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ABSTRACT 

 

 

Recent blackouts, which are associated with severe technical and economic 

damages, show that current protection systems are not reliable enough when power system 

is in an emergency condition. This research attempts to address the issue by introducing a 

novel, integrated and optimized frequency modelling approach and Under Frequency Load 

Shedding (UFLS) protection for electric power systems. This system is capable to 

consider various aspects of the problem simultaneously in modern power systems. 

Furthermore, it takes advantage of a new multi-objective decision making approach 

considering all required criteria and risk indicators based on the related standards of power 

system operation. In this approach, a new frequency response modelling system, named 

Extended System Frequency Response (ESFR) model and new aggregated load modelling 

system are proposed. This approach does not only consider all factors which contribute to 

frequency performance of power system simultaneously, but also is capable to consider 

advanced components of electric power systems. This modelling system is designed in 

consistent with the new generation of advanced power system simulators. In the next step, 

Genetic Algorithm (GA) as an Artificial Intelligent (AI) method is used for designing an 

optimal and integrated UFLS system. The technical implementation of this step leads to 

the creation of a new methodology for coupling two software or simulators together. This 

approach is applied to create a junction between the advanced power system simulator and 

the GA provider. This method does not only decrease the simulation time dramatically, 

but also makes the remote communications possible between two or more software. 

Finally, an AI system, namely Artificial Neural Network (ANN), is used in a hybrid 

structure to execute the GA UFLS system design as an online Wide Area Protection 

(WAP) system. The results of the first step show the high capability of the proposed 

frequency response modelling system. The new approach of under frequency protection 

system design shows clear advantages over the conventional methods. Finally, the 

performance of ANN is promising as a new generation of intelligent WAP systems. 
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ABSTRAK 

 

 

Ketiadaan bekalan yang berlaku kebelakangan ini dikaitkan dengan kemusnahan 

teknikal dan ekonomi yang teruk menunjukkan perlindungan arus masih tidak mencapai 

keboleharapan yang mencukupi terutama apabila sistem kuasa berada di dalam keadaan 

kecemasan. Kajian ini bertujuan mengatasi isu tersebut dengan memperkenalkan 

pendekatan baru, bersepadu dan mengoptimumkan frekuensi pemodelan serta penggunaan 

Perlindungan Penyingkiran Beban Frekuensi (UFLS) bagi sistem kuasa elektrik. Sistem 

ini mampu untuk mempertimbangkan pelbagai aspek masalah yang berlaku secara 

serentak dalam sistem kuasa moden. Selain itu, kelebihan daripada penghasilan keputusan 

pelbagai objektif yang baru turut diambil kira bagi semua kriteria yang diperlukan dan 

petunjuk risiko berdasarkan kepada piawaian operasi sistem kuasa. Melalui pendekatan 

ini, gerak balas frekuensi sistem pemodelan yang baru, atau dikenali sebagai model Sistem 

Sambutan Frekuensi Lanjutan (ESFR) dan sistem pemodelan beban agregat dicadangkan. 

Pendekatan ini bukan sahaja mengambil kira semua faktor yang menyumbang kepada 

prestasi frekuensi sistem kuasa secara serentak, tetapi juga mampu untuk 

mempertimbangkan komponen terkini pada sistem kuasa elektrik. Pemodelan sistem ini 

turut direka selaras dengan sistem penyelakuan kuasa generasi baru yang canggih. 

Seterusnya, Algoritma Genetik (GA) yang dikenali sebagai Kecerdikan Buatan digunakan 

untuk mereka bentuk sistem UFLS optimum dan bersepadu. Pelaksanaan teknikal ini 

membawa kepada kewujudan satu kaedah baru untuk gandingan dua perisian 

penyelakuan. Pendekatan ini digunakan untuk mewujudkan hubungan antara penyelakuan 

sistem kuasa yang canggih dengan kaedah GA. Selain itu, kaedah ini bukan sahaja 

mengurangkan masa simulasi secara mendadak, ia turut membolehkan komunikasi secara 

jauh dilakukan diantara dua perisian atau lebih. Akhir sekali, sistem Kecerdikan Buatan 

(AI), yang dikenali sebagai Rangkaian Saraf Buatan (ANN) digunakan dalam struktur 

hibrid untuk melaksanakan reka bentuk sistem GA UFLS sebagai Kawasan Perlindungan 

Lebar (WAP) sistem yang dilaksanakan secara dalam talian. Keputusan awal 

menunjukkan keupayaan yang tinggi dalam kekerapan pemodelan sistem bagi tindak balas 

frekuensi yang dicadangkan. Pendekatan baru dalam reka bentuk sistem perlindungan 

frekuensi kurang turut menunjukkan kelebihan yang jelas berbanding dengan kaedah 

konvensional. Kesimpulannya, prestasi ANN mampu menjanjikan kelebihan yang ketara 

sebagai generasi baru sistem WAP yang pintar. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1  Background 

 

 

Security is one of the most vital requirements in the operation of electric power 

systems. “Power system security” is the ability of the system to survive probable 

contingencies without interruption to customer service [1]. A set of imminent disturbance 

is referred to as contingencies. Power System Stability is also defined as the ability to 

regain an equilibrium state after being subjected to a physical disturbance [1]. Stability is 

an important factor of power system security, which is closely dependent on the value of 

system frequency. The deviation of frequency from its rated value is not only an indication 

of imbalance between real power generation and load demand, but also it is a reliable 

indicator for the instability condition of the given power system. 

 

 

As power system load exceeds the maximum generation of power supply or large 

disturbance occur, such that system overload takes place due to governors being unable to 

react in time, system frequency will thus suffer a fast drop and in turn it can result in 

system collapse if appropriate preventive actions are not taken or functioning property.  

 

 

Under Frequency Load Shedding (UFLS), as the only appropriate way to prevent 

an electric power system from collapsing, may lead to severe technical and economical 
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damages, is of major importance. Load shedding schemes have become quite important in 

present day power systems, because they are operating at ever smaller capacity of the 

reserve and stability margins and have considerable connections with neighbour systems.  

 

 

In other words, if the generation does not match the load in an interconnected 

power system (or in the isolated area) then an automatic load shedding scheme based on 

system frequency can be used to maintain system stability and provide a continuous 

supply for remaining loads and protecting for other equipment. Dynamic load shedding 

schemes have not been only suggested to stabilize the island following major disturbances 

but also define an appropriate analytic framework to enhance the dynamics of the 

islanding with the minimum load shedding effort. This problem is too complex to solve in 

real-time. 

 

 

The major concern of UFLS design in modern power system operation is to take 

into account various influencing factors leading to the best load shedding scenario. Hence, 

fast calculation of optimal approaches for load shedding is one of the most important 

issues in planning, security, and operation of power systems. Recent advances in computer 

systems and Artificial Intelligence (AI) methods have provided golden opportunities 

leading to development an integrated UFLS system.  

 

 

The first step in any electric power system dynamic study is choosing a proper 

mathematical model. Yet the selection of a power system model can be dissociated neither 

from the problem itself nor from the computing facilities and control techniques available. 

It is neither adequate, nor practical to devise a “universal model” for all power system 

dynamic problems. There are various kinds of power system dynamic problems, but there 

are only a limited number of system components which are important to the dynamic 

study. For each of them, several basic models are recommended by the professional 

societies, and can be adapted for the studies of specific problems. 
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Several UFLS schemes are also available that they can be categorised as traditional 

schemes, based only on frequency threshold, semi-adaptive schemes, based on frequency 

and Rate Of Change Of Frequency (ROCOF), adaptive schemes, based on frequency, and 

System Frequency Response (SFR) model [2].  

 

 

Traditional load shedding schemes are designed by using a static model of power 

system which are set to disconnect fixed amounts of load using a predetermined fixed 

number of step sizes and usually do not provide optimized settings for different system 

conditions. These are conservative in the amount of load effectively shed and the 

frequency excursion ranges of UFLS schemes are too wide; because of neglecting the 

actual system state and magnitude of disturbance. In addition, it was found that the present 

schemes were not safe enough to maintain power system stability in the recent blackouts.  

 

 

Studies have been conducted to determine the quantity of the load to be shed and 

to assess the system dynamic response following disturbances. However there is no 

representation that can effectively determine the settings of this protection. Several 

strategies used the frequency gradient to determine the initial active power deficit via a 

frequency response model. It has been shown that certain other factors also cannot be 

ignored or assumed to be constant. Otherwise, using frequency gradient as a sole indicator 

can give very misleading information about the active power deficit in the power system 

or an island. Additional information about the system such as voltage, spinning reserve, 

total system inertia, load characteristics are also required for designing an integrated 

UFLS system.  

 

 

Previous researches assumed, in theory,  that due to the slow response of the 

mechanical turbine valves controlled by the turbine governor, compared to the frequency 

decay rate, it can be concluded that the turbine output remains constant at the moment of 

disturbance and there is no turbine governor's reaction [3]. But this is not the case for load 

change. In the other words, load has a special position between various components in 

power systems which are affected by frequency deviations. Nevertheless, the major 
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drawback of using the conventional frequency response model for UFLS purposes is the 

fact that the load’s frequency and voltage dependence is not included in the model [3]. 

Generally, several load models are considered in power system dynamic analysis, such as 

constant power, constant impedance and constant model [4-6]. The above brief outline 

shows that having an integrated UFLS protection system is dependent on providing an 

integrated frequency response model of electric power systems. 

 

 

 

1.2  Problem Statement 

 

 

Modern power systems are operating at ever smaller capacity and stability margins 

due to limitations imposed by introducing of renewable energy resources and deregulation. 

In this situation, traditional schemes involved in securing the power system, such as UFLS 

scheme should be revised. The existing UFLS schemes are predominantly deterministic, 

neither taking into account the actual system state, topology and operating condition; nor 

include the nature and the characteristic of the disturbance. Recent blackouts confirm that 

current UFLS systems are not safe and reliable enough when power system is in an 

emergency condition.  

 

 

If an emergency frequency condition occurs, not only the governor will regulate 

the mechanical output power by frequency variation but also the load will regulate its 

active power. Furthermore, despite the individual contribution provided by the DG may be 

low, the total sum of these producers is currently significant; as its characteristic will 

change the overall system performance among frequency response. Previous load 

shedding schemes were designed without taking into consideration this type of generation.  

 

 

What’s more, new types of controls involving a complex array of devices are 

widely used in the modern power systems, which should be taken into consideration when 

performing the frequency dynamics analysis. Advances have also been made in the control 
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and operating systems which play significant roles in the system dynamic performance. 

Nowadays it is also evident that Wide Area Protection (WAP) is the most suitable system 

of UFLS which is a concept of using the Wide Area Measurement System (WAMS).  

 

 

Discussing the importance of UFLS brings us to the conclusion that a high 

reliability level must be reached by implementing UFLS scheme, specially in modern 

power systems. It is desirable to use adaptive and integrated load shedding schemes 

disconnecting the minimum required system load at different conditions and maintain 

system stability. There are various modern components such as various DG resources 

accompanied by promoting the control and operating systems that they play a significant 

role in the dynamic performance and the frequency response of electrical power systems. 

 

  

The integration of an adaptive UFLS strategy is dependent upon the integration of 

dynamic simulation arrangement and frequency response modelling. Such an integrated 

simulation should be more capable enough to consider the mentioned components and 

advances. The integrated UFLS system must also be able to take into account their effects 

on the system action and on stability indicators. 

 

 

Moreover, it is necessary to have an adaptive, optimized and integrated UFLS 

system that would be able to consider these factors simultaneously to design the best 

UFLS strategy. In an advanced and novel approach, based on this proposal, UFLS scheme 

must take into account different influencing factors such as frequency variation, load 

characteristics, magnitude of disturbance, spinning reserve leading to define number of 

steps, the amount of load shed and delay time of each step. In this point of view, it is 

important that the scenario of protection system design should be capable enough to 

handle the new and integrated frequency model to plan the best UFLS system for 

operation condition. The proposed approach is a response to this serious request of the 

electric industry. 
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The proposed approach is a considerable step towards having a high security 

power grid with enhanced reliability indices; the power system operators by applying, 

such an integrated, optimized, fast and precise protection system would be presented with 

huge economical and technical benefits. Moreover, parallel to recent advances in 

management policies of electric power systems and with due attention to the development 

of WAM and WAP systems, it is a good background for fast and intelligence protection 

system with high compatibility with modern operating systems. 

 

 

 

1.3  Research Objectives 

 

 

The objectives of this research are: 

 

i. To propose an integrated frequency response model of complex electric power 

systems for both generation side and consumption side. 

ii. To design a new integrated and optimized under frequency load shedding 

system. 

iii. To develop a new integrated and optimized online protection system using the 

hybrid artificial intelligence method. 

iv. To develop an efficient protection system by reducing the risk of the system in 

emergencies. 

 

 

 

1.4  Research Contributions 

 

 

The significant contributions of this study can briefly be listed as follows: 

  

i. Developing an Extended System Frequency Response (ESFR) model. 
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ii. Developing a new Aggregated Load Modelling system. 

 

 

iii. Devised a new integrated and optimised approach for Under Frequency Load 

Shedding System (UFLS) design.  

 

 

iv. Developing a fast and adaptive hybrid intelligence based UFLS protection 

system. 

 

 

 

 

1.5  Scope of Research 

 

 

The novel high-order multi-machine ESFR model, which is proposed and 

developed in this research, is implemented in the “IEEE 39-Bus” standard Dynamic Test 

System, which is also known by the name of “New England” test system. Validation step 

is performed via a comparative analysis of the results with the full system performance 

and with the traditional model. In the next step, the new integrated and optimized UFLS 

design system also established and developed using Genetic Algorithm (GA) for the test 

case. 

 

 

 In this approach, GA is assigned to identify the number of steps, the amount of 

load should be shed in each step and time of each step gained to protect the frequency 

response of the system, the risk of the system and power interruption. It can be 

implemented by using the integrated dynamic simulation of the test system which is 

prepared in the first step. 

 

 

Finally, a new intelligence UFLS protection system is provided by hybridization of 

GA with ANN. In this approach, ANN is set to determine the GA output based on 
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operating data. The results of this method are validated by comparing with the traditional 

UFLS system for the test grid.  

 

 

It is assumed that  the “ New England” test case is a complex power system with 

high penetration of renewable energy resources, especially hydro generation. Considering 

the technical aspects which exist in all power systems, there are limitations related to the 

maximum number of steps can be executed for UFLS protection and minimum 

discrimination required time between two steps. These limitations are considered in the 

approach as can be defined by the operators for each application.    

 

 

 

1.6  Thesis Organization 

 

 

The structure of this thesis is outlined to comprise five chapters as follows: 

 

Chapter 2 is dedicated to review of the recent advances in the frequency response 

modelling approach of electrical power systems, load modelling, consideration of 

renewable energy resources and UFLS system improvement. The background of artificial 

intelligence applications in the field of study is also analysed. All the above have been 

done to find the main gap in this field and performing this idea to cover the requirements 

of the electric industry. 

 

 

Chapter 3 is allocated firstly to outline the new Extended System Frequency 

Response (ESFR) and new aggregated load modelling approaches which are proposed by 

this research for complex power systems.  
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Chapter 4 is proposed a new approach to the design of UFLS protection system 

using the GA. In the next step, in a hybrid intelligence approach, ANN is used in an on-

line WAP structure to execute the GA-UFLS design in complex power systems. 

Chapter 5 presents the process of test and validation of the proposed approaches 

(in all three sections of the ESFR modelling system, GA-UFLS designer and ANN-GA 

wide area protection) and the related results considering the required analysis. 

 

 

Chapter 6 contains a conclusion on the finding of the proposed approaches and 

requirements of this field leading to make recommendations for the future. 
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