al., 2006), nanoplates 

(Saravanan et al., 2009) and nanowires (Lin et al., 2008 and Zhang, et al., 2013).  

Among the wide range of morphologies, nanowires are identified as the most 

promising morphology because they offer a better electrical percolation behaviour 

which means a higher conductivity comparing to that of other morphologies (Bruce et 

al., 2008).   

 

 

In this project, LiFePO4 nanowires were synthesized by using a new approach 

in which, the precursors of LiFePO4 are first coated onto sago pith cellulose nanofibrils 

(SPCNF) aerogel.  The coated SPCNF aerogel is then sintered at high temperature in 

a conventional furnace under N2 atmosphere to produce highly crystalline LiFePO4 

nanowires. 
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1.2 Problem Statement 

 

 

As the world’s third largest exporter of sago starch, Malaysia produces up to 

47,000 metric tons of sago starch annually (Uthumporn et al., 2014).  It is estimated 

that for every kilogram of sago starch extracted, a kilogram of SPW is produced (Lai 

et al., 2013).  These wastes are normally dumped into the rivers together with the waste 

water.  In other words, each year, 52,000 tons of SPW ends up polluting the rivers by 

increasing the biochemical oxygen demand (BOD) of the water.  Microbiological 

degradation of the waste consumes oxygen dissolved in the water, leaving the water 

with insufficient oxygen to support higher forms of life.  

 

 

One of the ways to minimize the impact of SPW is to utilize it and convert it 

into some value-added products such as biofuels, biomaterial, template etc. Kumaran 

and co-workers (1997) utilized SPW as a substrate for the production of enzyme via 

solid substrate fermentation.  Besides that, SPW was also used as an additional carbon 

source in anaerobic digesters for the production of biogas (Abd-Aziz, 2002), an 

alternative substrate for fermentable sugars production (Linggang et al., 2012) and 

bioethanaol production (Saravana et al., 2014). To the best of the author’s knowledge, 

to date, no report on the extraction of SPCNF from SPW is available. 

. 

 

In average, SPW contains about 23% by weight of cellulose (Linggang et al., 

2012).  It is believed that SPCNF could be extracted from SPW via chemical, 

mechanical or a combination of both methods, like what other researchers obtained 

from different types of lignocellulosic agricultural wastes (Jiang et al., 2013 and Chen 

et al., 2014).  The extracted SPCNF adopt a shape similar to that of nanowires and 

their surface contain plenty of hydroxyl functional groups which could interact with 

different types of chemical compounds including metal ions via electrostatic attraction 

or complexation.  Therefore, SPCNF has the potential to serve as a template for the 

synthesis of inorganic nanowires, for example LiFePO4. 
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LiFePO4 is an important nano-sized material for the manufacturing of 

rechargeable battery.  It is used as cathode because of its high specific capacity (170 

mAhg−1), a relatively high redox potential (3.5V), long cycle life, and high stability 

(Wang et al., 2008, Wu et al, 2011).  Researchers reported that, LiFePO4 nanowires 

are more efficient as compared to that of in the form of spherical nanoparticles in 

conducting electricity, due to its longer mean free path (Zhu et al., 2006). 

Unfortunately, to date, LiFePO4 only available commercially in spherical nanoparticle 

form because its synthesis method is easier to be industrialized for mass production 

(Park et al., 2009, Ban et al., 2010 and Carbana et al., 2010).  Therefore, the need for 

the works on developing a simple and scalable method for synthesizing LiFePO4 

nanowires has certainly been recognized in order to solve this problem.  

 

 

Hence, it is hypothesized that LiFePO4 nanowires can be synthesized via a two-

stage, facile synthetic method which involves the coating and calcination of LiFePO4 

on a SPCNF template.  SPCNF surface contains plenty of hydroxyl functional groups 

which are able to form complex with iron (II).  Lithium ion, Li+ and phosphate, PO4
3− 

precursors can then be added to form LiFePO4 upon calcinations. 

 

 

Although the direct use of SPCNF is hypothesized to be able to assist in the 

formation of LiFePO4 nanowires, it is highly likely that LiFePO4 particles could 

formed as a by-product, along with the formation of the nanowires.  If this happened, 

these particles would be challenging to be separated from the nanowires and will exist 

as a contaminant (Lele et al., 2014).  To circumvent this particle contamination issue, 

it is hypothesised that converting the free-standing SPCNF into a SPCNF aerogel with 

large surface area would help.  In aerogel form, the precursor solutions of LiFePO4 

could be better absorbed via capillary force on the surface.  After drying, a thin layer 

of amorphous LiFePO4 could be annealed into crystalline LiFePO4 nanowires formed 

on the SPCNF surface and following the wire-like contour of individual SPCNF within 

the aerogel (Melone et al., 2013).   
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Therefore, this aim of this project is focused on producing LiFePO4 nanowires 

from the precursor coated SPCNF aerogel.  The precursors are expected to be coated 

onto the aerogel uniformly after solvent removal and be transformed into crystals at 

elevated temperature.  Individual SPCNF in the aerogel are expected to serve as a 

template/platform for LiFePO4 nanowires to grow upon. 

 

 

 

 

1.3 Objectives 

 

 

1. To synthesize and characterize SPCNF aerogel interconnected structure 

with web-like appearance.   

 

 

2. To synthesize and characterize LiFePO4 nanowires and study the effects of 

SPCNF aerogel’s quantity, sintering temperature and sintering duration on 

the quality of the LiFePO4 nanowires.  

 

 

 

 

1.4 Significance of the Study 

 

  

The most significant contribution of this study is that LiFePO4 nanowires, a 

very important cathode material can be obtained via a relatively safe and simple 

method namely, coating of LiFePO4 onto the SPCNF aerogel followed by calcinations. 

The proposed use of aerogel template is expected to reduce the formation of particulate 

impurities.  Additionally, this project might lead to a new application for SPCNF, thus 

converting this low value, environmental-polluting agricultural waste into value-added 

consumer products. 
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1.5 Scope of the Study 

 

 

In this project, SPCNF was extracted from SPW using a combination of 

chemical and mechanical methods.  The extracted SPCNF was transformed into 

aerogel via freeze drying.   Meanwhile, LiFePO4 precursors were synthesized from 

Iron (II) chloride, FeCl2, lithium hydroxide monohydrate, LiOH.H2O and phosphoric 

acid, H3PO4 using a mixture of ethylene glycol and water. 

 

 

Coating of the LiFePO4 precursors onto the SPCNF aerogel to produce 

LiFePO4 nanowires were studied by varying three parameters namely, quantity of the 

SPCNF aerogel (0.02-0.06 g), sintering temperature (300-500 °C) and sintering 

duration (60-180 min).  Effects of the three parameters toward the quality of the 

LiFePO4 nanowires were evaluated using design of experiment (DOE) with the aid of 

a software namely, JMP 13. 

 

 

Characterizations of the SPCNF aerogel and LiFePO4 nanowires were done 

through the following techniques: lattice structure and elemental composition were 

analysed by Transmission Electron Microscopy (TEM) and Energy Dispersive 

Spectroscopy (EDS), surface morphology was characterized by Field-Emission 

Scanning Electron Microscopy, (FE-SEM).  Chemical analysis was accomplished via 

Fourier Transform Infrared Spectroscopy (FTIR) and Powder X-ray diffraction 

(PXRD).  Lastly, thermal stability was evaluated by using Thermo-gravimetric 

Analysis (TGA) and Simultaneous Thermal Analysis (STA). 
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