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ABSTRACT 

 

 

 

 

 Nowadays, isomerization of linear alkanes to their branched isomers has become 

the most demanded process in increasing the octane rating of gasoline. Fibrous silica 

zeolite Y (FY) catalyst has been prepared via the microemulsion system with zeolite Y 

seed assisted crystallization. The platinum loaded on protonated FY (Pt/HFY) was 

prepared by protonation of FY followed by the impregnation of platinum on HFY. The 

catalysts were characterized by X-ray Diffraction (XRD), Field Emission Scanning 

Electron Microscope (FESEM), nitrogen physisorption (BET), Magic Angle Spinning 

Nuclear Magnetic Resonance (MAS-NMR) and Fourier Transform Infrared (FTIR) 

spectroscopies. The XRD results of the FY catalyst exhibited diffraction peaks in the 

range of 4° to 40° 2θ, which has been attributed to the faujasite-type zeolite Y. FESEM 

images showed a spherical morphology with bicontinuous lamellar in the range of 500 - 

700 nm in diameter, while the EDX result showed that silica was a dominant material in 

Pt/HFY. NMR spectra confirmed the presence of both tetrahedral and octahedral Al 

species with dominant Q4 sites in HFY. Nitrogen physisorption results showed that the 

presence of fibrous silica generated mesoporosity in the range of 3 - 6 nm and increased 

the BET surface area from 473 to 550 m2/g, while the addition of Pt slightly decreased 

the BET surface area to 483 m2/g which might be due to pore blockage by the Pt particles. 

At 573 K, n-hexane isomerization over Pt/HFY resulted in 72.3% n-hexane conversion 

with 91.4% selectivity of mono-branched, 7.7% selectivity of di-branched and 0.9% 

selectivity of cracking products (C3-C5). The result obtained for Pt/HFY is higher than 

that of Pt/HY with only 27.2% conversion of n-hexane and selectivity of 70.7% mono-

branched and 1.0% di-branched isomers. In the absence of Pt, HY exhibited a very low 

activity with less than 5% of n-hexane conversion and 51.5% selectivity of mono-

branched isomer without di-branched isomers, whereas HFY achieved higher conversion 

and isomers selectivity compared to HY. The acidity of the catalysts was determined by 

pyridine preadsorption IR spectroscopy which showed that the presence of fibrous silica 

increased the number of Lewis acid sites and generated more protonic acid sites. 

Hydrogen adsorbed IR study revealed that the protonic acid sites which acted as active 

sites in the isomerization were formed via the dissociative-adsorption of molecular 

hydrogen releasing electrons close to the Lewis acid sites. The presence of fibrous silica 

which possessed strong Lewis acid sites increased and stabilized the formation of protonic 

acid sites by trapping of electrons. Thus, it is suggested that the presence of Pt and fibrous 

silica improved the activity and stability of zeolite Y in the n-hexane isomerization via 

the hydrogen spillover mechanism. 
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ABSTRAK 

 

 

 

 

 Sekarang ini, pengisomeran alkana linear untuk menghasilkan isomer bercabang 

telah menjadi proses yang amat diperlukan bagi meningkatkan pengkadaran oktana petrol. 

Mangkin silika bergentian zeolit Y (FY) telah disediakan melalui sistem mikroemulsi 

dengan penghabluran berbantukan benih zeolit Y. Platinum termuat ke dalam FY 

berproton (Pt/HFY) telah disediakan secara pemprotonan FY diikuti dengan 

pengisitepuan platinum ke dalam HFY. Mangkin dicirikan menggunakan pembelauan 

sinar-X (XRD), mikroskop pengimbasan elektron pancaran medan (FESEM), nitrogen 

fizijerapan (BET), spektroskopi resonans magnet nukleus-putaran sudut ajaib (MAS-

NMR) dan spektroskopi inframerah transformasi Fourier (FTIR). Keputusan XRD untuk 

mangkin FY memperlihatkan puncak pembelauan dalam julat 2θ antara 4° hingga 40°  

yang dikaitkan dengan faujasit jenis zeolit Y. Imej FESEM menunjukkan morfologi sfera 

dengan lamela dwiberterusan yang mempunyai diameter dalam julat 500 - 700 nm, 

sementara keputusan EDX menunjukkan silika adalah bahan dominan dalam Pt/HFY. 

Spektrum NMR mengesahkan kehadiran kedua-dua spesies Al tetrahedral dan oktahedral 

dengan tapak Q4 yang dominan dalam HFY. Fizijerapan nitrogen menunjukkan bahawa 

kehadiran silika bergentian telah menjana keliangan meso dalam julat 3 - 6 nm dan 

meningkatkan luas permukaan BET dari 473 kepada 550 m2/g, manakala penambahan Pt 

telah menurunkan luas permukaan BET kepada 483 m2/g yang mungkin disebabkan oleh 

penyumbatan liang dengan adanya zarah Pt. Pada 573 K, keisomeran n-heksana yang 

menggunakan mangkin Pt/HFY telah menghasilkan penukaran n-heksana sebanyak 72.3% 

dengan kepilihan 91.4% untuk isomer ekacabang, 7.7% untuk dwicabang dan 0.9% untuk 

hasil peretakan (C3-C5). Keputusan yang diperoleh untuk Pt/HFY adalah lebih tinggi 

daripada Pt/HY dengan Pt/HY menghasilkan hanya 27.2% penukaran n-heksana dan 

kepilihan 70.7% untuk isomer ekacabang dan kepilihan 1.0% untuk isomer dwicabang. 

Tanpa Pt, HY mempamerkan aktiviti yang sangat rendah iaitu kurang daripada 5% 

penukaran n-heksana dan kepilihan 51.5% untuk isomer ekacabang tanpa sebarang 

isomer dwicabang, manakala HFY mencapai penukaran dan kepilihan isomer lebih tinggi 

berbanding dengan HY. Keasidan mangkin telah ditentukan menggunakan spektroskopi 

IR prapenjerapan piridina yang menunjukkan bahawa kehadiran silika bergentian telah 

meningkatkan bilangan tapak asid Lewis dan menghasilkan lebih banyak asid berproton. 

Kajian IR terjerap hidrogen mendedahkan bahawa tapak asid berproton yang bertindak 

sebagai tapak aktif dalam pengisomeran terbentuk melalui penceraian-penjerapan 

molekul hidrogen yang melepaskan elektron berhampiran tapak asid Lewis. Kehadiran 

silika bergentian yang mempunyai tapak asid Lewis kuat meningkatkan dan menstabilkan 

pembentukan tapak asid berproton dengan memerangkap elektron. Oleh itu, adalah 

dicadangkan bahawa kehadiran Pt dan silika bergentian meningkatkan aktiviti dan 

kestabilan zeolit Y dalam pengisomeran n-heksana melalui mekanisme hidrogen 

limpahan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Nowadays, the demand for fossil fuels is increasing over the years because of the 

energy based on combustion of fossil fuels have become the main energy source. Based 

on the world energy consumption, fossil fuels contributed 80% of the total primary 

energies where the largest primary energy is petroleum. Based on this, 58% is consumed 

by the transportation sector. Petroleum liquid fuels produced from crude oil have through 

several refining processes such as naphtha isomerization, olefin alkylation, reforming, 

cracking, and hydrocracking. Over the years, the sources of fossil fuel are becoming 

exhausted and these have affected the global crude oil price. Therefore, people are 

moving toward the efficient and cost-effective refinery production (Nigam and Singh, 

2011). 

 

Over the decades, the modern global refinery process is becoming more complex 

to meet high demand for the cleaner fuel. Strict regulation on the earth’s environment and 

health concern world-wide has been the greatest challenge for the oil refinery to find ways 

to manage the octane number in gasoline pool (Karthikeyan et al., 2008). The 

characteristic of the gasoline quality is determined by the Research Octane Number 

(RON) in the gasoline pool. The higher the RON in the gasoline, will provide better 

engine performance, which enable greater thermal efficiency for future engines 

(Pasadakis, Gaganis and Foteinopoulos, 2006). Fluid Catalytic Cracking (FCC) and 

reforming processes have been introduced and still have limitations in blending which 



2 

 

 

contain high amount of aromatic hydrocarbons. The additives such as methyl tert-butyl 

ether (MTBE) which is one of the oxygenated material, also has been banned in gasoline 

because it will contaminate the ground water supplies. In addition, benzene as anti-

knocking agent also has been banned in many countries due to health concerns (Bahadar, 

Mostafalou and Abdollahi, 2014). 

 

 In this regard, isomerization process offers an alternative way as the gasoline 

enhancer with branched-chain alkanes, which have a higher octane number than linear 

alkanes. Besides, the isomerization process has attracted much interest among researchers 

due to its facile and economical process compared with other octane-improving 

processes. Other than that, products from the isomerization process are low in sulfur and 

benzene contents which makes it an ideal process in refining industries (Valavarasu and 

Sairam, 2013).  

 

In petroleum refining, catalyst is the main key to the transformation process of 

crude oil into finished products. In the isomerization process, the requirement for catalysts 

with high selectivity to isomers and low side products are the most important and 

demanding in industries. Besides, the isomers products must be free from contaminations 

such as sulfur and nitro (Liu et al., 2016). In order to meet high isomers products, active 

catalysts of the isomerization process must have high acidic characteristics. Chlorinated 

alumina based catalysts are commonly used for this process. Although these catalysts are 

highly active, but they suffers from extreme sensitivity to all kinds of feed contaminants 

(Triwahyono, Abdullah and Jalil, 2006). Based on the previous study, zirconia-based 

catalyst such as Pt/SO4
2--ZrO2 (Busto et al., 2012) and Pt/WO3-ZrO2 (Triwahyono, 

Yamada and Hattori, 2003) have a great potential for isomerization due to its ability to 

produce high protonic acid sites.  

 

Metal loaded-zeolite based catalysts such as mordenite, ZSM-5, Y and Beta 

(BEA) have been widely used as the acidic support for isomerization. Noble metals such 

as platinum (Pt) or palladium (Pd) are usually used for the 

dehydrogenation/hydrogenation function in isomerization reaction. Bifunctional catalysts 
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are expected to give high selectivity and activity for the isomerization due to the balance 

between the two catalytic functions, able to promote hydrogenation of hydrocarbon and 

to provide acidity (Soualah et al., 2008). In addition, isomerization process over 

bifunctional heterogeneous catalyst is highly efficient in the hydrogen atmosphere due to 

hydrogen spillover phenomenon. It was suggested that the efficiency of the isomerization 

reaction was due to the generation of protonic acid sites from hydrogen molecules and 

became active sites for isomerization of n-alkanes (Hattori, 2010). However, this 

hydrogen spillover phenomenon has only been observed for certain types of catalysts. 

Previous literatures reported that zirconia based acid catalysts such as Pt/SO4
2--ZrO2 and 

Pt/WO3-ZrO2 have a tendency to generate protonic acid sites via hydrogen spillover 

mechanism. Other than that, zeolite supported metal catalysts such as Zn/HZSM-5 form 

catalytically active protonic acid sites for isomerization of n-pentane in the hydrogen 

stream (Triwahyono et al., 2011). 

 

Zeolites is known as an outstanding catalyst used in oil refinery such as alkylation, 

isomerization, dewaxing and reforming. The wide applications of zeolite are commonly 

due to their unique properties such as high acidity, high surface area, high thermal 

stability, and shape selectivity provide them as a choice for various reactions  

(Weckhuysen and Yu, 2015). Nevertheless, zeolites possess diffusion limitation because 

of the sole presence of microporous which reduced the mass transfer within the active 

sites. To overcome such limitation, zeolites containing both microporous and mesoporous 

was designed to increase the rate of reaction in the catalytic process. The presence of 

micro - and mesoporous material in zeolite have been widely used as catalytic application 

and the catalytic activity of the catalyst still can be further enhanced by introducing more 

active sites on the catalyst (Liu et al., 2016). 

 

Fibrous silica nanosphere (KCC-1) with versatile properties have been reported 

by several researchers. This material was firstly introduced by Polshettiwar, et al. in 2010 

in order to produce mesoporous and nanoscale silica materials with a wide range of 

morphologies. They reported that the silica nanosphere has high surface area due to the 

presence of dendrimeric silica fibers which allow active catalytic sites to disperse. 
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Recently, zeolite-based fibrous material which is fibrous silica ZSM-5 (FZSM-5) was 

reported to have a high surface area, wide pore diameter (2-20 nm), abundance strong 

acid sites and high catalytic activity towards cumene cracking (Firmansyah et al., 2016). 

 

 

 

 

1.2 Problem Statement and Hypothesis  

 

 

The increasing world demand for the clean gasoline are currently a big challenge 

for the petroleum refining companies to produce light crude oil with low level of 

impurities due to many restrictions and regulations by European legislation. The 

concentration of aromatic hydrocarbons and benzene in gasoline must be reduced 

according to Euro-4 and Euro-5 standards specified by United States and Europe (Dao 

and Luu, 2015). World concern related to the environmental and health problems 

restricted the limit for the addition of aromatics, benzene, sulfur, NOx and other dangerous 

compounds. Some octane number enhancer such as MTBE and an oxygenated compound 

has been banned because of alleged leaking from storage tanks and contaminate the water 

supplies. Benzene, also has been eliminated from the gasoline content due to its 

carcinogenic nature (Busto et al., 2012). The restrictions of these compounds on gasoline 

have affected the gasoline quality and reduced the octane number, thus, contributed to the 

poorer engine performance. In this regard, isomerization process has been seen to be an 

alternative way to improve quality of gasoline, which converts linear alkanes to a higher 

octane number branched-chain alkanes. 

 

The isomerization reaction is generally carried out over bifunctional metal/acidic 

catalyst consisting both metallic and acidic functions. In this process, an efficient catalyst 

is required to achieve high selectivity to various isomers and reduce undesired cracking 

products. Current industrial catalysts such as platinum supported on halogenated alumina 

and zirconia showed good potential for isomerization reaction. This kind of catalysts have 

high activity, high selectivity toward n-alkane isomers and can perform at low reaction 

temperature. However, these catalysts suffered from serious environmental pollution and 

their complicated operation (Hidalgo et al., 2013). Among all the supports, zeolites are 



5 

 

 

the most promising solid acid catalyst, known as microporous crystalline 

aluminosilicates. They have been widely used in many industrial processes due to their 

shape selectivity, good thermal stability, hydrophobicity and strong electron transfer to 

their enormous acid sites (Triwahyono et al., 2011). A three-dimensional network with 

well-defined channels and pore system of zeolite provide high activity and selectivity for 

the catalytic reactions. Other than that, the acidity of the zeolite can be controlled via the 

Si/Al ratio by using several treatment methods. The amazing properties of zeolite offers 

new advanced catalytic technologies to produce high-quality products with maximum 

selectivity and energy efficiency (Akhmedov and Al‐Khowaiter, 2007). Unfortunately, 

zeolites have some diffusion limitations when dealing with bulky compounds owing to 

its small and merely micropores, which led to high diffusion limitation for catalytic 

reaction processes.  

 

Silica-based fibrous material has been extensively studied by researchers after the 

discovery of fibrous silica nanosphere (KCC-1) by Polshettiwar et al., 2010. The KCC-1 

was first prepared using the microwave-assisted hydrothermal technique which exhibited 

excellent properties, including a high surface area, a fibrous surface morphology, good 

thermal and hydrothermal stabilities and mechanical stability. Moon, et al., (2012) 

reported that the mesoporous silica with fibrous morphology has high surface area 

compared with a typical hexagonal or cubic pore structure which is suitable for good 

catalytic support. Previous studies have many discoveries related to the acid-catalyzed 

for isomerization reaction. They discovered that the isomerization supports must have 

appropriated acidity for the good catalytic activity. However, the KCC-1 which fully is 

composed with silica does not provide an adequate acid sites to promote acid-catalyzed 

isomerization reaction (Moon and Lee, 2012). 

 

In the present work, newly combined zeolite-based with fibrous silica was 

prepared via self-assembly process in the microemulsion system. This new catalyst has a 

potential to overcome the diffusion limitation possessed by zeolite and inadequate acidity 

provided by KCC-1. Zeolite with dendrimeric silica fiber will provide better accesses to 

active sites.  The presence of dendrimeric silica fiber gives high surface area and leads to 
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widely disperse of active sites in the dendrimeric silica fibers. Other than that, 

implementation of combined silica based material with zeolite has enhanced the acidity 

of the catalyst to overcome the unadequate acidity provided by solely silica of KCC-1. 

The high acidity will enhance the isomerization reaction towards producing high octane 

number gasoline. 

 

 

 

 

1.3 Objectives 

 

 

The objectives of this study are: 

 

 

1. To syntheize fibrous silica Y (FY), protonated Y (HY), FY (HFY), platinum 

loaded on HY (Pt/HY), and platinum loaded on HFY (Pt/HFY). 

2. To characterize the physicochemical properties of HY, HFY, Pt/HY, and Pt/HFY 

catalysts. 

3. To study the catalytic activity of HY, HFY, Pt/HY, and Pt/HFY catalysts in the 

isomerization of n-hexane. 

4. To study the acidity and the generation of protonic acid sites for all the catalyst in 

the presence of hydrogen. 

 

 

 

 

1.4 Scope of Study 

 

 

There are 4 scopes discussed in this study. The first scope was discussed in the 

preparation of the catalysts. The crucial preparation is on the synthesis of fibrous silica Y 

zeolite (FY). The synthesis involved microemulsion system from cetyltrimethyl 

ammonium bromide (CTAB), toluene, and n-butanol. CTAB is used as a surfactant, 

toluene as an oil phase and n-butanol as a co-surfactant. The preparation also involved 

protonation, in which all the catalysts were converted into ammonium form by ion-

exchange and followed by calcination to convert the NH4
+ species into H+. Additionally, 
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incipient wetness impregnation method was used in loading of platinum metal onto the 

support catalyst.  

 

The physical properties of the catalysts were investigated using various 

characterization methods. The structural of the catalysts was detected by X-ray diffraction 

(XRD). The morphologies features were examined by a Field Emission Scanning 

Electron Microscope (FESEM). The elemental analysis was carried out with energy 

dispersion X-ray (EDX). The isotherm and pore size distribution were analyzed by N2 

physisorption (BET method). Molecular vibration was detected by FTIR spectroscopy. 

The composition of silica and alumina of the catalysts were determined by Nuclear 

Magnetic Resonance (NMR).  

 

Catalytic activity of n-hexane isomerization for all the catalysts were studied in a 

continuous pulse reactor at the reaction temperature range of 423-623 K. The activity and 

stability of the catalysts in the presence and absence of hydrogen were studied. The 

isomerization reaction was first performed in the hydrogen stream then switched to the 

nitrogen stream and lastly switched back to hydrogen. 

 

The acidity of all the catalyst was studied using IR pyridine preadsorbed. The 

pyridine was adsorbed at 423 K followed by outgassing from 423 K to 573 K. The 

generation of protonic acid sites from molecular hydrogen on the catalysts was elucidated 

using IR pyridine preadsorbed followed by adsorption of hydrogen at room temperature. 

The hydrogen was heated and removed stepwise and the spectra was recorded using 

Agilent Carry 640 FTIR spectrometer.  

 

 

 

 

1.5 Significance of Study 

 

 

HY, HFY, Pt/HY and Pt/HFY were prepared in this study as an efficient catalysts 

for isomerization of n-hexane by generation abundance of protonic acid sites. A detailed 
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study on the properties of the catalysts were conducted using the X-ray diffraction (XRD), 

Field Emission Scanning Electron Microscope (FESEM), energy dispersion X-ray 

(EDX), N2 physisorption, FTIR-spectroscopy, IR pyridine preadsorbed FTIR, and Magic 

Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR). The new catalyst based on 

fibrous silica Y zeolite increased Lewis acid sites due to the presence of dendrimeric silica 

for trapping the electrons produced from molecular hydrogen spillover. 

 

 

 

 

1.6 Research Outline 

 

 

This study is divided into five chapters. Chapter 1 discussed the introduction of 

isomerization process, catalytic progress to enhance isomers yield and the potential of 

new catalyst to generate protonic acid sites. The problem statement discussed about main 

problem faced by previous isomerization catalysts and hypothesis provided solution to 

the limitation. The scope of study covers the overall research work to meet the objectives 

of the study. 

 

Chapter 2 covered the literature review related to this study. The finding of the 

previous studies are discussed in detail to obtain a clearer view about the preparation of 

fibrous silica Y zeolite and the catalytic performance in the isomerization reaction. 

 

Chapter 3 includes the research methodology describes the materials, chemicals 

and instrumentations used for the experimental purposes. This chapter also included the 

flow of the research from the preparation of the catalysts until the catalytic testing study. 

 

Chapter 4 consists of the results and discussion of the overall study. All the results 

obtained are analyzed and discussed in detail in order to solve the problems facing by 

current technology. 

 

Chapter 5 consists of the conclusion about the study and the recommendation for 

future studies. 
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