EMPIRICAL STAIRWELL PROPAGATION MODELS FOR LONG TERM EVOLUTION APPLICATIONS

OMAR BIN ABDUL AZIZ

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > APRIL 2016

To my dearest parents, siblings, beloved wife and precious children, whose presence have been a constant enlightenment in my life

ACKNOWLEDGEMENT

I am firstly very grateful to Allah s.w.t. for in His blessings, this research activity and writing of thesis have been completed.

I would like to thank my supervisor, Prof. Dr. Tharek Bin Abdul Rahman, for his patience and invaluable advices in providing guidance towards completing of this research work.

Many thanks to all staffs as well as graduate students of Wireless Communication Centre and the Faculty of Electrical Engineering for their continuous support and assistance in conducting field measurement works as well as providing insightful knowledge for this research study.

Last but not least, I would like to thank my family, relatives and friends for their continuous support throughout this research journey. I am also indebted to Universiti Teknologi Malaysia for granting me study leave. Thank you one, thank you all.

ABSTRACT

This thesis presents investigation of path loss, PL, and shadowing, X_{σ} , of signal wave along and about multi floor stairways that have dog-leg stairwell configuration. The objective is to develop frequency-dependent empirical propagation models that could approximate *PL* and X_{σ} for two conditions. The first condition is when both transmitter, Tx, and receiver, Rx, are within the stairwell structure. The second condition is when either one of the Tx or Rx is inside adjacent rooms to the stairwells. Attention was also drawn towards the influence of stair flights and floor height to attenuation of signal wave as it propagates within the stairwell. Analysing the impact of the aforementioned structures within the stairwell, signal wave propagating between stairwell and adjacent in-building space as well as developing frequency-dependant empirical propagation model are research areas which have yet to be covered by previous propagation studies pertaining to multi floor stairway. Frequencies of interest, f, ranged from 0.7 GHz up to 2.5 GHz that cover various long term evolution (LTE) and public safety communication bands. Research works involved measurement campaign in four different multi-floor buildings inside Universiti Teknologi Malaysia's campus. PL's relations with separation distance between Tx and Rx, d, and f were formulated with auxiliary site-specific terms added to improve two proposed empirical propagation models. It was found that for signal wave propagation where both Tx and Rx were within the stairwell, placing Rx at elevated or lower position than Tx does not influence significantly recorded PL data. However, for propagation between stairwell and adjacent rooms, placing Rx at elevated or lower than Tx may influence significantly recorded PL data. Suitable measurement campaign planning was arranged in the light of this finding. The proposed models were then examined and compared with ITU-R, COST and WINNER II indoor empirical propagation models. From measurement in dedicated testing sites, it was demonstrated that the proposed models have the smallest computed mean, μ_R , relative to the other standard models. The largest μ_R was -2.96 dB with a 3.34 dB standard deviation, σ_R . On the other hand, results from COST, ITU-R and WINNER II models demonstrated lower precision in all inspected settings, with the largest μ_R being 8.06 dB, 7.71 dB and 15.98 dB respectively and their σ_R being 3.79 dB, 6.82 dB and 9.40 dB accordingly. The results suggest that the proposed PL models, which considered the impact of building structures within and about the stairwell could provide higher PL prediction's accuracy for wireless communication planning pertaining to the stairwell environment, particularly for public safety responders.

ABSTRAK

Tesis ini mempersembahkan pemeriksaan terhadap kehilangan laluan, PL, dan pemudaran bayang, X_{σ} , gelombang isyarat di dalam dan sekitar tangga yang mempunyai konfigurasi separuh pusingan. Objektif penyelidikan ini adalah untuk menghasilkan model perambatan gelombang secara empirik yang bersandar frekuensi dan mampu meramal PL dan X_{σ} bagi dua keadaan. Keadaan pertama adalah ketika kedua-dua pemancar, Tx, dan penerima, Rx, berada di dalam struktur tangga. Manakala keadaan kedua pula adalah ketika salah satunya berada di dalam bilik-bilik bersebelahan dengan tangga. Tumpuan penyelidikan turut diberikan kepada kajian kesan deretan anak tangga dan ketinggian tingkat bangunan terhadap tahap pelemahan isyarat gelombang yang merambat di dalam struktur tangga. Analisis impak daripada struktur-struktur binaan tangga yang dinyatakan, kesan perambatan gelombang di antara tangga dan ruang dalam bangunan di sekitar tangga serta pembentukan model empirik perambatan gelombang yang bersandarkan frekuensi merupakan bidang kajian yang masih belum diterokai untuk kerja penyelidikan perambatan gelombang berkaitan tangga dalam bangunan bertingkat. Julat frekuensi, f, yang ditumpukan dalam penyelidikan ini adalah antara 0.7 GHz sehingga 2.5 GHz yang meliputi beberapa julat khusus untuk aplikasi evolusi jangka panjang (LTE) dan sistem telekomunikasi untuk tujuan keselamatan awam. Kerja-kerja pengukuran dilakukan untuk persekitaran tangga di dalam empat bangunan berbeza di kampus Universiti Teknologi Malaysia. Hubungan PL dengan jarak di antara Tx dan Rx, d, serta f kemudiannya diformulasikan. Beberapa terma tambahan ditambah pada formulasi yang telah dibentuk untuk menambahbaik dua model perambatan gelombang yang dikemukakan hasil analisis dalam penyelidikan ini. Bagi perambatan gelombang ketika Tx dan Rx berada dalam struktur tangga, didapati kedudukan Rx berada lebih tinggi atau rendah berbanding Tx tidak mempengaruhi secara signifikan data PL yang diperolehi. Namun, bagi perambatan gelombang di antara tangga dan bilik-bilik bersebelahan, kedudukan Rx yang berada lebih tinggi dari Tx boleh mengakibatkan data PL berbeza dengan ketara berbanding dengan keadaan kedudukan Rx lebih rendah dari Tx. Oleh itu, kempen pengukuran disesuaikan mengambil kira penemuan ini. Model-model perambatan gelombang yang dikemukakan kemudiannya diuji dan dibandingkan dengan model-model perambatan gelombang dalam bangunan ITU-R, COST dan WINNER II. Daripada penelitian yang dijalankan, dua model yang dikemukakan mempunyai min, μ_R , terkecil berbanding model-model rujukan lain. μ_R terbesar yang telah dikira adalah -2.96 dB dengan sisihan piawai, σ_R , 3.34 dB. Pengiraan berdasarkan model COST, ITU-R dan WINNER II pula menghasilkan kejituan yang lebih rendah bagi setiap pengujian yang dibuat, dengan μ_R terbesar boleh mencapai sehingga 8.06 dB, 7.71 dB dan 15.98 dB dengan σ_R sebesar 3.79 dB, 6.82 dB and 9.40 dB bagi ketiga-tiga model tersebut. Keputusan ini menunjukkan model-model PL dikemukakan yang telah mengambil kira impak struktur binaan di dalam dan sekitar tangga mampu meramal PL dengan lebih baik bagi perancangan sistem komunikasi wayarles persekitaran tangga, khasnya bagi kegunaan para petugas keselamatan awam.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiii
	LIST OF FIGURES	xix
	LIST OF SYMBOLS	xxviii
	LIST OF ABBREVIATIONS	xxxiii
	LIST OF APPENDICES	xxxiv
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Problem Statement	3
	1.3 Objectives	5
	1.4 Scopes of Work and Research	
	Limitation	6
	1.5 Research Contributions	7
	1.6 Thesis Layout	8
2	LITERATURE REVIEW	10
	2.1 Introduction	10

2.2	Public	e safety Communication	10
	2.2.1	IAN Deployment	12
	2.2.2	LTE for Public Safety	
		Network	13
	2.2.3	Public Safety	
		Telecommunication for	
		Stairway	16
2.3	Conte	mporary Studies on Signal	
	Wave	Propagation for the	
	Stairw	vay Environment	18
2.4	Radio	Wave Propagation	28
	2.4.1	Introduction to Radio Wave	
		Propagation	28
	2.4.2	Basic Propagation	
		Mechanism	28
		2.4.2.1 Reflection	29
		2.4.2.2 Scattering	32
		2.4.2.3 Diffraction	33
	2.4.3	Indoor Propagation	
		Modelling	36
		2.4.3.1 Deterministic Indoor	
		Propagation	
		Modelling	36
		2.4.3.2 Empirical Indoor	
		Propagation	
		Modelling	38
	2.4.4	Developing Indoor	
		Empirical Propagation	
		Model	39
		2.4.4.1 Free Space Loss	39
		2.4.4.2 Path Loss Model	40
		2.4.4.3 Walls and Floors	
		Losses	43

		2.4.4.4 Shadowing Model	45
	2.4.5	Standard Empirical	
		Propagation Models	45
		2.4.5.1 COST-231 Model	46
		2.4.5.2 WINNER II Model	47
		2.4.5.3 ITU-R P.1238-7	
		Model	48
2.5	Multi	Floor Stairways	49
	2.5.1	Stair Terminology	49
		2.5.1.1 Tread and Riser	50
		2.5.1.2 Stair Flight	51
		2.5.1.3 Landing	52
		2.5.1.4 Baluster, Handrail and	
		Balustrade	53
	2.5.2	Several Type of Stair	
		Configuration	54
		2.5.2.1 Straight Flight Stair	54
		2.5.2.2 Quarter-Turn Stair	55
		2.5.2.3 Dog-Leg Stair	55
		2.5.2.4 Geometrical Stair	57
	2.5.3	Public Safety Consideration	
		Concerning Multi Floor Stair	57
		2.5.3.1 Construction Material	58
		2.5.3.2 Evacuation Planning	
		Strategies	59
2.6	Statis	tical Data Analysis	60
	2.6.1	Regression Analysis of Data	60
		2.6.1.1 Least-square Regression	
		Fitting	61
		2.6.1.2 Nonlinear Least-square	
		Regression Fitting	62
	2.6.2	Confidence Interval (CI)	64
	2.6.3	Histogram	65

	2.6.4	Probability Density Function	
		(PDF)	66
	2.6.5	Cumulative Distribution	
		Function (CDF)	67
2.7	Sumn	nary	68
мет	HODO	LOCY	70
NIE 1 3.1		luction	70
3.2			70
5.2	•	cal Investigation of Multi Floor wells and Their Surroundings	72
2.2		6	12
3.3		urement Campaign	78
	Equip		78 78
	3.3.1	Transmitter-end (Tx) Set-up	78 80
	3.3.2		80
	3.3.3		20
2.4	F	Link Set-up	80
3.4	-	imental Measurement Works	81
	3.4.1	Tx and Rx Placement	82
	3.4.2	1	0.2
	2.4.2	Distance Between Tx and Rx	83
	3.4.3	Signal Strength Data	0.4
2.5		Sampling	84
3.5		Acquisition and Management	85
3.6		Analysis	86
	3.6.1	Computation of Measured	
		Path Loss (PL)	86
	3.6.2	Regression and CI Analysis	
		of Data	87
	3.6.3		
		Empirical PL Models	88
	3.6.4	X_{σ} Model Analysis	91

3

	3.6.5	Comparison with Standard	
		Empirical Propagation	
		Models	91
3.7	Summ	nary	94
PAT	H LOSS	S AND SHADOWING	
MOI	DELLIN	G FOR PROPAGATION	
ALO	NG STA	AIRWELLS	95
4.1	Introd	uction	95
4.2	Analy	sis of <i>Tx</i> 's Placement Impact	95
4.3	Groun	dwork Analysis of PL	
	Mode	lling	97
	4.3.1	Obtaining PL _{do} Values	98
	4.3.2	Analysis of \hat{n}	99
4.4	Analy	sis of FPF	105
4.5	Adjus	tment Parameters for PL	
	Estima	ation	109
	4.5.1	Even <i>n</i> th-numbered Stair	
		Flight Adjustment Factor,	
		Efactor	109
	4.5.2	High Stair Flight	
		Correctional Factor, H _{factor}	112
4.6	Model	lling the Impact of f on PL	
	Estima	ation	114
4.7	Mode	lling X_{σ}	118
	4.7.1	Histogram and PDF of \hat{R}	118
	4.7.2	CDF of \hat{R}	119
4.8	Empir	ical Model Validation and	
Comj	parison v	vith Standard Indoor Empirical	
Propa	agation N	Models	120
4.9	Summ	nary	130

4

5	PAT	H LOSS	S AND SHADOWING			
	MO	MODELLING FOR PROPAGATION				
	BET	BETWEEN STAIRWELLS AND				
	ADJ	ACENT	INDOOR ENVIRONMENTS	132		
	5.1	Introd	luction	132		
	5.2	Measu	urement and Modelling of PL	133		
		5.2.1	Analysis of the Impact of <i>Tx</i>			
			and Rx Placement	133		
		5.2.2	Measured <i>PL_{d0}</i> Values	142		
		5.2.3	Analysis of \hat{n}	142		
		5.2.4	Analysis of FPF	146		
		5.2.5	Modelling the Impact of <i>f</i> on			
			PL Estimation	149		
	5.3	Mode	lling X_{σ}	154		
		5.3.1	Histogram and PDF of \hat{R}	154		
		5.3.2	CDF of \hat{R}	155		
	5.4	Empi	rical Model Validation and			
		Comp	parison with Standard Indoor			
		Empi	rical Propagation Models	156		
	5.5	Sumn	nary	161		
6	CON	ICLUSI	ONS	163		
	6.1	Concl	usions	163		
	6.2	Recor	nmendation for Future Works	165		
REFEREN	ICES			167		
Appendices	s A-K			178-231		

LIST OF TABLES

TABLE NO.	TITLE	PAGE

2.1	Comparison of preceding research work by researchers on signal wave propagation	
	pertaining to stairway's environment	27
2.2	Approximation of diffraction loss for various v	
	values (Lee, 2014)	35
3.1	Basic stair dimensions recorded for stairs 1 to 5	76
3.2	Antenna gain at investigated operating	
	frequencies	87
3.3	Basic stairs 6 and 7 dimensions	93
4.1	\hat{n} values for plotted signal strength in Figure	
	4.1	97
4.2	<i>PL</i> at reference distance, PL_{d0}	99
4.3	\hat{n} values for all measured settings	102
4.4	\hat{n}_{LOS} values for all measured settings	102
4.5	The FPF and 95 % CI range for all investigated	
	settings	108
4.6	\hat{n} values for even-numbered stair flight	110
4.7	Efactor values for even-numbered stair flight	112
4.8	<i>H_{factor}</i> values for all investigated settings	113

4.9	Percentage of \hat{R} below the PDF graph	119
4.10	Mean errors, μ_R , and standard deviations, σ_R , for the proposed empirical model at 0.7 GHz	122
4.11	Comparison of mean errors and standard deviations between empirical models at 0.9 GHz	124
4.12	Comparison of mean errors and standard deviations between empirical models at 1.8 GHz	126
4.13	Comparison of mean errors, μ_R , and standard deviations, σ_R , between empirical models at 2.1	
	GHz	128
4.14	Comparison of mean errors, μ_R , and standard	
	deviations, σ_R , between empirical models at 2.5 GHz	130
- 1		150
5.1	Comparison of \hat{n} for plotted <i>PL</i> at 0.9 GHz and 2.5 GHz for one and two separation walls	139
5.0	-	
5.2	<i>PL</i> at reference distance, PL_{d0}	142
5.3	\hat{n} values for all measured settings	143
5.4	$\hat{n}_{close\ range}$ values for all measured settings	146
5.5	FPF and σ_d in dB for all measured settings	149
5.6	Analyzing dissimilarity between FPF that were	
	computed by equations (5.5) until (5.8) and	
	those that were averaged irrespective of f	152
5.7	Percentage of \widehat{R} below the PDF graph	155
5.8	Comparison of mean errors, μ_R , and standard deviations, σ_R , between empirical models at 0.9	150
5 0	GHz and 1.8 GHz	158
5.9	Comparison of mean errors, μ_R , and standard deviations σ_{-} between empirical models at 2.1	
	deviations, σ_R , between empirical models at 2.1 GHz and 2.5 GHz	161
		101

B.1	The critical values of t for the specified number of degrees of freedoms and areas in the right tail (Mann, 2007)	182
C.1	Signal strength (dB) for Rx being moved from third to the fifth floors along stair 1	183
C.2	Signal strength (dB) for <i>Rx</i> being moved from third to the first floors along stair 1	184
D.1	Recorded PL (dB) along stair	185
D.2	Recorded PL (dB) along stair 2	187
D.3	Recorded PL (dB) along stair 3	189
D.4	Recorded PL (dB) along stair 4	190
E.1	Values of μ_R and σ_R for the differences between PL_m and PL_P along <i>S2</i> , <i>S4</i> and <i>S6</i> at stair 1	192
E.2	Values of μ_R and σ_R for the differences between PL_m and PL_P along <i>S2</i> , <i>S4</i> and <i>S6</i> at stair 2	193
E.3	Values of μ_R and σ_R for the differences between PL_m and PL_P along <i>S2</i> , <i>S4</i> and <i>S6</i> at stair 3	193
E.4	Values of μ_R and σ_R for the differences between PL_m and PL_P along S2, S4 and S6 at stair 4	194
F.1	Recorded PL_m and computed PL_p by the proposed model at 0.7 GHz along stair 5	195
F.2	Recorded PL_m and computed PL_p by the proposed model at 0.7 GHz along stair 6	196
F.3	Recorded PL_m and computed PL_p by the proposed model, COST-231 model and ITU-R model at 0.9 GHz along stair 5	197
F.4	Recorded PL_m and computed PL_p by the proposed model, COST-231 model and ITU-R	
	model at 0.9 GHz along stair 6	198

F.5	Recorded PL_m and computed PL_p by the proposed model, COST-231 model and ITU-R model at 1.8 GHz along stair 5	199
F.6	Recorded PL_m and computed PL_p by the proposed model, COST-231 model and ITU-R model at 1.8 GHz along stair 6	200
F.7	Recorded PL_m and computed PL_p by the proposed model, WINNER II R-R model and WINNER II C-R model at 2.1 GHz along stair 5	202
F.8	Recorded PL_m and computed PL_p by the proposed model, WINNER II R-R model and WINNER II C-R model at 2.1 GHz along stair 6	203
F.9	Recorded PL_m and computed PL_p by the proposed model, WINNER II R-R model and WINNER II C-R model at 2.5 GHz along stair 5	204
F.10	Recorded PL_m and computed PL_p by the proposed model, WINNER II R-R model and WINNER II C-R model at 2.5 GHz along stair 6	204
G.1	Comparison of <i>PL</i> values at 0.9 GHz for different positions of <i>Rx</i> relative to <i>Tx</i> along stair 2 for 1 separation wall	206
G.2	Comparison of <i>PL</i> values at 0.9 GHz for different positions of <i>Rx</i> relative to <i>Tx</i> along stair 2 for 2 separation walls	207
G.3	Comparison of <i>PL</i> values at 2.5 GHz for different positions of <i>Rx</i> relative to <i>Tx</i> along stair 2 for 1 separation wall	208

G.4	Comparison of <i>PL</i> values at 2.5 GHz for	
	different positions of <i>Rx</i> relative to <i>Tx</i> along stair 2 for 2 separation walls	209
G.5	Comparison of <i>PL</i> values at 0.9 GHz for different positions of <i>Rx</i> relative to <i>Tx</i> along stair 5 for 1 separation wall	209
G.6	Comparison of <i>PL</i> values at 2.5 GHz for different positions of <i>Rx</i> relative to <i>Tx</i> along stair 5 for 1 separation wall	201
I.1	Recorded <i>PL</i> (dB) along and about stair 2 for one separation wall setting	215
I.2	Recorded <i>PL</i> (dB) along and about stair 2 for two separation walls setting	216
I.3	Recorded <i>PL</i> (dB) along and about stair 3 for one separation wall setting	217
I.4	Recorded <i>PL</i> (dB) along and about stair 3 for two separation walls setting	219
I.5	Recorded <i>PL</i> (dB) along and about stair 4 for one separation wall setting	220
I.6	Recorded <i>PL</i> (dB) along and about stair 4 for two separation walls setting	221
I.7	Recorded <i>PL</i> (dB) along and about stair 5 for one separation wall setting	222
I.8	Recorded <i>PL</i> (dB) along and about stair 5 for two separation walls setting	223
J.1	Recorded PL_m and computed PL_p by the proposed model, COST-231 model and ITU-R model at 0.9 GHz for one separation wall	224

J.2	Recorded PL_m and computed PL_p by the proposed model, COST-231 model and ITU-R model at 0.9 GHz for two separation walls	225
J.3	Recorded PL_m and computed PL_p by the proposed model, COST-231 model and ITU-R model at 1.8 GHz for one separation wall	226
J.4	Recorded PL_m and computed PL_p by the proposed model, COST-231 model and ITU-R model at 1.8 GHz for two separation walls	226
J.5	Recorded PL_m and computed PL_p by the proposed model, WINNER II R-R model and WINNER II C-R model at 2.1 GHz for one separation wall	227
J.6	Recorded PL_m and computed PL_p by the proposed model, WINNER II R-R model and WINNER II C-R model at 2.1 GHz for two separation walls	228
J.7	Recorded PL_m and computed PL_p by the proposed model, WINNER II R-R model and WINNER II C-R model at 2.5 GHz for one separation wall	229
J.8	Recorded PL_m and computed PL_p by the proposed model, WINNER II R-R model and WINNER II C-R model at 2.5 GHz for two separation walls	230

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE

A base and mobile nodes prototype for	
emergency responder's telecommunication	
relay system (Souryalet al., 2008)	11
Measurement of signal attenuation for a	
simulated outdoor IAN's setting in an urban	
environment (Matolaket al., 2013)	13
Proposed telecommunication networking	
infrastructure during major emergency events	
(Portmann and Pirzada, 2008)	15
Deployment of LTE's TCFN to support IAN	
at emergency site (Al-Hourani and	
Kandeepan, 2013)	15
Illustration of telecommunication relays	
being deployed to establish IAN (Souryalet	
al., 2008)	17
The use of robot to ascend stairway and enter	
inaccessible scene by public safety personnel	
(Guizzoet al., 2011)	18
Simulated and measured path gain along the	
stairwell (Lim et al., 2009)	16
	emergency responder's telecommunication relay system (Souryal <i>et al.</i> , 2008) Measurement of signal attenuation for a simulated outdoor IAN's setting in an urban environment (Matolak <i>et al.</i> , 2013) Proposed telecommunication networking infrastructure during major emergency events (Portmann and Pirzada, 2008) Deployment of LTE's TCFN to support IAN at emergency site (Al-Hourani and Kandeepan, 2013) Illustration of telecommunication relays being deployed to establish IAN (Souryal <i>et</i> <i>al.</i> , 2008) The use of robot to ascend stairway and enter inaccessible scene by public safety personnel (Guizzo <i>et al.</i> , 2011) Simulated and measured path gain along the

2.7	Comparison of measured and modelled signal strength received along the stairwell (Yang and Wu, 2001)	19
2.8	Example of <i>Tx-Rx</i> link along the stairwell (Yang and Wu, 2001)	19
2.9	Ray-polygon tracing (Teh and Chuah, 2005)	20
2.10	Side view of stairwell under investigation by Lim <i>et al.</i> (2009)	21
2.11	Simulated and measured path gain along the investigated stairwell (Lim <i>et al.</i> , 2009)	22
2.12	The splitting of received signal strength plots along investigated stairwell into three	
2.13	separate clusters (Lim <i>et al.</i> , 2012) Received signal strength plots for (a) separation <i>d</i> (b) walking <i>d</i> (Lim <i>et al.</i> , 2014)	23 24
2.14	Typical stairway setting examined by Yu <i>et al.</i> (2014)	24
2.15	The impact of Rx's antenna height analysis (Yu <i>et al.</i> , 2014)	25
2.16	Emergency responders' relay system prototype (Liu <i>et al.</i> , 2014)	26
2.17	Illustration of basic propagation mechanisms (Cloude, 1995)	29
2.18	(a) E-field vertical to the incidence's plane(b) E-field horizontal to the incidence's plane(Rappaport, 2002)	31
2.19	Huygens's principle illustrating wavefronts and wavelets (Saunder and Aragón-Zavala,	
	2007)	34

2.20	Huygen's principle illustrating wavefronts and wavelets (Saunder and Aragón-Zavala, 2007)	34
2.21	Two reflection paths stipulated for indoor setting applying the ray-tracing technique (Lawton and McGeehan, 1994)	37
2.22	Prediction of <i>PL</i> inside a building's layout via the FDTD technique (C. M. Austin <i>et al.</i> , 2011)	38
2.23	Depiction of path loss between the transmitter and receiver ends (Saunder and Aragón-Zavala, 2007)	41
2.24	Plots of <i>PL</i> in a multi floor building (Seidel and Rappaport, 1992)	43
2.25	An example of a multi floor building's layout (Liu <i>et al.</i> , 2014)	44
2.26	The tread and riser of a stair (Vogt, 2011)	50
2.27	Stair with inconsistent riser height and varying tread depth (Engel, 2007)	51
2.28	Depiction of pitch's angle of a stair	
	flight(Emmitt and Gorse, 2010)	52
2.29	Stair's landing(Emmitt and Gorse, 2010)	52
2.30	A series of baluster beneath the handrail making up the balustrade of a stair(Marken, 2002)	53
2.31	Illustration of a straight flight stair(Emmitt and Gorse, 2010)	54
2.32	Illustration of a quarter-turn stair(Emmitt and Gorse, 2010)	55

2.33	Illustration of a dog-leg stair(Emmitt and Gorse, 2010)	56
2.34	Illustration of geometrical stairs(Emmitt and Gorse, 2010)	57
2.35	Example of observed data points and corresponding estimation via fitting graph line (Kleinbaum <i>et al.</i> , 2013)	61
2.36	Example of observed data points fitted via power law graph line	63
2.37	Example of observed data points fitted via logarithmic graph line with (a) normal x-axis scale (b) logarithmic x-axis scale	C A
2.38	Example of histogram demonstrating normal distribution of data variability (Stamatis, 2003)	64 66
2.39	Relation between areas under PDF curve and variable's population (Bajpai, 2009)	67
2.40	Example of a normal CDF curve for a population of variables (Gubner, 2006)	68
3.1	Flow chart of the research work	71
3.2	Plan view of stairway in(a) block P19a (b)	
	block K11 (c) block G29 and (d) block G30	73
3.3	Layout plan of stair 5 in block P19a	75
3.4	Measuring the width of landing on stair 2	76
3.5	(a) Side view and (b) plan view of redesigned block K11's layout based on actual	
3.6	building's dimension (a) Rohde & Schwarz SMP 22 and (b) HP/Agilent 8657B signal generators	77 79

3.7	Custom made power source extension cable	
	for <i>Tx</i> set up	79
3.8	Rx set-up used in the measurement campaign	80
3.9	Planned <i>Tx</i> and <i>Rx</i> positioning for the	
	propagation study	82
3.10	Example of placement of <i>Tx</i> at adjoined	
	rooms to the stairwell and Rx along stair 5	83
3.11	Measuring tool of SketchUp version 8	84
3.12	Microsoft Excel format of signal strength	
	data acquired from measurement campaign	86
3.13	Graphical visualization of GRG algorithm	
	process searching an optimum value for a	
	mathematical function	89
3.14	SOLVER function window in Microsoft	
	Office Excel	90
3.15	Implementation of optimization steps in	
	GRG	90
3.16	(a)Layout plan of stair 6 and (b) Layout plan	
	of stair 7	93
4.1	Plotted received signal strength for	
	inspection of Tx placement at (a)0.7 GHz (b)	
	0.9 GHz (c) 1.8 GHz and (d) 2.5 GHz	96
4.2	50 received signal strength sampling for one	
	complete antenna's revolution at a	
	measurement point along stair 2 (a) 0.9 GHz	
	on the half landing of the first floor (b) 2.5	
	GHz on the 14 th step	98
4.3	Stair flights with labels along investigated	
	stairwell	100

4.4	Plotted PL at 0.7 GHz, 0.9 GHz, 1.8 GHz	
	and 2.5 GHz along (a) Stair 1 (b) stair 2 (c)	
	Stair 3 and (d) Stair 4	101
4.5	Numerous PL pattern observed at different	
	sections along stair 3 (a) 0.7 GHz (b) 0.9	
	GHz (c) 1.8 GHz and (d) 2.5 GHz	104
4.6	Analysis of FPF _{1-floor} and FPF _{2-floor}	
	excluding recorded <i>PL</i> along <i>S2</i> , <i>S4</i> and <i>S6</i>	105
4.7	<i>FPF</i> and 95 % CI at 0.7 GHz for (a) FPF_1 .	
	floor(b)FPF2-floor	106
4.8	<i>FPF</i> and 95 % CI at 0.9 GHz for (a) FPF_1 .	
	floor(b)FPF2-floor	107
4.9	<i>FPF</i> and 95 % CI at 1.8 GHz for (a) FPF_1 .	
	floor(b)FPF2-floor	107
4.10	<i>FPF</i> and 95 % CI at 2.5 GHz for (a) FPF_1 .	
	floor(b)FPF2-floor	107
4.11	Plots against f for (a) $PL_{d\theta}$ (b) \hat{n}_{LOS} (c) E_{factor}	
	(d) <i>H</i> _{factor}	115
4.12	Plots of FPF against f for floor height (a)	
	between 3.5m and 4.5m (b) less than 3m	116
4.13	Distribution and fitted PDF for \hat{R}	118
4.14	Comparison between normal and empirical	
	CDF	120
4.15	Measured and predicted PL at 0.7 GHz along	
	stair 5 (a) X-axis distance in m (b) X-axis	
	distance in stair steps	121
4.16	Measured and predicted PL at 0.7 GHz along	
	stair 6 (a) X-axis distance in m (b) X-axis	
	distance in stair steps	121
4.17	Measured and predicted PL at 0.9 GHz along	
	stair 5 (a) X-axis distance in m (b) X-axis	
	distance in stair steps	122

4.18	Measured and predicted PL at 0.9 GHz along	
	stair 6 (a) X-axis distance in m (b) X-axis	
	distance in stair steps	123
4.19	Measured and predicted PL at 1.8 GHz along	
	stair 5 (a) X-axis distance in m (b) X-axis	
	distance in stair steps	125
4.20	Measured and predicted PL at 1.8 GHz along	
	stair 6 (a) X-axis distance in m (b) X-axis	
	distance in stair steps	125
4.21	Measured and predicted PL at 2.1 GHz along	
	stair 5 (a) X-axis distance in m (b) X-axis	
	distance in stair steps	127
4.22	Measured and predicted PL at 2.1 GHz along	
	stair 6 (a) X-axis distance in m (b) X-axis	
	distance in stair steps	127
4.23	Measured and predicted PL at 2.5 GHz along	
	stair 5 (a) X-axis distance in m (b) X-axis	
	distance in stair steps	129
4.24	Measured and predicted PL at 2.5 GHz along	
	stair 6 (a) X-axis distance in m (b) X-axis	
	distance in stair steps	129
5.1	Layout of stair and adjoined rooms for (a)	
	stair 2 and (b) stair 5	134
5.2	The <i>d</i> between Tx and Rx for Tx stationed	10.
- · -	neighbouring to wall separating the adjoined	
	room	
		135
5.3	<i>PL</i> at 0.9 GHz along stair 2 for(a) one	10.0
	separation wall (b) two separation walls	136
5.4	PL at 2.5 GHz along stair 2 for (a) one	
	separation wall (b) two separation walls	137
5.5	PL along stair 5 for one separation wall at (a)	
	0.9 GHz (b) 2.5 GHz	138

5.6	Measurement campaign for <i>Tx</i> positioned in adjoined rooms and <i>Rx</i> positioned along	
	stairwell	140
5.7	Measurement campaign for Rx positioned in	
	adjoined rooms and Tx positioned within	
	stairwell	141
5.8	Plotted PL along stair 2 for (a) one separation	
	wall (b) two separation walls	143
5.9	Plotted PL along stair 3 for (a) one separation	
	wall (b) two separation walls	144
5.10	Plotted PL along stair 4 for (a) one separation	
	wall (b) two separation walls	144
5.11	Plotted PL along stair 5 for (a) one separation	
	wall (b) two separation walls	145
5.12	Plotted PL_m and PL_p at 1.8 GHz for stair 3 (a)	
	one separation wall (b) two separation walls	147
5.13	Plots against f for (a) PL_{d0} (b) $\hat{n}_{closed\ range}$	150
5.14	Plots of FPF against f for (a) one separation	
	wall (b) two separation walls	151
5.15	Distribution and fitted PDF for \hat{R}	151
5.16	Comparison between normal and empirical	
	CDF	154
5.17	Measured and predicted PL along stair 7 at	
	0.9 GHz for (a) one separation wall (b) two	
	separation walls	157
5.18	Measured and predicted PL along stair 7 at	
	1.8 GHz for (a) one separation wall (b) two	
	separation walls	157
5.19	Measured and predicted PL along stair 7 at	
	2.1 GHz for (a) one separation wall (b) two	
	separation walls	159

5.20	Measured and predicted PL along stair 7 at	
	2.5 GHz for (a) one separation wall (b) two	
	separation walls	160
A.1	Physical dimensions of the antennas	179
A.2	Electrical, mechanical and environmental	
	specifications of the antennas	180
A.3	VSWR and peak gain of the antennas	181
H.1	Dimension of rooms adjacent to stair 2	212
H.2	Dimension of rooms adjacent to stair 3	213
Н.3	Dimension of rooms adjacent to stair 4	213
H.4	Dimension of rooms adjacent to stair 5	214

LIST OF SYMBOLS

PL	-	Path Loss
Г	-	The Fresnel reflection coefficient
$ heta_i$	-	Incident angles
$ heta_r$	-	Reflection angles
E_i	-	Incident wave
E_r	-	Reflection wave
E_t	-	Transmitted wave
H_i	-	Incident wave magnetic field polarization
H_r	-	Reflection wave magnetic field polarization
3	-	Permittivity
μ	-	Permeability
σ	-	Conductance
Er	-	Relative permittivity
f	-	Operating frequency
Γ_{\parallel}	-	Vertical E-field
Γ_{\perp}	-	Horizontal E-field
η	-	Intrinsic impedance of the mediums
$ heta_B$	-	Brewster angle

 λ - Operating frequency's wavelength

h_c	-	Critical height
h	-	Protuberance's height
$ ho_s$	-	Scattering loss factor
σ_h	-	Mean height
I_0	-	Zero-order of the first kind Bessel function
Tx	-	Transmitter
Rx	-	Receiver
v	-	Diffraction parameter
d_1	-	Actual earth-plane distance from transmitter to the edge causing diffraction
d_2	-	Actual earth-plane distance from receiver to the edge causing diffraction
d_l '	-	Modified earth-plane distance from transmitter to the edge causing diffraction
<i>d</i> ₂ '	-	Modified earth-plane distance from receiver to the edge causing diffraction
L_F	-	Free space loss
P_T	-	Transmitted signal power
P_R	-	Received signal power
G_B	-	Base station antenna's gain
G_M	-	Mobile antenna's gain
d	-	Distance between the transmitter's antenna and receiver's antenna
Lex	-	Excess loss
L	-	Total Loss
d_0	-	Close-in reference distance
d_f	-	Fraunhofer distance

ñ	-	Path loss exponent
Ŕ	-	Residuals
Χσ	-	Shadowing model
σ_R	-	Standard deviation
μ_R	-	Normal distributed variable
PL_{FS}	-	Free space loss
α	-	Attenuation coefficient
k_{f}	-	Amount of floors
L_{f}	-	Floor loss
b	-	Non-linearity of PL increment with increasing floor
<i>k</i> _{wi}	-	Quantity of wall
L _{wi}	-	Type of wall
A	-	Fitting parameter
В	-	Intercept
С	-	Path loss frequency dependency
f_c	-	System frequency
Х	-	Site-specific term related to the type of wall
FL	-	Floor Loss
N	-	Distance power loss coefficient
п	-	Number of floors
P_{tx}	-	Transmitted Power
G_{Tx}	-	Transmitted power of signal generator
G_{Rx}	-	Antenna gain at <i>Rx</i> -end
P_{Rx}	-	Received signal strength
Ŝ	-	Total summation of the square of \hat{R}

$\hat{oldsymbol{eta}}_{0}$	-	Intercept of the graph line
$\hat{oldsymbol{eta}}_{I}$	-	Slope of the graph line
Ć	-	Added constant term to power law expression
a & b	-	Constant terms in nonlinear regression expression
ń	-	Number of samples
\overline{X}	-	Mean of the samples
<i>t_{crit}</i>	-	Total number of samples
S	-	Standard deviation of the samples
\bar{f}	-	Optimum value
n_{mp}	-	Total measurement point
PL_p	-	Path Loss predicted
PL_m	-	Path Loss Measured
Χσ	-	Impact of shadowing
μ_R	-	Mean Error
σ_R	-	Standard deviation
$f(\hat{R})$	-	Probability Density Function curve
$\sigma_{\rm X}$	-	Dispersion of variable population
μ_X	-	Mean of variable population
Ź	-	Maximum probability value that X_{σ} increases average <i>PL</i>
\widehat{T}	-	A specific event in which the value 1 is yielded when it is true and
		0 when it is false
$F(\hat{R})$	-	Normally-fitted Cumulative Distribution Function curve
$\widehat{F}_n(\widehat{R})$	-	Empirical Cumulative Distribution Function curve
'n	-	Number of \hat{R} variables
PL_{d0}		- Path loss at difference distance

\hat{n}_{LOS}	-	Path loss exponent for Line Of Sight
<i>S1,, S6</i>	-	Stair flights 1 to 6
FPF _{1-floor}	-	One floor penetration factor
FPF _{2-floors}	-	Two floor penetration factor
E_{factor}	-	Even-numbered stair flight correctional factor
Hfactor	-	High stair flight correctional factor
ä,,ḋ	-	Site-specific constant terms
$\widehat{F}(\widehat{R})$	-	Inverse- Cumulative Distribution Function curve
$\hat{n}_{closed\ range}$	-	Path loss exponent for closed range
AF	-	Attenuation based on number of separation floors
SW	-	Attenuation based on number of separation wall
n _w	-	Number of wall

LIST OF ABBREVIATIONS

IAN	-	Incident Area Network
4G	-	Fourth-Generation
CDF	-	Cumulative Distribution Function
CI	-	Confidence Interval
COST	-	Cooperation in the field of Scientific and Technical
		Research
FAF	-	Floor Attenuation Factor
FDTD	-	Finite Difference Time Domain
FPF	-	Floor Penetration Factor
GRG	-	Generalized Reduced Gradient
IAN	-	Incident Area Network
ITU	-	International Telecommunication Union
ITU-R	-	ITU's Radiocommunication Sector
LOS	-	Line Of Sight
LTE	-	Long Term Evolution
MIMO	-	Multiple-Input-Multiple-Output
PDF	-	Probability Density Function
QoS	-	Quality of Service
RF	-	Radio Frequency
TCFN	-	Temporary Cognitive Femtocell Network
UTM	-	Universiti Teknologi Malaysia
WAF	_	Wall Attenuation Factor

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Technical Specifications of Antenna	178
В	<i>T</i> -Distribution Table	182
С	Received Signal Strength Values when Inspecting The Impact of <i>Rx</i> Being Elevated or Lower than <i>Tx</i> for Propagation within The Stairwell	183
D	Recorded <i>Pl</i> at Stairs 1 To 4 For Propagation Within The Stairwell	185
E	μ_{r} , And Σ_{r} for the Differences Between Pl_{m} and Pl_{p} Incorporating E_{factor} Values Along S2, S4 and S6 For Propagation Within The Stairwell	192
F	Recorded Pl_m and Computed Pl_p of The Proposed Models and Standard Empirical Models Along Stair 5 and Stair 6 For Propagation Within Stairwell	195
G	<i>Pl</i> Values When Inspecting The Impact Of <i>Rx</i> Being Elevated Or Lower Than <i>Tx</i> For Propagation Between Stairwell and Adjacent Rooms	106

Н	Dimension Of Adjacent Rooms To the	
	Stairwells	212
Ι	Recorded Pl At Stairs 2 To 5 For	
	Propagation Between Stairwell And	
	Adjacent Rooms	215
J	Recorded Pl_m and Computed Pl_p of The	
	Proposed Models and Standard Empirical	
	Models Along Stair 6 For Propagation	
	Between Stairwell and Adjacent Rooms	224
K	List of Publications	231

CHAPTER 1

INTRODUCTION

1.1 Background

The success of public safety personnel's operations depend heavily on the ability of these personnel to communicate in the most effective manner. Critical information would need to be relayed among these personnel and to other associated parties that are involve in the emergency response. Growing investment towards improving the standards and capability of public safety communication technologies reflects the acknowledgement from public towards the need to equip public safety personnel with the finest telecommunication system and resources (Doumi *et al.*, 2013). Many improvements to available communication technologies used for emergency response have been proposed in order to accelerate warning ability in the face of disaster and also assists in decision making in the disaster relief operations.

Among the most critical part of public safety communication is the one utilized by first responders who are present and actively engage in operations at emergency or disaster site. Contemporary emergency-response communication especially for first responders heavily depend on terrestrial cellular infrastructure. Unprecedented emergency events, either man-made or natural occurrence, could lead to the cease of operation or inadequate service by terrestrial infrastructures due to damage or interrupted electricity supplies to those infrastructures. Thus, back-up telecommunication system has to be in place if such a disaster's aftermath happens (Portmann and Pirzada, 2008).

To improve the aforementioned limitations, deployment of incident area network (IAN) that could widen and improve radio frequency (RF) coverage has been studied and in the process to be made available. The IAN network can be set-up temporarily in an *ad-hoc* manner. IAN's areas of interests include all known environments where wireless signal strength reception need to be boosted up or the covered vicinity has to be extended (Gentile *et al.*, 2012).

The establishment of Long Term Evolution (LTE) and LTE-Advanced broadband technologies are expected to supplement variety of IAN requirements. Since these networks will be widely deployed, regulators, public community and manufacturers have begun cooperating towards realizing a common standard so less costly equipments can be used in facilitating LTE application for public safety use (Doumi *et al.*, 2013). The use of carrier aggregation (CA) technology that is supported by LTE-Advanced system (Pedersen *et al.*, 2013) means that first responders could also take advantage of large data or files transfer for effective emergency response (Al-Hourani and Kandeepan, 2013). Therefore, investigating frequency range covering from below 1 GHz until beyond 2 GHz (Yan *et al.*, 2013) that have been allocated for LTE or LTE-Advanced applications should be important to strengthen the know-how in implementing LTE- assisted IAN.

In a high rise where the number of floors is considerably large, the availability of reliable telecommunication means for emergency responders inside stairway is crucial. These responders commonly use the stair when attending to emergency cases that take place in a multi floor building due to safety reason. Thus, radio propagation along the stairway need to be carefully characterize in order to ensure communication link between emergency responders is not susceptible to interference due to the stair setting (Lim *et al.*, 2009). Given that the stair structure is heavily made up of reinforced concrete (Ashraf *et al.*, 2010), radio frequency penetration from outside sources is typically minimized (Aerts *et al.*, 2013). Thus, the use of repeaters or relays to extend coverage should be expected (Craighead, 2009). Small cell LTE relays could play important roles in filling up the gap towards enhancing public safety communication coverage for this crucial segment of a multi floor building (Al-Hourani and Kandeepan, 2013).

An IAN that is set up to provide reliable wireless coverage for stairways in a tall high rise would require a significant number of relays. Relays may need to be placed within the stair itself (Souryal *et al.*, 2008) as well as in nearby indoor locations (Liu *et al.*, 2014). The planning stage of establishing the relay-assisted IAN is very critical. Deploying too many relays can cause conflict in the network due to packet loss and time delay (Rafaei *et al.*, 2008). On the other hand, insufficient number of relays would results in poor coverage (Liu *et al.*, 2014). Modelling signal attenuation or popularly known as path loss, *PL*, as a function of separation distance between transmitter-receiver link could help by providing early *PL* prediction and act as a tool to demonstrate best practices when setting up the wireless network (Valcarce and Zhang, 2010).

1.2 Problem Statement

Investigation on wireless signal wave propagation along the stairway at different operating frequency ranges had been carried out by Yang and Wu (2001), Teh and Chuah (2005) and Lim *et al.* (2009). The research works, nevertheless, were based on ray-tracing deterministic approaches that are computationally intensive and require prolonged time-period to complete. Additionally, the laborious tasks require the use of software with complex

computational capabilities. A much simpler and easily implemented technique to estimate signal wave's attenuation is via empirical *PL* model (Valcarce and Zhang, 2010). Empirical *PL* models for the stairway environment were presented by Yu *et al.* (2014), Lim *et al.* (2014) and Wang *et al.* (2014) but only covered operating frequency for 2.4 GHz and higher frequency ranges.

To the author's knowledge, no existing stairway's empirical *PL* models for spectrum range below 2 GHz have been proposed and available in the literature despite various bands in the mentioned range have been stipulated for public safety purpose (Matolak *et al.*, 2013). Therefore, developing comprehensive empirical *PL* model that comprise of frequency spectrum below 2 GHz is necessity to assist stairway's IAN planning since unprecedented emergency events may require the IAN to be adaptive and operates in more than one frequency (Rafaei *et al.*, 2008).

For better characterisation of signal wave attenuation inside multi floor buildings, a mathematical term is commonly introduced in empirical *PL* formulation to signify losses incurred as signal wave penetrates into different floors (Sarkar *et al.*, 2003). The proposed stairway's empirical *PL* models by Yu *et al.* (2014), Lim *et al.* (2014) and Wang *et al.* (2014) had not considered the floor attenuation factor, which limits practical application of the models given the ambiguity on the maximum floors that the models can still be considered befitting. Hence, a different independent analysis need to be carried out to identify the floor attenuation factor for better stairway's *PL* prediction.

It is also important to note that attenuation of signal wave as it penetrates nearby floors could be influenced by building's floor height. Investigation to demonstrate the dependency of signal wave losses to floor height can improve indoor *PL* model (EUR., 1999). Emergency responders may encounter different high rises with floor height variations and need unique strategies to deploy IAN's relays based on the different heights. Investigation on the effect of floor height to floor attenuation is thus essential and must be looked into in order to warrant that proposed *PL* model for the stairway setting could be fine-tuned with respect to diverse building floor height. At present, no study has been carried out to characterise the effect.

Aforementioned studies on signal wave propagation were also limited to propagation along the stairway structure and did not consider neighbouring indoor setting. IANs for stairway coverage are in fact expected to include adjacent inbuilding space where emergency responders demand seamless connectivity beyond the stairway to support reliable communication in their emergency operations (Souryal *et al.*, 2008). Signal wave's propagation through the stairway into nearby multi floor sections may have traits that can be distinguished from propagation in conventional indoor settings (Austin *et al.*, 2011). Modelling the setting would facilitate future IAN implementation through an optimized deployment strategy (Liu *et al.*, 2014).

1.3 Objectives

The aim of this research was to develop empirical propagation models with respect to the stair environment based on measured *PL* along and about stairways residing in multi floor buildings. This aim was meant to support and further enrich literature on LTE application for public safety communication. Thus, objectives that were included in this research study are as follows.

1. To characterise *PL* and the shadowing phenomena for propagation within the stairway as well as between the stairway and adjacent indoor settings.

- 2. To conduct the characterisation of *PL* and shadowing at different operating frequencies within the spectrum allocated for LTE.
- 3. To develop frequency-dependent empirical propagation models for the investigated scenarios based on the characterisation of *PL* and shadowing conducted.
- To validate the empirical propagation models with measurement results and make comparison to available indoor empirical propagation models.

1.4 Scopes of Work and Research Limitation

In order to ensure the research study's significance, the most popular and generally constructed stairway arrangement in multi floor buildings will be investigated. Follows, are the scopes of work decided for this research study.

- 1. The study of *PL* and shadowing focused on signal wave propagation within and about reinforced concrete dog-leg stairway environment.
- 2. The study of *PL* and shadowing between stairway and nearby setting would be limited to neighbouring rooms adjacent to the stairway.
- 3. Empirical *PL* measurement carried out at five narrow band frequencies namely 0.7 GHz, 0.9 GHz, 1.8 GHz, 2.1 GHz and 2.5 GHz.
- Measurement carried out at four different student residential and faculty buildings inside Universiti Teknologi Malaysia's (UTM) campus with diverse floor height.

5. Measurement carried out in the presence of sporadic and small number of moving stair occupants.

1.5 Research Contributions

This research work focused on modelling *PL* empirically with respect to the dog-leg stairwell, which is the most common stair configuration found in modern buildings. The proposed *PL* models have been validated and are shown to compute closer prediction-to-measured *PL* values relative to several indoor *PL* models that are usually set as benchmark when assessing indoor signal wave attenuation (Zyoud *et al.*, 2013). Spectral range covered by the proposed frequency-dependant *PL* models envelop bands that have been dedicated for public safety communications (Matolak *et al.*, 2013) as well as Long Term Evolution (LTE) fourth-generation (4G) wireless technology (Yan *et al.*, 2013). The proposed models could therefore be used as reference works for not only public safety communication but also the planning of LTE indoor small cells for frequencies within the range where wireless coverage associated to multi floor stairwell is concerned (Lim *et al.*, 2014). Follows are the contributions pertaining to indoor empirical propagation modelling presented from this research study.

 The reference measurement campaign setup for transmitter, *Tx*, and receiver, *Rx*, positioning at two examined scenarios, namely when both *Tx* and *Rx* are within the stairwell structure as well as when either one is located outside and adjacent to the stairwell structure. Another related contribution for the latter scenario include the identification of region where different locations of receiver, *Rx*, but with approximately similar *d* could nonetheless resulted in considerable differences in terms of *PL* values due to their relative position to *Tx*. The observation was reflected in the proposed model.

- The development of the first frequency-dependant *PL* and shadowing models, covering a nearly 2 GHz wide spectrum ranging from 0.7 GHz up to 2.5 GHz for within the stairwell scenario.
- 3. The description of floor loss and stair flight impact to wireless signal wave attenuation that have never been included in preceding works on stairwell's empirical *PL* models. Results from examining signal wave attenuation when penetrating different floors had in addition revealed the influence of floor height variations to *PL*. These observations have been weighed in to develop a more accurate empirical *PL* model for propagation along the stairwell scenario.
- 4. The development of the first frequency-dependant *PL* model for stairwell and nearby in-building setting covering spectrum ranging from 0.9 GHz up to 2.5 GHz. Experimental works and analysis on *PL* for stairwell and adjacent rooms in this research work have produced frequency-dependent *PL* model that is more precise for the examined scenario relative to standard indoor empirical models.

1.6 Thesis Layout

The next five chapters in this thesis cover the fundamentals along with research activities involved in the development of propagation models along and about the multi floor stairwell for LTE frequency spectrum plus the inferences drawn from the study.

The second chapter is the literature review. This chapter provides review on recent developments of public safety communication along with technologies that have been proposed to enhance the communication system. Next, studies carried out by researchers on wireless signal wave propagation along the stairway are described. Topics on wireless propagation and the stairway structure are then explained. The chapter subsequently presents the fundamentals of statistical analysis employed in this investigation work.

The third chapter is on methodology. This chapter illuminates the flow of research study by explaining procedures of research activities that have taken place. The activities include pilot study, measurement campaign, and using certain techniques to analyse collected data for the development of propagation model.

Chapter four is on results and discussions for propagation along the stairway. In this chapter, results and analysis based on recorded *PL* data for the stated scenario are presented in order to demonstrate related *PL* and shadowing models as well as their validation.

Chapter five is on results and discussions for propagation between stairway and adjacent rooms. Results and discussions are explained in similar style as the presentation in chapter four.

Chapter six is the conclusion. This chapter discusses the inference drawn from this research study, justify the significance of the research work and give suggestions on future development based on the findings.

REFERENCES

- Adams, A. P. M., and Galea, E. R. (2011). An experimental evaluation of movement devices used to assist people with reduced mobility in highrise building evacuations. *In Pedestrian and Evacuation Dynamics*, London,UK: Springer Science
- Aerts, S., Plets, D., Verloock, L., Martens, L., & Joseph, W. (2014). Assessment and comparison of total RF-EMF exposure in femtocell and macrocell base station scenarios. *Radiation protection dosimetry*, 162(3), 236-243.
- Al-Hourani, A., and Kandeepan, S. (2013). Temporary Cognitive Femtocell Network For Public Safety LTE. In Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2013 IEEE 18th International Workshop. 190-195.
- Alread, J., Leslie, T., and Whitehead, R. (2014). *Design-tech: Building Science* for Architects Informa,UK: Routledge
- Andrade, C.B., and R.P.F. Hoefel. (2010). IEEE 802.11 WLANS: A Comparison on Indoor Coverage Models, *Proc. 23rd Canadian Conf.Electrical and Computer Eng.* 2-5 May. Calgary, AB:IEEE, 1-6.
- Ansah, S. K., and Owusu, K. (2012). State of public buildings in Ghana after the passage of the Persons with Disability Act (Act 715): the case of tertiary institutions. *Journal of Construction Project Management and Innovation*, 2(2), 448-463.
- Arshad, K., Katsriku, F., & Lasebae, A. (2007). Effects of different parameters on attenuation rates in circular and arch tunnels. *PIERS Online*, 3(5), 607-611.

- Ashraf, I., Claussen, H., and Ho, L. T. (2010). Distributed radio coverage optimization in enterprise femtocell networks. In Communications (ICC), 2010 IEEE International Conference. 23-27 May. Cape Town, South Africa:IEEE, 1-6.
- Austin, A. C., Neve, M. J., and Rowe, G. B. (2011). Modeling propagation in multifloor buildings using the FDTD method. *Antennas and Propagation*, *IEEE Transactions on*, 59(11), 4239-4246.
- Averill, J. D., and Song, W. (2007). Accounting for emergency response in building evacuation: modeling differential egress capacity solutions. *Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory*. April 2007. US: NIST, 7425-7437.
- Bajpai, N. (2009). *Business statistics*. Cape Town, South Africa : Pearson Education.
- Bangash, M. Y. H. (2003). Structural detailing in concrete: a comparative study of British, European and American codes and practices. London: Thomas Telford.
- Bangash, M. Y. H., & Bangash, T. (1999). Staircases-structural analysis and design. Rotterdam, Netherlands: CRC Press.
- Bansal, R. (2006). *Engineering electromagnetics: applications*. New York: CRC Press.
- Barclay, L.W.(2003). Propagation of Radiowaves, (2nd. ed). United Kingdom, London: Institution of Engineering and Technology.
- Berk, K., and Carey, P. (2009). *Data Analysis with Microsoft Excel: Updated* for Office 2007. Clifton Park, USA: Cengage Learning.
- Bhandari, M., and Joensson, A. (2011). *Clinical research for surgeons*. New York: Thieme.
- Billings, R. B., and Jones, C. V. (2nd) (2008). *Forecasting urban water demand*.Albuquerque, New Mexico: American Water Works Association.
- Buchanan, A. H., John, S., & Love, S. (2012). LCA and Carbon Footprint of Multistorey Timber Buildings Compared with Steel and Concrete Buildings. *World conference on timber engineering*. 15-19 July 2012, Auckland, 19-27.

- Building Department, The Government of Hong Kong Special Administrative Unit (2011). Code of Practice for Fire Safety in Buildings. Hong kong: , The Government of Hong Kong Special Administrative Unit.
- Bukowski, R. W. (2007). Emergency egress strategies for buildings. In Proc. 11th International Interflam Conference. 3-5 September. London, England:NIST, 159-168.
- Chapra, S.C., and Canale, R.P. (2002). *Numerical Methods for Engineers: With Software and Programming Applications*. New York: McGraw-Hill.
- Chudley, R., and Greeno, R. (2013). *Building construction handbook*. Avenue, New York: Routledge.
- Cloude, S. (1995). An introduction to electromagnetic wave propagation and *antennas*. London: UCL Press.
- Cohen, H. H., and Abele, J. R. (2007). *Slips, Trips, Missteps, and Their Consequences*. Tucson, AZ: Lawyers & Judges Publishing Company
- Craighead, G. (2009). *High-rise security and fire life safety*. Butterworth: Heinemann.
- David, A. (1999). Metric Handbook, Planning and Design Data, Woburn, MA: Reed Educational and Professional Publishing Ltd.
- Dipela, T., Felix, L. and Mahlwele, S. (2009). *Drawings, Setting out, Quantities*& Costing. Cape Town, South Africa: Pearson Education.
- Doumi, T., Dolan, M. F., Tatesh, S., Casati, A., Tsirtsis, G., Anchan, K., and Flore, D. (2013). LTE for public safety networks. *Communications Magazine, IEEE*, 51(2), 106-112.
- Dunn, V. (2007). *Strategy of firefighting*. Fire Department, New York: Fire Engineering Books.
- Dunn, V. (2010). Collapse of burning buildings: A guide to fireground safety. Avenue, New York: PennWell Corporations.
- Emmitt, S. and C. A. Gorse. (2010). Barry's Introduction to Construction of Buildings. (2nd ed.) Wiley :Blackwell.
- Engel, A. (2007). Building Stairs. South Main Street, Newtown: Taunton Press.
- European Cooperation in the Field of Scientific and Technical Research (1999). *Digital Mobile Radio Towards Future Generation Systems, Final Report.*C. O. S. T, EUR.

- Friis, H. T. (1946). A note on a simple transmission formula. *proc. IRE*, 34(5), 254-256.
- Gagliano, M., Phillips, C. R., and Jose, P. (2008). Air Management for the Fire Service. Oklahama: PennWell Corporation.
- Gattermann, P., Knoflacher, H., and Schreckenberg, M. (Eds.). (2007). *Pedestrian and evacuation dynamics 2005*. New York: Springer Science & Business Media.
- Gentile, C., Matolak, D. W., Remley, K. A., Holloway, C. L., Wu, Q., and Zhang, Q. (2012). Modeling urban peer-to-peer channel characteristics for the 700 MHz and 4.9 GHz public safety bands. In Communications (ICC), 2012 IEEE International Conference. 10-15 June. Ottawa, On:IEEE , 4557-4562.
- Gubner, J. A. (2006). *Probability and random processes for electrical and computer engineers*. Cambridge, UK: Cambridge University Press.
- Guizzo, E., Ackerman, E., Waibel, M., Taylor, M., and Bouchard, S. (2011). Fukushima robot operator writes tell-all blog. *IEEE Spectrum*, 23, Zurich, Switzerland.
- Hamid, M., and Kostanic, I. (2014). Path Loss Prediction in Relay Station Environment. In Transactions on Engineering Technologies. New York: Springer.
- Hatcher, L. (2003). *Step-by-step basic statistics using SAS*. USA: SAS Publishing.
- Hirschey, M. (12nd) (2008). *Managerial economics*. Clifton Park, USA: Cengage Learning.
- Hoffmann, A. and R. Muehlnikel. (2010). Experimental and numerical investigation of fire development in a real fire in a five-storey apartment building. *Fire Mater*. 35,453-462.
- Ibarra, M., Monares, A., Ochoa, S. F., Pino, J. A., and Suarez, D. (2012). A mobile collaborative application to reduce the radio traffic in urban emergencies. In Computer Supported Cooperative Work in Design (CSCWD), 2012 IEEE 16th International Conference. 23-25 May. Wuhan:IEEE, 358-365.

- International Telecommunication Union Recommedations (2001). Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 900MHz to 100GHz. I. T. U. R.
- Ionazzi, D. (1996). *The stagecraft handbook*. Galbraith Road, Cincinnati: Players Press.
- Jain, V. K. (1996). *Fire Safety in Buildings*. Daryaganj,New Delhi: Taylor & Francis.
- Jefferis, A. (2013). *Residential Design, Drafting, and Detailing*. Clifton Park,USA: Cengage Learning.
- Jefferis, A., and Madsen, D. A. (2005). *Architectural drafting and design*. Clifton Park,USA: Cengage Learning.
- Jiping, S., Lingfei, C., & Xiaoyang, L. (2004). Influence of electrical parameters on UHF radio propagation in tunnels. In *Communications*, 2004 and the 5th International Symposium on Multi-Dimensional Mobile Communications Proceedings. The 2004 Joint Conference of the 10th Asia-Pacific Conference on, IEEE, 1, 436-438.
- Karlen, M. (2009). Space planning basics. Chichester, West Sussex, England: John Wiley & Sons.
- Katirai, M. (2009). Sprawl, equity and fire department response times across the US. Doctoral dissertation, University of Louisville.
- Katz, P. (2002). Building type basics for office buildings. Chichester, West Sussex, England: John Wiley & Sons.
- Kleinbaum, D., Kupper, L., Nizam, A., and Rosenberg, E. (5st) (2013). *Applied regression analysis and other multivariable methods*. Clifton Park, USA: Cengage Learning.
- Lawton, M. C., and McGeehan, J. P. (1994). The application of a deterministic ray launching algorithm for the prediction of radio channel characteristics in small-cell environments. *Vehicular Technology, IEEE Transactions on*, 43(4), 955-969.
- Lee, W. C. Y. (2014), *Integrated wireless propagation models*. United State, USA: Mc Graw Hill.

- Li, H., L. Zhao, M. J. Darr and P. Ling. (2009) . Modeling Wireless Signal Transmission Performance Path Loss for ZigBee Communication Protocol in Residential Houses. 2009 ASABE Annual International Meeting. 21-24 June. Rano, Nevada : ASABE.
- Liengme, B. (2008). A guide to Microsoft Excel 2007 for scientists and engineers. Canada: Academic Press.
- Lim, S. Y., Yun, Z., Baker, J. M., Celik, N., Youn, H. S., and Iskander, M. F. (2009). Propagation modeling and measurement for a multifloor stairwell. *Antennas and Wireless Propagation Letters, IEEE*, 8, 583-586.
- Lim, S. Y., Z. Yun and M.F. Iskander. (2012). Radio propagation modeling in indoor stairwell: A K-means clustering approach. *Antennas and Propagation Society International Symposium* (APSURSI), 8-14 July. Chicago, IL: IEEE, 1-2.
- Lim, S., Yun, Z., and Iskander, M. (2014). Propagation Measurement and Modeling for Indoor Stairwells at 2.4 and 5.8 GHz. *IEEE Trans. Antennas and Propag.* 62(9), 4754 – 4761.
- Liu, H., Z. Xie, J. Li, S. Lin, D. J. Siu, P. Hui, K.Whitehouse, and J. A. Stankovic. (2014). An Automatic, Robust, and efficient multiuser breadcrumb system for emergency response applications. *IEEE Trans. Mobile Comput.* 13(4), 723–736.
- Machiwal, D., and Jha, M. K. (2012). *Hydrologic time series analysis: Theory and practice*. New York Springer Science & Business Media.
- Mann, P. S. (2007). *Introductory statistics*. Chichester, West Sussex, England: John Wiley & Sons.
- Marken, B. (2002). How to Fix (just About) Everything.New York: Free Press.
- Martin, M., and Elevator, S. (2003). Challenges to Using Elevators in a Fire. *American Society of Mechanical Engineers*, 19-21 April. USA, 1-5.
- Matolak, D. W., Zhang, Q., and Wu, Q. (2013). Path Loss in an Urban Peer-to-Peer Channel for Six Public-Safety Frequency Bands. *Wireless Communications Letters, IEEE*, 2(3), 263-266.
- Mayes, T. R., and Shank, T. M. (1998). Financial Analysis with Microsoft Excel. *Accounting Education*, 7(4), 158.

- McGrail, D. M. (2007). *Firefighting operations in high-rise and standpipe-equipped buildings*. Oklahama, USA: PennWell Books.
- McKown, J. W., and Hamilton Jr, R. L. (1991). Ray tracing as a design tool for radio networks. *Network, IEEE*, 5(6), 27-30.
- Mimmack, G., Manas, G., and Meyer, D. (2001). *Introductory Statistics forBusiness*. Cape Town, South Africa : Pearson Education.
- Newcombe, R. G. (2012). Confidence intervals for proportions and related measures of effect size. New York: CRC Press.
- Ng, C. M., and Chow, W. K. (2006). A brief review on the time line concept in evacuation. *International Journal on Architectural Science*, 7(1), 1-13.
- Office of the Federal Register. (2003). LSA, List of CFR Sections Affected. United States: Office of the Federal Register.
- Owen, A. B. (2001). Empirical likelihood. New York: CRC Press.
- P. Kyösti et al. (Ed) (2007), WINNER II channel models, WINNER II Public Deliverable. Munich, Germany: Wireless World Initiative New Radio.
- Pedersen, K. I., Michaelsen, P. H., Rosa, C., and Barbera, S. (2013). Mobility enhancements for LTE-advanced multilayer networks with inter-site carrier aggregation. *Communications Magazine*, *IEEE*, 51(5), 64-71.
- Polit, D. F., and Beck, C. T. (7th) (2004). *Nursing research: Principles and methods*. Philadelphia: Lippincott Williams & Wilkins.
- Portmann, M., and Pirzada, A. A. (2008). Wireless mesh networks for public safety and crisis management applications. *Internet Computing, IEEE*, 12(1), 18-25.
- Rappaport, T. S. (2002). Wireless communications: principles and practice.Upper Saddle River, New Jersey: Prentice Hall PTR.
- Rappaport, T. S., Murdock, J., Michelson, D., and Shapiro, R. (2011). An opensource archiving system. *IEEE Vehicular Technology Magazine*, Volume 6, pp. 24-32.
- Refaei, M. T., Souryal, M. R., and Moayeri. N. (2008). Interference avoidance in rapidly deployed wireless ad hoc incident area networks. *INFOCOM Workshops IEEE*, 1-6.
- Reid, C. R. D. (2009). Occupational Lower Extremity Risk Assessment Modeling.East Eisenhower Parkway: ProQuest.

- Remley, K. A., Koepke, G., Holloway, C. L., Grosvenor, C. A., Camell, D., Ladbury, J., and Young, W. F. (2010). Radio-Wave Propagation Into Large Building Structures—Part 2: Characterization of Multipath. Antennas and Propagation, *IEEE Transactions*. 58(4), 1290-1301.
- Reneke, P. A., Tofilo, P., Peacock, R. D., and Hoskins, B. L. (2013). Simple Estimates of Combined Stairwell/Elevator Egress in Buildings. United State: Create Space.
- Rich, P. M., and Dean, Y. (1999). Principles of element design (3rd). New York: Routledge.
- Rossi, R. J. (2009). *Applied biostatistics for the health sciences*. Chichester, West Sussex, England: John Wiley & Sons.
- Rouil, R., Izquierdo, A., Souryal, M., Gentile, C., Griffith, D., and Golmie, N. (2013). Nationwide Safety: Nationwide Modeling for Broadband
 Network Services. *Vehicular Technology Magazine, IEEE*, 8(2), 83-91.
- Rumsey, D. J. (2006). *Probability for dummies*. Chichester, West Sussex, England: John Wiley & Sons.
- Salo, J., Vuokko, L., El-Sallabi, H. M., and Vainikainen, P. (2006). Shadow fading revisited. *In Vehicular Technology Conference*. 7-10 May. Melbourne, Vic: IEEE, 2843-2847.
- Sarkar, T. K., Ji, Z., Kim, K., Medouri, A., and Salazar-Palma, M. (2003). A survey of various propagation models for mobile communication. *Antennas and Propagation Magazine, IEEE*, 45(3), 51-82.
- Saunders, S., and Aragón-Zavala, A. (2007). Antennas and propagation for wireless communication systems. Chichester, West Sussex, England: John Wiley & Sons.
- Sauro, J., and Lewis, J. R. (2012). Quantifying the user experience: Practical statistics for user research. Burlington, MA: Morgan Kaufmann.
- Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., and Seyfried, A. (2009). Evacuation dynamics: Empirical results, modeling and applications. *In Encyclopedia of complexity and systems science*. (pp. 3142-3176). London: Springer New York.

- Seidel, S. Y., and Rappaport, T. S. (1992). 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. *Antennas and Propagation, IEEE Transactions on*, 40(2), 207-217.
- Sendra, S., Fernandez, P., Turro, C., and Lloret, J. (2010). IEEE 802.11 a/b/g/n Indoor Coverage and Performance Comparison. In Wireless and Mobile Communications (ICWMC), 2010 6th International Conference. 20-25 Sept. Valencia:IEEE, 185-190.
- Souryal, M. R., Geissbuehler, J., Miller, L. E., & Moayeri, N. (2007). Real-time deployment of multihop relays for range extension. *In Proceedings of the* 5th International Conference on Mobile Systems, Applications, and Services. 11-13 June. San Juan, Puerto Rico, 85-98.
- Spence, W. P. (2000). *Constructing Staircases, Balustrades & Landings*. Park Avenue South, New York: Sterling Publishing Company, Inc.
- Stamatis, D. H. (2003). *Six Sigma and Beyond Statistics and Probability*. New York: CRC Press.
- Starkings, S. D. (2007). Elementary Statistics Using JMP® by Sandra D. Schlotzhauer. *International Statistical Review*, 75(3). 430.
- Tamaneh-Nyah, C., and Nepembe, J., (2014). Determination of a Suitable
 Correction Factor to a Radio Propagation Model for Cellular Network
 Analysis. Fifth International Conference on Intelligent Systems,
 Modeling and Simulation (ISMS), 27-29 January.
 Langkawi,Malaysia:IEEE, 175-182.
- Teh, C. H. and H. T. Chuah (2005). Propagation measurement in a multi-floor stairwell for model validation, 28th Int. Union of Radio Sci. Gen. Oct. Assembly, India.
- Templer, J. (1995). *The staircase: studies of hazards, falls, and safer design*. Cambridge,London: MIT press.
- Tomastik, E. C. (2004). Calculus, Applications and Technology. Belmont Hills, CA: Brooks Cole.
- Tricker, R., and Algar, R. (2008). Scottish Building Standards in Brief. Informa,UK: Routledge.

- Valcarce, A., and Zhang, J. (2010). Empirical indoor-to-outdoor propagation model for residential areas at 0.9–3.5 GHz. Antennas and Wireless Propagation Letters, IEEE, 9, 682-685.
- Veney, J. E., Kros, J. F., and Rosenthal, D. A. (2nd) (2009). *Statistics for health care professionals: working with Excel*. New York: John Wiley & Sons.
- Vogt, F. (2011). *Residential Construction Academy: Carpentry*. Clifton Park,USA: Cengage Learning.
- Vuran, M. C., and Akyildiz, I. F. (2008). Cross-layer packet size optimization for wireless terrestrial, underwater, and underground sensor networks. *In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE*. 13-18 April. Phoenix,AZ:IEEE, 226 – 230.
- Waldau, N., Gattermann, P., Knoflacher, H., and Schreckenberg, M. (Eds.)
 (2007). *Pedestrian and Evacuation Dynamics 2005*. New York: Springer Science & Business Media.
- Wang, Y., Safavi-Naeini, S., and Chaudhuri, S. K. (2000). A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation. *Antennas and Propagation*, *IEEE Transactions on*, 48(5), 743-754.
- Wang, Y., Wang, X. L., Qin, Y., Liu, Y., Lu, W. J., and Zhu, H. B. (2014). An empirical path loss model in the indoor stairwell at 2.6 GHz. *In Wireless Symposium (IWS), 2014 IEEE International,* 24-26 March. X'ian:IEEE , 1-4.
- Wehrle, K., Günes, M., and Gross, J. (2010). *Modeling and tools for network simulation*. New York: Springer Science & Business Media.
- Wolberg, J. (2006). Data analysis using the method of least squares: extracting the most information from experiments. New York: Springer Science & Business Media.
- Yan, J. J., Hong, Y. P., Shinjo, S., Mukai, K., and Asbeck, P. M. (2013),
 Broadband high PAE GaN push-pull power amplifier for 500MHz to 2.5
 GHz operation. *Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International,* 2-7 June. Seattle: WA, 1-3.

- Yang, C. F. and B. C. Wu (2001), A ray-tracing/PMM hybrid approach for determining wave propagation through periodic structures. *IEEE Trans. Veh. Technol*, 50(3), 791-795.
- Young, W. F., Holloway, C. L., Koepke, G., Camell, D., Becquet, Y., and Remley, K. A. (2010). Radio-wave propagation into large building structures—Part 1: CW signal attenuation and variability. *Antennas and Propagation, IEEE Transactions*. 58(4), 1279-1289.
- Yu Yu, Yang Liu, Wen-Jun Lu, and Hong-Bo Zhu. .(2014), Path Loss Model with Antenna Height Dependency under Indoor Stair Environment, *International Journal of Antennas and Propagation*, Article ID 482615.
- Zhang, J., and De la Roche, G. (2010). *Femtocells. Technologies and Deployment*. New York: Wiley.
- Zheng, K., Hu, F., Lei, L., and Wang, W. (2010). Interference coordination between femtocells in LTE-advanced networks with carrier aggregation. In Communications and Networking in China (CHINACOM), 2010 5th International ICST Conference. 25-27 Aug. Beijing: IEEE, 1-5.
- Zyoud, A. H., Chebil, J., Habaebi, M. H., Islam, M. R., and Zeki, A. M. (2013). Comparison of Empirical Indoor Propagation Models for 4G Wireless Networks at 2.6 GHz. *Proceedings Engineering and Technology*. 3, 7-11.