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ABSTRACT 

 

 

 

 

This research focused on the development of new Technische Universiteit 

Delft (TUD)-supported catalysts that are applicable for the photodegradation of 

organic pollutants and for the epoxidation of various olefins. In this study, the 

feasibility of relatively new mesoporous materials namely Technische Universiteit 

Delft-1 (TUD-1), amorphous silica material and Technische Universiteit Delft-

Crystalline (TUD-C), hierarchical zeolitic material with MFI framework as the 

support for transition metal oxide doped titania was investigated. Two series of 

samples TUD-1 supported Cr doped TiO2 (Cr-TiO2/TUD-1(x)) and TUD-C 

supported Mo doped TiO2 (Mo-TiO2/TUD-C(y)) were synthesized via a single soft-

templating approach involving the combination of sol-gel and hydrothermal 

treatment. The synthesized materials were characterized using X-ray Diffraction 

(XRD), Fourier Transform Infrared Spectroscopy (FTIR), Diffused Reflectance 

Ultraviolet-visible Spectroscopy (DRUV-Vis), Nitrogen adsorption-desorption 

surface analysis, Temperature Programmed Desorption of Ammonia analysis (NH3-

TPD), X-ray Photoelectron Spectroscopy (XPS), Field Emission Scanning Electron 

Microscopy (FESEM) and Transmission Electron Microscopy (TEM).  Optimization 

was carried out by varying the Si/Ti molar ratio in TUD-1 (x = 10 – 50) and Si/Al 

molar ratio in TUD-C (y = 10 – 50). For the photocatalytic reactions, results 

demonstrated that all the TUD-1 supported Cr-TiO2 materials were better 

photocatalysts compared to that of unsupported Cr-TiO2. Cr-TiO2/TUD-1(30) 

achieved the highest photodegradation percentage for Malachite Green (75.6%), 

Congo Red (50.8%) and phenol (82.0%) under visible light irradiation. The 

adsorption of phenol followed the Langmuir adsorption isotherm, while the 

photodegradation of phenol obeyed the first order kinetics.  As for the oxidative 

reactions, Mo-TiO2 supported on TUD-C, with Si/Al molar ratio = 10 exhibited the 

highest epoxide yield for various types of olefins at ambient conditions. As compared 

to the unsupported Mo-TiO2, TUD-C supported Mo-TiO2 samples showed 

significantly higher conversion with 100% selectivity towards formation of epoxides.  

All the epoxidation reactions followed the first order kinetics.  The increment of 

catalytic activities for both series of materials is attributed to the high surface area 

(496 – 1034 m
2
/g) and tunable porosity (2.83 – 5.84 nm), which provides better 

adsorption and diffusivity. The excellent oxidative capabilities of TUD-C supported 

materials were also accounted for the increased acidity originated from the 

aluminosilicate framework. Effect of reaction parameters including initial 

concentration (100 - 500 ppm), pH (2 - 11), catalyst amount (0.05 - 0.5 g), and 

reaction duration (6 - 72 h) in both photocatalytic and oxidative reactions were 

studied. TUD-1 and TUD-C are promising catalyst supports and have significantly 

improved the photocatalytic and catalytic performance of the transition metal oxides 

doped TiO2. 
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ABSTRAK 

 

 

 

 

Kajian ini tertumpu kepada pembangunan mangkin tersokong Technische 

Universiteit Delft (TUD) baharu yang boleh digunakan untuk fotodegradasi 

pencemar organik dan pengepoksidaan pelbagai olefina.  Dalam kajian ini, 

kesesuaian bahan liang meso relatif baharu iaitu Technische Universiteit Delft-1 

(TUD-1), bahan silika amorfus dan Technische Universiteit Delft-Berhablur (TUD-

C), bahan zeolit berhiraki dengan rangka kerja MFI sebagai penyokong untuk logam 

peralihan oksida terdopkan titania  telah dikaji.  Dua siri sampel TUD-1 disokong Cr 

terdopkan TiO2 (Cr-TiO2/TUD-1(x)) dan TUD-C disokong Mo terdopkan TiO2 (Mo-

TiO2/TUD-C(y)) telah disintesis menggunakan pendekatan templat lembut tunggal 

yang melibatkan gabungan rawatan sol-gel dan hidroterma.  Bahan yang disintesis 

dicirikan menggunakan belauan sinar-X (XRD), spektroskopi infra merah 

transformasi Fourier (FTIR), spektroskopi pantulan terbaur ultralembayung-nampak  

(DRUV-Vis), analisis permukaan penjerapan-nyaherapan nitrogen, penyaherapan 

suhu teraturcara analisis ammonia (NH3-TPD), spektrospkopi fotoelektron sinar-X 

(XPS), mikroskopi imbasan elektron pancaran medan (FESEM) dan mikroskopi 

penghantaran  elektron (TEM).  Pengoptimuman telah dijalankan dengan mengubah 

nisbah molar Si/Ti dalam TUD-1 (x = 10 - 50) dan nisbah molar Si/Al dalam TUD-C 

(y = 10 - 50). Untuk tindak balas fotopemangkinan, keputusan menunjukkan bahawa 

semua TUD-1 disokong bahan Cr-TiO2 adalah fotomangkin yang lebih baik 

berbanding dengan Cr-TiO2 yang tiada penyokong.  Cr-TiO2/TUD-1(30) mencapai 

peratus fotodegradasi tertinggi bagi Malakit Hijau (75.6%), Kongo Merah (50.8%) 

dan fenol (82.0%) di bawah penyinaran cahaya nampak.  Penjerapan fenol menurut 

isoterma penjerapan Langmuir, manakala fotodegradasi fenol mematuhi kinetik tertib 

pertama. Untuk tindak balas pengoksidaan, Mo-TiO2 tersokong pada TUD-C, dengan 

nisbah molar Si/Al = 10 menunjukkan hasil epoksida tertinggi untuk pelbagai jenis 

olefina pada keadaan ambien.  Berbanding dengan Mo-TiO2 tidak disokong, sampel 

Mo-TiO2 disokong TUD-C menunjukkan penukaran yang lebih tinggi dengan 100% 

kepilihan ke arah penghasilan epoksida. Kesemua tindak balas pengepoksidaan 

mengikut kinetik tertib pertama. Peningkatan aktiviti bermangkin untuk kedua-dua 

siri bahan disebabkan oleh luas permukaan yang tinggi (496-1034 m
2
/g) dan 

keliangan tertala (2.83-5.84 nm), yang memberikan penjerapan dan keresapan yang 

lebih baik.  Keupayaan oksidaan cemerlang bahan TUD-C berpenyokong juga 

menyumbang kepada  peningkatan keasidan yang berasal daripada kerangka kerja 

aluminosilikat. Kesan parameter tindak balas termasuk kepekatan asal (100 - 500 

ppm), pH (2 - 11), amaun mangkin (0.05 - 0.5 g), dan tempoh tindak balas (6 - 72 j) 

dalam kedua-dua tindak balas pemfotomangkinan dan oksidaan telah dikaji.  TUD-1 

dan TUD-C adalah penyokong mangkin yang berpotensi dan telah menambahbaik 

prestasi pemfotomangkinan dan pemangkinan logam oksida peralihan terdopkan 

TiO2 dengan ketara. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Catalysis is circumscribed as the incremental rate of chemical reaction due to 

the involvement of a surplus matter entitled catalyst. A catalyst works via a surrogate 

labile pathway to acquire the output.  The reaction rate is escalated as the alternative 

pathway features lower energy of activation compared to the primary reaction route 

that is not ameliorated exploiting the catalyst.  Reactions become quicker and expend 

comparably lesser energy with the employment of catalyst.  Since catalysts are not 

consumed hence the catalysts could be recycled. Furthermore, only infinitesimal 

quantities of catalyst are required during a reaction.  The manufacture of industrially 

essential chemicals generally copes with catalysis.  Concurrently, almost all 

biochemically pivotal activities are catalyzed utilizing enzyme as the catalyst 

likewise (Friedrich & Hahn, 2015).  Research of catalysis is a prime acquisition 

discipline in applied sciences and regards broad arrays of chemistry, specifically in 

organometallic catalysis and engineering science.  Catalysis is also colligated to 

numerous attributes of environmental chemistry, e.g. the greenhouse gas catalytic 

convertor for automotive vehicles and the kinetics of ozone disparity (Botas et al., 

2001).  Catalytic practices incurred much attention in green chemistry which is 

environmentally benignant due to the diminutive amount of waste matter created; 

contradicted to stoichiometric applications where every last reactants are consumed 

entirely with the production of unsought by-products.  The by-large applied catalyst 

is normally the hydrogen ion, H
+
.  Assorted transition metals and transition metal 

complexes are as well highly applied in catalysis. The chemical attributes of catalysts 
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are as contrasting as the catalysis itself, even though several inductive reasoning can 

be inculcated.  Protonated acids are perhaps the highest amply employed catalysts, 

particularly for various applications that concern water, hydrolysis reactions and its 

inverse (Dassie, 2014).  Multifunctional catalysts e.g. zeolites, alumina, higher-

oxidation state oxides, graphitic carbon, nanoparticles, quantum dots, and 

characteristics of sizeable materials are commonly catalytically activated 

(Ozekmekci et al., 2015; Dong et al., 2014).  Transition metals are ordinarily applied 

to catalyze reduction-oxidation reactions for example oxidation, epoxidation and 

hydrogenation.  In industry, Raney nickel is used for hydrogenation reaction; while 

vanadium(V) oxide is applied for oxidation of sulfur dioxide to make sulfur trioxide 

via the renowned contact process (Wang et al., 2012; Sakurai et al., 2000).  

Numerous catalytic practices, especially those are utilized in organic synthesis 

demand transition metals, for example chromium, vanadium, cobalt, molybdenum, 

rhodium, or iridium (Huber et al., 2014).  Chemical species which heighten the 

catalytic activeness are titled co-catalysts or boosters in synergetic catalysis. 

 

 

 According to chemistry definition, photocatalysis is ascertained as the 

speedup of a photoreaction within the existence of a catalyst.  In the catalytic 

photoreaction, photon is assimilated by the photocatalyst.  In photo-generation 

catalysis, the photocatalytic activity (PCA) reckoned on the potency occurrence of 

the photocatalyst to generate electron-hole, that produces emancipated radicals e.g. 

hydroxyl radical, •OH which is employed to go through progressive reactions.  Its 

pragmatically employment was made accomplishable due to the insight in water 

electrolysis via application of titanium dioxide (TiO2) (Chatterjee, 2010).  The 

specialized utilized overture is called the advanced oxidation process (AOP) which is 

cardinal for abjection of environmentally pestilent organic waste matter such as 

synthetic dyes and phenolic substances (Gasull et al., 2015).  There are numerous 

impartment the AOP can be implemented, nevertheless it perchance may not even 

feature TiO2 or the irradiation of UV light.  In general, the determinant component is 

the creation and employment of the hydroxyl radical.  Heterogeneous catalysis is 

defined as the catalyst which is in a discrete phase different to the reactants.  

Heterogeneous photocatalysis is a discipline that pertain a broad assemblage of 

intermediate or absolute oxidation procedures, e.g. dehydrogenation, hydrogen 
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transferal, metal accretion, water treatment, and gasified pollutant removal (Wang et 

al., 2015).  Usually, the employed heterogeneous photocatalysts are oxides of 

transition metal and semiconducting materials, which comprise circumstantial 

features.  Incommensurable to metals which possess an incessant electronic band; 

semiconductors have a nullity energy region where none of the energy bands are 

accessible to encourage the recombining of electron-hole consequence via 

excitement of electron because of trapped photon within the photocatalyst.  The 

vacant void that protracts inside the upper berth of the filled valence band (VB) until 

the lower berth of the empty conduction band (CB) is defined as the band gap.  When 

single photon with correspondent to or higher energy comparative to the 

photocatalyst band gap is assimilated, an excited electron is produced and followed 

by the promotion from the VB to the CB, constituting a positively charged hole 

situated within the valence band (Hamad et al., 2015).  The excited electron (e
-
) 

within the conduction band and hole (h
+
) are able to recombine and the emancipated 

energy will be incurred as discharged heat from the recombination process.  An 

ineffective photocatalyst always directs to speedup of electron-hole recombination 

thus it is unenviable.  The eventual objective of this process is to incur a response 

between the reaction of photoexcited electrons with an oxidant to create ablated and 

elementary matters, and also a reduction process of the positively charged vacant 

holes to generate an oxidized matter.  Via the constitution of vacant holes and 

photoexcited electrons, occurrence of redox reactions will locate at the boundary of 

photocatalysts.  For the oxidation reaction, the positively charged holes respond with 

the surface moisture to generate hydroxyl radicals. 

 

 

Oxidation procedures described from the photocatalytic effect (Mills & Le Hunte, 

1997) are expressed below: 

UV + MO → MO (h
+
 + e

-
) 

Where MO is denoted as metal oxide 

h
+
 + H2O → H

+
 + •OH 

2h
+
 + 2H2O → 2H

+
 + H2O2 

H2O2 → HO• + •OH 

Meanwhile, reduction procedures described from the photocatalytic effect are shown 

below: 
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e
-
 + O2 → •O2

-
 

•O2
-
 + 2HO• + H

+
 → H2O2 + O2 

HOOH → HO• + •OH 

 

 

Eventually, the oxidation-reduction process creates hydroxyl radicals which 

perform as the essential reactants for the photodegradation of the organic pollutant. 

Generated hydroxyl radicals are extremely oxidative with negligible selectivity and 

possess a reduction potential equal to E0 = +3.06 V (Yang et al., 2015).  Figure 1.1 

shows the generic delegacy for the production of hydroxyl radical generated from the 

AOPs within the photocatalysis procedures. 

 

 

 Photocatalysis is pivotal for the amelioration of environmental difficulties 

especially in the photodegradation of organic waste matters for instance synthetic 

dyes and phenolic compounds.  Dyes are ordinarily separated into acidic and basic 

dyes, based on the chemical features.  Synthetic dyes are produced industrially by 

large quantity; approximately 7 x 10
5
 tons are synthesized per year ((Ning et al., 

2015).  Dyes manufacturers have high interest with dyes that possess strong 

durability and high consistency.  Consequently, the synthetic dyes produced are 

unremarkably much too stronghold for the degradation via the wastewater treatment.  

Most synthetic dyes are ignorantly discarded, thus their carcinogenic and mutagenic 

natures could result in caustic deformation towards living organisms and 

environment health.  Presently, numerous physicochemical and biological handling 

manners for instance coagulation, flocculation, oxidation, chemical treatments and 

adsorption have been copiously utilized for the intent of dyes elimination (Suresh et 

al., 2015).  Still, these handling methods do poses their hold back such as formation 

of toxic sludge as undesired side products, expensive operational cost, mechanical 

restrictions, reliability on waste concentration, environmentally malignancy and 

inefficiency in getting rid of dye color as reported (Gautam et al., 2015).  Phenol is a 

broadly utilized compound that performed as a crucial commercial commodity.  

Phenol also performs as a starting material for the production of numerous materials 

and utile merchandise.  Besides, phenol and its chemical derivatives is chief 

constructing unit for polycarbonates, epoxies, Bakelite, nylon, detergents, herbicides, 

and various pharmaceutical drugs.  Hence, phenol has been produced in an immense 
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quantity, which is estimated to be 7 billion kg per annum (Kumaran & Paruchuri, 

1997).  Nonetheless, due to vast scale synthesis, inordinate output, and crude 

handling, phenol has induced environmental phenomenon in the pattern of water 

resources contamination.  Phenol possesses superior water solubility yet human 

physique permissiveness towards phenol is only 311 mg/kg (Chen et al., 2010), 

hence it is exceedingly hazardous to human health as phenol can ensuing systemic 

poisoning and deterioration to the eyes, skin and respiratory tract.  Thus, 

photocatalysis is recommended as a suitable candidate for phenol degradation via 

conversion of phenol into lesser extent harmful components through total 

mineralization approach employing AOPs. 

 

 

 Oxidation reactions perform as a decisive role in chemical industry for the 

synthesis of various pivotal compounds.  Numerous principal chemicals and 

intermediates such as alcohols, epoxides, aldehydes, ketones and organic acids are 

produced via selective oxidation processes in the latter-day chemical industry 

(Thompson et al., 2015; Witt et al., 2015). For instance, the selective oxidation of 

alkyl-exchanged benzene produces alcoholic components and ketones which 

dominate considerable involvement in biochemically and mechanical contemporary 

organic synthesis.  Phenylethane is an emblematical component in the synthesis of 

various straight-chain and phenyl-replaced alkanes.  It was abundantly used as a 

representative reactant to scrutinize the oxidation processes of alkanes.  The 

oxidation resultants of phenylethane forms phenylethanone and 

phenylmethylcarbinol which have been broadly utilized as starting blocks for the 

synthesis of a huge variance of  pharmaceutical drugs, for instance hydrogel, chiral 

alcohols, hydrazones, benzylideneacetophenone, resins and numerous scents (Gan et 

al., 2015; Asati et al., 2015).  The selective oxidation of propene to produce propenal 

(acrolein), ammo-oxidation of propene to generate 2-propenenitrile via Standard Oil 

of Ohio (SOHIO) process, selective oxidation of butane to form 2,5-furanedione, 

epoxidation of ethene to form ethanal (acetaldehyde) and selective oxidation of 

methanol to produce methanal (formaldehyde) are the notably ideal exemplars (Cespi 

et al., 2014; Dias et al., 2015) 
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Oxidation is the succeeding most prominent process subsequent of 

polymerization. The oxidation processes substantiate approximately 30% of total 

manufactory of commercial chemicals (Charles et al., 2014).  Selective oxidative 

catalysis is also pivotal for the corroboration of green chemistry and substantial 

chemical processes.  Particular representation is the selective oxidation of 

hydrocarbons; the selectivity in the occurring chemical industry has to be farther 

improvised to relegate the production of non-selective side products, particularly 

CO2 (Zhai et al., 2015).  This demands optimization of precocious catalysis and the 

industrial operations employed in the existing chemical synthesis.  Secondly, there is 

a substantial inducement to design unprecedented oxidation processes which 

accomplish the generalization of green chemistry.  Specifically, it is needy sought 

after to come up with novice catalytic oxidation methods for the amelioration of 

current energetically inefficient and environmentally malignance multi-stepwise 

processes.  Oxidative catalysis has been a pivotal procedure in various industrial 

employments especially in the synthesis of epoxides.  Numerous epoxides acquired 

from different olefins are crucial by acting as starting materials and intermediates in 

the production of various advantageous end outputs for instance plastics, polymers, 

and pharmaceutical drugs (Zhang et al., 2015).  The epoxides are mostly applied in 

fine chemical synthesis, polymer production, cosmetics and pharmaceutical 

applications.  Nonetheless, even though catalysis has been utilized in the industrial 

synthesis for production of epoxides, the yield of product and selectivity remain 

unfavorable.  Moreover, harsh experimental condition, application of hazardous 

solvents and oxidants are not exactly environmental benignant as presented in 

previous researches.  Hence, an environmentally friendly catalyst which possesses 

high compatibility with numerous olefins is a requisite in order to produce high 

product yield and selectivity towards the formation of epoxides. 

 

 

TiO2 is an efficacious substance aptly acting as both photocatalyst and 

oxidative catalyst.  Its high efficiency and non-toxicity successfully made it a 

desirable nominee for numerous catalytic reactions.  Nevertheless, the low surface 

area, aggregation/agglomeration and incapability to execute under visible light 

irradiation have been the fundamental drawbacks of TiO2 (Wickramaratne & 

Jaroniec, 2015).  Umpteen modifications have since been researched in order to 
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promote the surface area and efficiency of TiO2 via usage of templates as structure 

directing agents.  Many alterations have been implemented such as transition metal 

oxide doping using Mo, V, Cr, Pd, Co, Pt, Ag, Au etc., surface functionalization via 

numerous organic chelating ligands, spatial templating modification (hollow, 

nanorod, nanosphere, nanotube etc) and employment of catalytic support (Ou & Lo, 

2007; Devi & Kavitha, 2013).  Silica matrixes for example Mobil Composition 

Matter-41 (MCM-41), Santa Barbara Amorphous-15 (SBA-15), Folded Sheet 

Mechanism-16 (FSM-16), zeolites and metal oxides have been intensively reported 

as catalyst support(Nomura et al., 2015; Salis et al., 2015).  In this research, 

transition metal doping and catalyst support were designated as the modification 

methods.  Transition metal doping enabled TiO2 to perform at visible light region via 

modification of the extended wavelength response range.  The doped transition metal 

oxides could also act as active sites.  On the other hand, employment of catalytic 

support has rendered a high surface area, high porosity with homogeneous 

distribution of catalytic active sites for promoted catalytic activity. 

 

 

 Utilization of silica and zeolites as catalytic support has been a well-

documented modification method.  Nonetheless, silica supports for instance MCM-

41, SBA-15, FSM-16 and silica aerogel are catalytically latent with reproving 

selectivity, low compatibility, aggregates/agglomerates formation and involves high 

cost with time consuming synthesis procedures (Yeung & Han, 2014).  Application 

of templates in the synthesis of these silica supports has also acquainted impurities.  

Zeolites have been employed in numerous catalytic processes, for instance in 

catalytic cracking and hydroxygenation.  Even so, the microporosity of zeolite has 

been the firsthand constraining cause, resulted in permanent adsorption, steric 

blockage, formation of coke and travail in shape selectivity exploitation (Galadima & 

Muraza, 2015).  Thus, in order to meliorate this susceptibility, mesoporous zeolite 

with various frameworks for instance Faujasite (FAU), Zeolite Socony Mobil-5 

(ZSM-5), Potassium exchanged Zeolite A (KA), Linde Type N (LTN) etc. has been 

presented in recent exploitation of catalytic support which demonstrated huge 

potentiality and curiosities (Johnson & Arshad, 2014).  In this study, comparatively 

novice catalytic support of Technische Universiteit Delft (TUD) was used.  Its 

members of Technische Universiteit Delft-1 (TUD-1) and Technische Universiteit 
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Delft-Crystalline (TUD-C) were employed as catalytic support for TiO2-based 

photocatalyst and oxidative catalyst, respectively. In fact, TUD-1 is mesoporous 

silica; while TUD-C is a hierarchical mesoporous zeolitic material that could be 

easily obtained from the modification of TUD-1. Thus, TUD-C possessed both the 

assets of mesoporosity from silica and catalytic reactivity from zeolites (Wang et al., 

2009).  It was reported that, by loading transition metal doped TiO2 onto TUD-1, the 

catalytic activities in oxidation reactions was increased substantially.  However, there 

are still numerous features and characteristics of TUD-1 that remain unexplored.  

Similarly, usage of TUD-C as catalyst support is limited. Hence, further studies are 

required to apprehend a thorough discernment of how this novel catalyst performs as 

well as the interactive phenomenon between the catalyst and catalytic support.  

Furthermore, feasibility of TUD-1 and TUD-C performing as catalytic support 

demands much vindication. 

 

 

 

 

1.2 Problem Statement 

 

 

 Transition metal oxide doping has been reasoned to be a competent alteration 

mean to promote the photocatalytic and oxidative catalytic capabilities of the TiO2.  

Nonetheless, transition metal oxide doped TiO2 experienced quite several drawbacks 

for example low surface area and porosity.  Likewise, the agglomeration/aggregation 

of TiO2 active sites has diminished its efficacy as photocatalyst and oxidative 

catalyst.  Moreover, higher content of transition metal oxides might also perform as 

recombination centers for the photon excited charge carriers hence, reducing the 

quantum efficiency.  Transition metal oxides have also been exposed to induce 

thermal instability to the anatase phase of TiO2.  Another disadvantage is 

photocorrosion and encouraged charge recombination at dopant centers.  In order to 

curb these liabilities, application of high surface area and porous materials has been 

highly recommended.  Among the materials studied, zeolite, MCM-41 and SBA-15 

were always preceded to be prime selection.  Zeolite is a well reported material 

featuring surface active sites that are capable of forming good interaction with 

various organic pollutants and olefins.  Still, microporous zeolite suffered from pore 

blockade and limited diffusivity due to diminutive pore diameter, while mesoporous 
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silica that features bigger pore diameter lacked of appropriate active centers for the 

interaction with olefins for epoxidation reaction.  Thus, the design of novice 

multifunctional catalytic supports with tailored pore diameter and active sites was 

carried through in this study. 

 

 

Diffusion restrictions are a stellar drawback of proliferous catalysts.  It is 

specifically epochal for applications regarding huge reactants, for instance the fluid 

catalytic cracking (FCC) process in petroleum refinery.  The reinforced functioning 

of porous catalysts can be visualized upon increased availability to the active centers 

in the micropores and diminution of pore obstruction.  Minuscule zeolite crystals, for 

instance, possess truncated diffusion distance; hence, the availableness of the active 

centers is accrued.  To lessen the pore impediment, an accomplishable way is to 

enclose interlinked bigger pores inside the array constitution.  These pores can also 

facilitate the conveyance of huge reactants.  Prompted by nature constructions, for 

example human lungs and foliage, it is anticipated that umpteen catalytic 

applications could have higher selectivity and efficacies if the catalysts featured 

tailored hierarchical porous network architecture.  Construction of pores at various 

length measurements (e.g. micro-, meso-, and macro-) in a controlled regulated 

method, rather than random assemblage, appeared as the direction of such on-going 

investigation.  This study aimed especially on the hierarchically construction of 

mesopores in the resulted catalysts. 

 

 

From the forego researches, there are several disfavors encountered in the 

photodegradation of organic pollutants and epoxidation of olefins. Among the 

difficulties faced are expensive synthesis cost of the materials utilized, rudimentary 

mineralization, production of unsought by-products and intermediates with decline 

product yield and selectivity.  In order to counter these shortcomings, low cost 

novice multipurpose catalysts that are capable to perform as both photocatalyst and 

oxidative catalyst with high efficacy are much coveted.  TUD-1 and TUD-C are 

silica matrix and hierarchical zeolitic matter with high surface area.  However, 

reports on their usage as catalytic support remain limited.  Moreover, reaction 

parameters that could impact the effectiveness of catalyst on photodegradation of 

organic pollutants and olefins epoxdation continue to be unclear.  Hence, effects of 



10 
 

various experimental states were studied meticulously to present the optimum 

catalytic achievement of transition metal oxide doped titania. 

 

 

 

 

1.3 Objectives 

 

 

 In order to study the feasibility of TUD-1 and TUD-C as catalyst supports, 

multiple objectives have to be achieved. The objectives of this study were: 

 

 

1) To synthesize the chromium oxide doped titania supported TUD-1 (Cr-

TiO2/TUD-1(x), x = Si/Ti molar ratio) and molybdenum oxide doped titania 

supported TUD-C (Mo-TiO2/TUD-C(y), y = Si/Al molar ratio) via sol-gel 

method, followed by hydrothermal treatments with single template approach. 

2) To characterize the physical and chemical properties of the synthesized Cr-

TiO2/TUD-1(x) and Mo-TiO2/TUD-C(y) with lower band-gap and higher surface 

area, porosity and acidity. 

3) To assess the catalytic performance of Cr-TiO2/TUD-1(x) and Mo-TiO2/TUD-

C(y) in photodegradation of organic pollutants and epoxidations of various 

olefins, respectively. 

 

 

 

 

1.4 Scope of Study 

 

 

 Transition metal oxide doped titania (M-TiO2) with Cr and Mo dopants set at 

1 mol% was synthesized via sol-gel method.  Combining sol-gel, wet impregnation 

and hydrothermal treatment, TUD-1(x) was prepared.  TUD-C(y) was synthesized 

via the similar process with the addition of aluminium isopropoxide (Al(O-i-Pr)3) for 

the formation of zeolitic material where y is denoted as Si/Al molar ratio (y = 10, 20, 

30, 40, 50).  Both synthesis procedures employed triethanolamine (TEA) and 

tetraethylammonium hydroxide (TEAOH) as structure guiding and scaffolding 

precursor, respectively.  Cr-TiO2 was supported onto TUD-1(x) and Mo-TiO2 was 
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supported onto TUD-C(y) via wet impregnation approach in order to obtain 

chromium oxide doped titania supported TUD-1 (Cr-TiO2/TUD-1(x)) and 

molybdenum oxide doped titania supported TUD-C (Mo-TiO2/TUD-C(y)), where x 

is denoted as the Si/Ti molar ratio (x = 10, 20, 30, 40, 50) and y is denoted as the 

Si/Al molar ratio (y = 10, 20, 30, 40, 50).  For comparison intent, TiO2 was 

synthesized. 

 

 

The characteristics of the synthesized samples were characterized via X-ray 

diffraction (XRD) analysis, N2 adsorption-desorption analysis, Fourier-transform 

infrared (FTIR) spectroscopy, diffuse reflectance ultraviolet-visible (DRUV-Vis) 

spectroscopy, transmission electron microscopy (TEM), field emission scanning 

electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy.  

Ammonia temperature programmed desorption (NH3-TPD) and X-ray photoelectron 

spectroscopy (XPS) analyses were also executed. 

 

 

For the initial section of the catalytic testing, a series of Cr-TiO2/TUD-1(x) 

samples with 1 mol% dopant and Si/Ti molar ratios were subjected to the 

photocatalytic degradation of selected organic pollutants, namely synthetic dyes and 

phenol.  The adsorption isotherm models for synthetic dyes and phenol were studied 

via three propositions, namely Langmiur, Freundlich and Temkin isotherms, 

severally.  Numerous parameters for instance initial concentration of organic 

pollutants (100 – 500 ppm), reaction duration ( 3 – 12 h), pH (2 – 11) and amount of 

photocatalyst used (0.1 – 0.5 g) were studied in order to achieve the principal 

component influencing the photocatalytic activities.  The photocatalytic efficiency of 

Cr-TiO2/TUD-1(x) in photodegradation of synthetic dyes and phenol was measured 

using UV-Vis spectroscopy.  In the secondary section of the catalytic testing, Mo-

TiO2/TUD-C(y) with various Si/Al molar ratios was subjected to the epoxidation of 

olefins.  Effect of numerous experimental conditions for example reaction duration 

(6 – 72 h), initial concentration (5 – 25 mmol), and pH (2 – 11) were studied.  The 

catalytic achievement of Mo-TiO2/TUD-C(y) was appraised via gas chromatography 

(GC).  Kinetic studies were studied on Mo-TiO2/TUD-C(y) for epoxidation of 

various olefins in order to perceive better apprehension on the rate of reaction and 

reaction order. 
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1.5 Significance of Study 

 

 

In the preceding studies, great attempt has been allotted in the studies of 

discovering appropriate materials and methods for the removal of extremely 

dangerous organic pollutants and for epoxidation reactions. In this study, Cr-

TiO2/TUD-1(x) and Mo-TiO2/TUD-C(y) are novice catalytic materials used for the 

photocatalytic degradation of organic pollutants and epoxidation of olefins, severally.  

Both TUD-1 and TUD-C were able to perform as good catalytic supports because of 

their high surface area, porosity, and tunable features which can be tailored for 

various catalytic applications.  Initial attempt was carried out in this study to 

investigate the feasibility of the TUD-1 and TUD-C as catalytic support for transition 

metal oxide doped titania in both photocatalytic and oxidative catalytic applications. 

 

These novel catalytic materials were found to enhance the adsorption 

potentiality and photocatalytic/catalytic capability comparative to the unsupported 

transition metal oxide doped titania.  These important discoveries not only broaden 

the utilization of TUD-based materials, but also profoundly improved the cognition 

in material science.  Additionally, the pivotal features of the multipurpose TUD-

based catalysts for the photodegradation of organic pollutants and epoxidation of 

numerous olefins were elucidated.  The knowledge would renders heighten 

understanding for the constitution of other photocatalysts and oxidative catalysts. 

 

 

 Due to the huge quantity of the synthetic dyes and phenol being discharged 

per annual, removal of these waste matters is necessary nowadays for the restoration 

of the environment and human wellbeing.  Epoxides are fundamentally utile in the 

production of useful end products; thus it is perspicacious to design a novel matter 

which is appropriate for the upscale production with high yield and selectivity at the 

same time environmentally benignant.  Via conduction of this study, novel effective 

multifunctional catalyst for the removal of organic pollutants and epoxidation of 

olefins was acquired.  The synthesized materials feature an easy and low-cost 

synthesis approach, which is beneficial for the utilization in environmental science 

and industrial production.  
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