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ABSTRACT 

 

 

 

 

This study was invented to provide a cheaper alternative filter material for 

oil/water separation application. Polyethylene terephthalate (PET) textiles with 

diameter of 4.5 cm were chemically grafted with a thin layer of polyacrylamide 

(PAAm) hydrogel via UV LED photopolymerisation system. From the grammages 

that were tested, 85 gsm PET was the most favourable to be used as a matrix. Based 

on the weight loss data the alkali treatment was optimised under the following 

condition i.e. 2 hours of treatment with 10 wt % of NaOH at 60 ºC. For the grafting 

process, the effects of UV curing time (5-30 minutes), positioning of filter paper as a 

spacer (M1 representing the filter paper at the bottom side only and M2 representing 

the filter papers at both top and bottom sides) as well as technique of grafting 

(immersion and dipping) were also taken into the account. The obtained samples 

were characterised using the basic characteristics such as the degree of grafting (DG) 

and Fourier transformed infrared spectroscopy (FTIR). The DG values for immersed 

samples were significantly higher (190 % for M1 and 160 % for M2) than dipped 

samples (90 % for M1 and 60 % for M2). The obtained samples were also 

characterised in terms of surface morphology by field emission scanning electron 

microscopy (FESEM), oil fouling, pure water permeability and oil/water 

permeability test. The results indicated that, the oil/water separation performance of 

the hydrogel-grafted filter materials (PAAm-g-HPET) were strongly influenced by 

the DG of grafted PAAm hydrogel. However, the immersion grafting technique was 

found not suitable to be used for commercialisation purposes because of the low 

water permeability due to hydrogel grafting inside pores as evidenced by FESEM 

images. The dipping grafting method with the positioning of M2 was selected to be 

the best method to deal with filtration in oil/water separation. Different UV curing 

time influenced the oil fouling behaviour of filter samples. Data concluded that 20 

minutes of curing was the optimum time for hydrogel grafting. Wettability data 

indicated that the filter materials after undergoing alkali treatment as well as after 

being grafted with PAAm hydrogel changed from hydrophobic to hydrophilic. To 

some extent, this innovation has shown in the near future as promising device for 

oil/water separation. 
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ABSTRAK 

 

 

 

 

Kajian ini telah dijalankan bagi menyediakan alternatif bahan penapis yang 

lebih murah dalam aplikasi pemisahan air/minyak. Tekstil polietilena tereftalat (PET) 

dengan diameter 4.5 cm telah dicantumkan secara kimia dengan lapisan hidrogel 

poliakrilamida (PAAm) yang nipis melalui sistem cahaya UV LED. Antara semua 

jumlah berat tekstil PET yang telah diuji, tekstil PET dengan jumlah berat 85 gsm 

adalah yang terbaik untuk digunakan sebagai matrik. Berdasarkan data penurunan 

berat, keadaan rawatan alkali yang optimum adalah; pada masa 2 jam dengan 

kepekatan NaOH sebanyak 10 wt% pada suhu 60 °C. Sementara itu, bagi proses 

pencantuman pula, kesan terhadap masa pematangan UV (5-30 minit), kedudukan 

kertas turas sebagai pemisah; M1 mewakili kertas turas pada sebelah bawah sahaja 

dan M2 mewakili kertas turas pada kedua-dua belah bahagian atas dan bawah serta 

teknik pencantuman (rendaman dan celupan) turut diambil kira. Sampel yang 

diperoleh kemudiannya dinilai dengan menggunakan ciri-ciri asas seperti darjah 

cantuman (DG) dan spektroskopi jelmaan Fourier infra-merah (FTIR). Nilai DG bagi 

sampel rendaman adalah lebih tinggi (190% untuk M1 dan 160% untuk M2) 

berbanding sampel yang dicelup (90% untuk M1 dan 60% untuk M2). Seterusnya, 

sampel yang diperoleh ini juga turut dicirikan dari segi morfologi permukaan 

menggunakan medan pelepasan elektron mikroskop pengimbas (FESEM), ujian 

kotoran minyak, kebolehtelapan air tulen, kebolehtelapan minyak dan ujian 

penolakan minyak. Keputusan menunjukkan bahawa prestasi bahan penapis yang 

dihasilkan melalui pencantuman hidrogel dalam pemisahan minyak/air sangat 

dipengaruhi oleh darjah cantuman PAAm hidrogel. Walau bagaimanapun, teknik 

pencantuman rendaman tidak sesuai digunakan pada peringkat komersil kerana kadar 

kebolehtelapan air rendah disebabkan oleh pencantuman hidrogel dalam pori-pori 

seperti yang ditunjukkan oleh gambar FESEM. Oleh itu, teknik pencantuman secara 

celupan dengan kedudukan kertas turas M2 telah dipilih untuk menjadi kaedah 

terbaik dan sangat sesuai untuk digunakan dalam penapisan bagi pemisah air/minyak. 

Selain itu, masa pematangan UV yang berbeza memberi impak ke atas sifat kotoran 

minyak terhadap sampel penapis. Setakat ini, tempoh pematangan selama 20 minit 

adalah masa yang optimum untuk hidrogel dicantumkan. Data yang diperolehi 

daripada kebolehbasahan menunjukkan bahan penapis selepas menjalani rawatan 

alkali serta dicantumkan dengan hidrogel berubah menjadi hidrofilik. Adalah 

dijangkakan, inovasi ini mempunyai kegunaan yang cerah sebagai bahan penapis 

yang baik untuk pemisahan minyak/air pada masa hadapan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Nowadays, tremendous attention have been paid towards development of 

functional hydrogels (Kumar et al., 2007; Yang et al., 2011; Wandera et al., 2010; 

Chirani et al., 2015). Many researchers are interested in exploring the potential 

application of hydrogel in various fields such as drug delivery, tissues engineering, 

biomedical, artifical tissue (Ahmed 2013) and recently in bioseparation field e.g. oil/ 

water separation (Xue et al., 2011; Wu et al., 2012; Adrus, 2012; Liang et al., 2012; 

Xue et al., 2013; Yuan et al., 2015), protein mixture (Gunavadhi et al., 2012; Wang 

et al., 2013) and many more. 

 

 

Hydrogels are highly hydrophilic polymeric matrices that built up of three-

dimensional network (Adrus, 2012). Hydrogels are also unique because they have 

self-cleaning (Wang et al., 2011) and oil-fouling resistance (Sagle & Freeman 2009) 

properties. In addition, due to their hydrophilicity, hydrogels have the ability to retain 

high water content and minimize the foulant contact such as adsorption of protein 

(Charles et al., 2009), adhesion of cells or bacteria (Kunz et al., 1999) as well as oil-

repellent property (Yoshida and Okano 2010). 

 

 

Furthermore, research that related to hydrogel is still very active due to the 

great attention with regard to its outstanding properties. Polyacrylamide (PAAm) 

hydrogel is one of the frequently used hydrogel. In the literature, PAAm hydrogel 
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was mainly used in electrophoresis application for protein and DNA separation (Lin 

et al., 2004). But recently, the research on hydrogels have focused on oil/water 

separation field due to their oil-repelling characteristics (Kumar et al., 2007 and 

Stuart et al., 2010). According to Xue et al., (2011) and Feng et al., (2012), PAAm 

hydrogel-coated mesh shows special wettability with both underwater 

superoleophobic and low oil-adhesion characteristics in oil/water/solid three phase 

systems. This is because, it consist of rough nanostructured hydrogel coatings and 

micro scale porous substrate. Similarly, Gao et al., (2013) also had synthesized such 

hydrophilic and oleophobic molecules by using TiO2 and it successfully applied for 

the separation crude oil/water mixtures. 

 

 

In order to assess the surface wettability of hydrogels, it is highly 

recommended to use hydrogels as a grafted layer on the polymer substrate as 

compared to bulk hydrogels (Adrus and Ulbricht, 2012). Engineering polymer such 

as PET, polyurethane (PU), polyethersulfone (PES) and polyvinylidene fluoride 

(PVDF) are commonly employed as polymer substrates. In recent times, PET textiles 

have been broadly used in various applications by using different types of textile 

namely woven and nonwoven. Those include medical (Rahman and East, 2006), 

filter, geotextiles (East and Rahman, 1999) and many more. On top of that, PET is 

much cheaper, have good mechanical properties that comparable with metals, easy to 

handle as well as user-friendly amongst other polymeric materials. 

 

 

In this work, the formation of hydrogel layers onto the polymer substrates 

could further be enhanced by photopolymerization using UV LED system. To the 

best of our knowledge, hydrogel grafting for oil/water separation using 

photopolymerization is limited. Most of the studies were reported to use physical 

grafting only. So, photografting technique was preferred in this study. In recent 

years, the UV-initiated grafting or copolymerization is progressively proposed for an 

effective surface modification as it offers unique ability to tune and to manipulate 

surface properties without damaging the bulk materials (Praschak et al., 2000; 

Bahners et al., 2004). Therefore, the aim of this work was to graft PAAm hydrogels 

onto PET textiles surfaces (which was direct activated with photoinitiator) via UV 

LED photografting and to characterize the grafted textiles (PAAm-g-HPET) from 
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degree of grafting (DG), Fourier transformed infrared spectroscopy (FTIR), field 

emission scanning electron microscopy (FESEM), surface wettability by contact 

angle, pure water permeability test and oil/water separation measurement. The 

hydrogel grafted PET textiles were envisioned to have oil-repelling properties due to 

the synergistic of combining hydrophilic hydrogel onto PET textiles surfaces. Thus, 

this innovation would have bright vision in the near future as effective materials for 

oil/water separation.  

 

 

 

 

1.2 Problem Statement 

 

 

To date, oily wastewater, polluted ocean water and frequent oil spill accident 

have becoming a main worldwide problem. According to the previous studies 

(Benfer et al., 2001; Inagaki et al., 2002; Huang & Lim, 2006), various approaches 

have been used to overcome these problems such as removal oil by kapok fibre, 

adsorption of oil by using activated carbon, separation by gravity and separation by 

ceramic membrane. Although those materials exhibited high adsorption capacity up 

to 99%, but there are limitations occur for a large scale fabrication of such adsorber 

materials and for practical application. This ascribed to the high prices of the 

materials, complex fabrication procedures, low stability and flexibility, difficult 

practical condition, lead to the oil fouling as well as poor selectivity and recyclability 

(Guvendiren et al., 2009). In response to the problems stated above, it was therefore, 

worthwhile to investigate the simple and necessary way to overcome the limitation of 

previous innovation. 

 

 

Previously, there were several studies reported that hydrogels including 

PAAm were usually coated onto stainless steels mesh and successfully employed for 

oil/water separation (Xue et al., 2011). However, stainless steel mesh did not have a 

functional group to be grafted with hydrogel. As a result, it directed the hydrogels 

only attached by physical coating. This event would lead to the short lifetime and 

low stability. The use of engineering PET as a substrate could be good alternative as 

PET has also outstanding mechanical properties similar to metal. Two years later, a 

superhydrophobic and superoleophilic material was developed by Xue et al., (2013). 
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Sol-gel was coated onto PET textiles. Since the obtained material is designed to be 

superhydrophobic and superoleophilic, the probability for pores of the textiles to be 

clogged with oil is very high. As a result, post-treatment is needed which directed in 

higher cost. Moreover, in 2014, Yuan and co-workers have developed polysulfone 

membrane clicked with poly (ethylene glycol) (PEG) of high density and uniformity 

for oil/water emulsion purification. Although the membrane shows superior oil/water 

emulsion separation performance, but due to its complicated fabrication, this study is 

not feasible to be scale up. 

 

 

Although PET was widely used in numerous applications such as used as a 

filter device, bottles and apparels, it has limitations with regard to their surface 

properties. This is because PET is less hydrophilic in nature. Therefore pre-treatment 

is a must process to modify its surfaces. Here, the non-woven PET textiles were 

grafted with a thin layer of PAAm hydrogel via photografting approached for 

oil/water separation. PET textiles were chosen as substrate for this research because 

it was much cheaper, easy to handle and environmentally friendly as compared to 

other polymeric materials, stainless steels and ceramics. 

 

 

 Additionally, the curing of hydrogels was mostly focused on conventional 

ultraviolet-A (UVA) system. However, as the conventional UVA lamp has high 

energy consumption and takes time to warming up (as the emitting lamps for UVA 

curing are typically from mercury sources), thus UV LED was used instead. The 

development of UV LED light source for hydrogels curing is promising technology 

that can be used to replace conventional UVA system (Ayub et al., 2017) . To the 

best of our knowledge, UV LED has not yet been reported as a source to irradiate or 

cure the hydrogels. 
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1.3 Objectives of the Research 

 

 

The ultimate aim of this study was to produce highly efficient filters for 

oil/water separation where they were cheaper, easier to fabricate as well as 

environmentally friendly. The sub objectives could be further divided into:  

 

 

i. To study the effect of alkali treatment on the hydrophilicity of PET 

textiles with various grammage (17-120 gsm), different concentrations of 

NaOH (4 and 10 wt%), times of treatment (2, 4 and 8 hours) and 

temperatures of treatment (30 and 60 ºC). 

ii. To synthesize the PAAm hydrogel grafted onto PET textiles surfaces 

(PAAm-g-HPET) with different times of irradiation (5-30 minutes) via 

UV LED photopolymerization, method of grafting (immersion and 

dipping) and also different positioning of filter paper (M1 and M2) 

iii. To characterize the PAAm-g-HPET samples via DG, FTIR, oil fouling 

test, water permeability, FESEM, surface wettability and the performance 

of PAAm-g-HPET samples towards oil/water separation. 

 

 

 

 

1.4 Scope of the Research 

 

 

In general, this project was divided into three tasks. The first task started with 

alkali treatment of PET textiles. The purpose of this process was to improve i) the 

hydrophilicity of PET as it is hydrophobic in nature, ii) performance of PET textiles 

and iii) to eliminate the dirt as well as other contamination. The concentration of 

NaOH, time of treatment and temperature were varied in order to determine the 

optimum conditions for alkali treatment towards the PET textiles. 

 

 

Meanwhile, the second task of this research involved the study regarding the 

photografting process of PAAm-g-HPET via UV LED system. Primarily, both 

surfaces of pure and alkali-treated PET textiles were activated using type II 

photoinitiator (benzophenone, BP). At first, PAAm hydrogel was grafted onto PET 
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textiles without using any spacers. Later, the same process was deliberated using 

filter paper as a spacer with different positioning. Moreover, the photografting was 

carried out either via immersion or dipping method. These two methods were studied 

to investigate the effect of grafting onto the PET textiles as well as the performance 

of the samples towards oil/water separation. The samples were exposed to different 

times of curing in order to find the best UV time for grafting. Then, the grafted PET 

textile samples were soaked in the distilled water to wash out the residual chemicals 

and unreacted monomer before being dried in the oven.  

 

 

Finally, all the designated samples were characterized using the basic 

polymer characterization process such as DG and FTIR. In addition, FESEM, oil 

fouling test, pure water permeability, and surface wettability using contact angle as 

well as oil/water separation measurement were also conducted to study the ability of 

PAAm-g-HPET samples to separate oil and water. 
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