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ABSTRACT 

 

 

 

 

The plasma focus device is a potential source of multi-radiation emission. 

Numerical experiments were performed to study the multi-radiation emission of soft 

X-ray and neutrons from Mather type plasma focus devices with energies ranging 

from 1.4 kJ to 480 kJ operated in deuterium and argon gases. This device was chosen 

since it provides an open geometry with large possible collection angles operated 

over wide parameter ranges. However, the study of optimum gas pressure, current 

sheath speed, and pinch current is still required for a better understanding of the 

device. In this study, the Lee’s Code version RADPF6.1b was used to perform the 

current profiles fitting process. The mass sweeping and current factors for axial and 

radial phase were used to accommodate the conditions encountered in the 

experiments. All gross properties including the radiations were realistically modelled 

once the computed and measured current profiles are well fitted. In the case of 1.4 kJ 

plasma focus device, the optimum computed neutron yield, Yn was 2.9 × 107 

neutrons/shot at 5.5 Torr deuterium pressure. The optimum computed Yn of 1.447 × 

108 neutrons/shot for 11.2 kJ plasma focus device was achieved at 4.1 Torr. For 28.8 

kJ device, the optimum computed Yn of 1.24 × 109 neutrons/shot was obtained at 2.2 

Torr deuterium pressure at 20 kV. For the 480 kJ device, the optimum yield of 1.8 × 

10
11

 neutrons/shot was obtained at pressure and charging voltage of 7.6 Torr and 27 

kV respectively. Analysis of the results showed that the optimum neutron yields 

were achieved only at optimum operating conditions. It was also found that no soft 

X-rays were emitted from the 28.8 kJ plasma focus operated in argon gas due to the 

absence of Helium-like and Hydrogen-like ions at the recorded low plasma 

temperature of 0.094 keV and axial speed of 8.12 cm µs-1. In conclusion, the current 

sheath speed is not a dominant factor for optimizing neutron yield in plasma focus 

devices. 
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ABSTRAK 

 

 

 

 

Peranti tumpuan plasma adalah satu sumber berpotensi bagi perlepasan 

sinaran-pelbagai. Ujikaji berangka telah dijalankan untuk mengkaji pelepasan 

sinaran-pelbagai bagi sinar-X lembut dan neutron daripada peranti tumpuan plasma 

jenis Mather dengan julat tenaga daripada 1.4 kJ hingga 480 kJ yang beroperasi 

dalam gas deuterium dan argon. Peranti ini telah dipilih kerana ia menyediakan satu 

geometri terbuka dengan sudut pengumpulan yang besar dan boleh beroperasi 

dengan julat parameter yang luas. Walau bagaimanapun, kajian terhadap tekanan gas 

optimum, kelajuan sarung arus, dan cubitan arus masih diperlukan untuk 

pemahaman yang lebih baik terhadap peranti ini. Dalam kajian ini, Kod Lee versi 

RADPF6.1b telah digunakan untuk melaksanakan proses pemasangan profil arus. 

Faktor jisim sapuan dan arus bagi fasa paksian dan jejarian telah digunakan untuk 

menampung keadaan yang dihadapi dalam ujikaji. Semua sifat pukal termasuk 

dinamik sinaran telah diragakan secara nyata apabila profil arus yang dihitung dan 

diukur disesuaikan dengan baik. Dalam kes peranti 1.4 kJ, perlepasan neutron 

optimum yang dihitung, Yn ialah 2.9 × 107 neutron/tembakan pada 5.5 Torr tekanan 

deuterium. Yn optimum yang dihitung bagi 1.447 × 108 neutron/tembakan untuk 

peranti tumpuan plasma 11.2 kJ telah dicapai pada 4.1 Torr. Untuk peranti 28.8 kJ, 

Yn optimum yang dihitung bagi 1.24 × 109 neutron/tembakan telah diperoleh pada 

2.2 Torr tekanan deuterium pada 20 kV. Untuk peranti 480 kJ, Yn optimum dihitung 

bagi 1.8 × 1011 neutron/tembakan telah diperoleh masing-masing pada tekanan dan 

penyecasan voltan 7.6 Torr dan 27 kV. Analisis terhadap keputusan menunjukkan 

bahawa sinar neutron optimum hanya dicapai pada keadaan operasi yang optimum. 

Didapati juga bahawa tiada sinar-X lembut yang dipancarkan daripada peranti 

tumpuan plasma 28.8 kJ yang dioperasi dengan gas argon disebabkan oleh 

ketidakhadiran ion seperti-Helium dan seperti-Hidrogen pada suhu plasma yang 

dicatatkan serendah 0.094 keV dan kelajuan paksian sebanyak 8.12 cm μs-1. 

Kesimpulannya, kelajuan sarung arus adalah bukan satu faktor dominan untuk 

mengoptimumkan hasil neutron dalam peranti tumpuan plasma. 
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

In general, the plasma focus (PF) device has a structure which comprises a 

set of metal rods acting as the electrodes, located inside a stainless steel chamber and 

filled with gas at low pressure. In the early 1960s, the research on plasma focus 

device was initiated by Mather [1] and also independently by Flippov [2]. This high-

voltage high-current pulse-powered discharge device consists of a capacitor bank, 

charger, high-voltage high-current switch, master trigger and discharge chamber [3]. 

A high voltage pulsed discharge between the electrodes through the selected gas 

medium produces a column of hot dense plasma, i.e. current sheath, which then 

axially driven by a Lorentz force and leads to the strong electromagnetic 

compression of the plasma at truncated end of the anode [4]. The 

electromagnetically compression of plasma column results in hot and dense plasma 

pinch. As a consequence of the very fast plasma compression attained in this device, 

multi-radiation such as neutron yield [5], soft [6] and hard [7] X-rays, high energy 

electrons [8], and ions beams [9] are emitted. 

 

 

Plasma focus device has been studied over the past few decades as a copious 

source of multi-radiation [10]. Scientists have put their effort on continuous studies 

of multi-radiation of this particular device especially in neutron and soft X-ray yields 

[6, 11-15]. In the numerical aspects, the Lee’s code, consists of the combination of 

snow plow model and slug model, has been used for comprehensive studies on 

modeling of plasma focus [9, 16-19]. From previous works, its found that the careful 
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selection of suitable experimental parameters can enhance the radiation yields in the 

plasma focus device. In this chapter, the problem statement, objectives, scope and 

the significant of the research are presented. 

 

 

 

 

1.2 Problem Statement 

 

 

The plasma focus device is an ideal multi-radiation source as it can generate 

ions, electrons, X-ray and neutron in a single shot. Over the past several years, the 

pulsed discharge plasma focus device as a potential multi-radiation source for 

numerous potential applications has been extensively studied such as material 

modifications [20], non-destructive industrial, medical or security examination [7, 21, 

22] surface micro-machining [23], microelectronics lithography [24], thin film 

deposition [25] and etc.. The discharge voltage signal of the device has been widely 

used to study the system’s dynamics, in order to understand the radiation yield 

mechanisms and other phenomenon. This device was chosen since it provides an 

open geometry with the largest possible collection angles operated over wide 

parameter ranges.  

 

 

However, the extension of performance and the characteristic of such device 

on the multi-radiation emission of neutrons and soft X-ray in different discharging 

parameters have not yet been fully understood, the contributions to the group of 

knowledge are significant. The current discharge signal which has important 

information as compared to the voltage discharge signal has not been studied 

comprehensively. Also the attainment of optimum condition for the device needed 

extensive studies for the wider range of applications. Due to the project cost and 

time required for the experimental optimization processes, the numerical modelling 

can reveal essential output parameters before the real work on the fabrication can 

begin. 
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1.3 Objectives of the Research 

 

 

1.3.1 General Objective 

 

 

The general objective of this research is to numerically investigate the physics for 

the multi-radiation emission from the plasma focus devices. 

 

 

 

 

1.3.2 Specific Objectives 

 

 

The specific objectives of this research are: 

 To determine using Lee’s code the multi-radiation emission of neutron and 

soft X-ray from the plasma focus devices with different performance 

parameters. 

 To optimize using Lee’s code the neutron emissions of plasma focus for 

specific gas pressure. 

 To determine the relationship of the plasma focus dynamics and the multi-

radiation emissions of plasma focus devices. 

 

 

 

 

1.4 Scope of the Research 

 

 

The present research are mainly focused on the determination of neutron and 

soft X-ray emission from the plasma dynamics of Mather type plasma focus devices 

by numerical methods against experimental results. The hot and dense plasma pinch 

produced during the plasma compression has its radius of 1 – 25 mm and length of 

10 – 190 mm and last for tens of nanoseconds to several hundreds of nanoseconds. 

The numerical experiments results were obtained using the 6-phase Lee Model Code, 

Version RADPF6.1b. The code was configured for the plasma focus devices with 

energies ranging from 1.4 kJ – 480 kJ, using the published parameters such as 

inductance, Lo, capacitance, Co, charging voltage, Vo stray resistance, ro, radius of the 

cathode, b, anode radius, a, anode length, zo, gas pressure, Po and the molecular 
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weight and atomic number of filling gas. The current profiles fitting between the 

computed against experimental were performed. The mass sweeping factors (fm and 

fmr) and the current factors (fc and fcr) for axial and radial phase were used as the 

fitting coefficient. Then, optimizations of yields were conducted numerically as a 

function of pressure. 

 

 

 

 

1.5 Significance of the Research 

 

 

The significance of this work is to access numerically the plasma focus 

device as a multi radiation source. Previously the emphasis was on discharge voltage 

signals of the device and not the current signals, which also consists of important 

information. This work however, was fully focused on the investigation of current 

discharge signals to determine the neutron and soft X-ray emissions. The plasma 

focus device possessed potential applications, which allow the area of studies 

beyond basic plasma that can contribute significant impact in the scientific world. 

Design, construction, conception, diagnostics and research of the devices for 

different applications have been made based on the standard developed procedures. 

The potential applications of the neutron and soft X-ray from the plasma focus have 

been demonstrated [20-28]. The plasma focus device as a neutron source, including 

its possibility to generate nuclear fusion particles or radiation, is essential for the 

research dealing with the global energy security issue.  

 

 

 

 

1.6 Thesis Outline 

 

 

This thesis report on the numerical determinations of neutron and soft X-ray 

emissions from Mather-type plasma focus devices using the Lee’s code. The 

contents have been presented in six separated chapters according to the research flow. 

 

 

 Chapter 1 describes the research background, problem statement, objectives 

and the scope of research. 
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 Chapter 2 consists of the literature reviews on the plasma focus devices and 

experimental and numerical studies of neutron and soft X-ray emission. 

 Chapter 3 explains the theory of the plasma focus device dynamics, working 

principle, and the Lee’s code computation. 

 Chapter 4 illustrates the research methodology of experimental data 

extraction, current profiles fitting, and radiation yield optimization. 

 Chapter 5 presents the results and discussions of the current profiles fitting 

between the computation and experiment current signals and the comparison 

of the numerical experiments radiations from the plasma focus devices. 

 Chapter 6 concludes the whole research work by summarizing from the 

observations and findings. 
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